1 |
< |
#include <cmath> |
1 |
> |
#include <math.h> |
2 |
|
#include <iostream> |
3 |
|
using namespace std; |
4 |
|
|
16 |
|
#include "mpiSimulation.hpp" |
17 |
|
#endif // is_mpi |
18 |
|
|
19 |
< |
|
20 |
< |
#define BASE_SEED 123456789 |
21 |
< |
|
22 |
< |
Thermo::Thermo( SimInfo* the_entry_plug ) { |
23 |
< |
entry_plug = the_entry_plug; |
24 |
< |
int baseSeed = BASE_SEED; |
19 |
> |
Thermo::Thermo( SimInfo* the_info ) { |
20 |
> |
info = the_info; |
21 |
> |
int baseSeed = the_info->getSeed(); |
22 |
|
|
23 |
|
gaussStream = new gaussianSPRNG( baseSeed ); |
24 |
|
} |
30 |
|
double Thermo::getKinetic(){ |
31 |
|
|
32 |
|
const double e_convert = 4.184E-4; // convert kcal/mol -> (amu A^2)/fs^2 |
33 |
< |
double vx2, vy2, vz2; |
34 |
< |
double kinetic, v_sqr; |
35 |
< |
int kl; |
36 |
< |
double jx2, jy2, jz2; // the square of the angular momentums |
33 |
> |
double kinetic; |
34 |
> |
double amass; |
35 |
> |
double aVel[3], aJ[3], I[3][3]; |
36 |
> |
int i, j, k, kl; |
37 |
|
|
41 |
– |
DirectionalAtom *dAtom; |
42 |
– |
|
43 |
– |
int n_atoms; |
38 |
|
double kinetic_global; |
39 |
< |
Atom** atoms; |
46 |
< |
|
39 |
> |
vector<StuntDouble *> integrableObjects = info->integrableObjects; |
40 |
|
|
48 |
– |
n_atoms = entry_plug->n_atoms; |
49 |
– |
atoms = entry_plug->atoms; |
50 |
– |
|
41 |
|
kinetic = 0.0; |
42 |
|
kinetic_global = 0.0; |
53 |
– |
for( kl=0; kl < n_atoms; kl++ ){ |
43 |
|
|
44 |
< |
vx2 = atoms[kl]->get_vx() * atoms[kl]->get_vx(); |
45 |
< |
vy2 = atoms[kl]->get_vy() * atoms[kl]->get_vy(); |
46 |
< |
vz2 = atoms[kl]->get_vz() * atoms[kl]->get_vz(); |
44 |
> |
for (kl=0; kl<integrableObjects.size(); kl++) { |
45 |
> |
integrableObjects[kl]->getVel(aVel); |
46 |
> |
amass = integrableObjects[kl]->getMass(); |
47 |
|
|
48 |
< |
v_sqr = vx2 + vy2 + vz2; |
49 |
< |
kinetic += atoms[kl]->getMass() * v_sqr; |
48 |
> |
for(j=0; j<3; j++) |
49 |
> |
kinetic += amass*aVel[j]*aVel[j]; |
50 |
|
|
51 |
< |
if( atoms[kl]->isDirectional() ){ |
52 |
< |
|
53 |
< |
dAtom = (DirectionalAtom *)atoms[kl]; |
54 |
< |
|
55 |
< |
jx2 = dAtom->getJx() * dAtom->getJx(); |
56 |
< |
jy2 = dAtom->getJy() * dAtom->getJy(); |
57 |
< |
jz2 = dAtom->getJz() * dAtom->getJz(); |
58 |
< |
|
59 |
< |
kinetic += (jx2 / dAtom->getIxx()) + (jy2 / dAtom->getIyy()) |
60 |
< |
+ (jz2 / dAtom->getIzz()); |
61 |
< |
} |
51 |
> |
if (integrableObjects[kl]->isDirectional()){ |
52 |
> |
|
53 |
> |
integrableObjects[kl]->getJ( aJ ); |
54 |
> |
integrableObjects[kl]->getI( I ); |
55 |
> |
|
56 |
> |
if (integrableObjects[kl]->isLinear()) { |
57 |
> |
i = integrableObjects[kl]->linearAxis(); |
58 |
> |
j = (i+1)%3; |
59 |
> |
k = (i+2)%3; |
60 |
> |
kinetic += aJ[j]*aJ[j]/I[j][j] + aJ[k]*aJ[k]/I[k][k]; |
61 |
> |
} else { |
62 |
> |
for (j=0; j<3; j++) |
63 |
> |
kinetic += aJ[j]*aJ[j] / I[j][j]; |
64 |
> |
} |
65 |
> |
} |
66 |
|
} |
67 |
|
#ifdef IS_MPI |
68 |
|
MPI_Allreduce(&kinetic,&kinetic_global,1,MPI_DOUBLE, |
69 |
|
MPI_SUM, MPI_COMM_WORLD); |
70 |
|
kinetic = kinetic_global; |
71 |
|
#endif //is_mpi |
72 |
< |
|
72 |
> |
|
73 |
|
kinetic = kinetic * 0.5 / e_convert; |
74 |
|
|
75 |
|
return kinetic; |
82 |
|
int el, nSRI; |
83 |
|
Molecule* molecules; |
84 |
|
|
85 |
< |
molecules = entry_plug->molecules; |
86 |
< |
nSRI = entry_plug->n_SRI; |
85 |
> |
molecules = info->molecules; |
86 |
> |
nSRI = info->n_SRI; |
87 |
|
|
88 |
|
potential_local = 0.0; |
89 |
|
potential = 0.0; |
90 |
< |
potential_local += entry_plug->lrPot; |
90 |
> |
potential_local += info->lrPot; |
91 |
|
|
92 |
< |
for( el=0; el<entry_plug->n_mol; el++ ){ |
92 |
> |
for( el=0; el<info->n_mol; el++ ){ |
93 |
|
potential_local += molecules[el].getPotential(); |
94 |
|
} |
95 |
|
|
101 |
|
potential = potential_local; |
102 |
|
#endif // is_mpi |
103 |
|
|
111 |
– |
#ifdef IS_MPI |
112 |
– |
/* |
113 |
– |
std::cerr << "node " << worldRank << ": after pot = " << potential << "\n"; |
114 |
– |
*/ |
115 |
– |
#endif |
116 |
– |
|
104 |
|
return potential; |
105 |
|
} |
106 |
|
|
114 |
|
|
115 |
|
double Thermo::getTemperature(){ |
116 |
|
|
117 |
< |
const double kb = 1.9872179E-3; // boltzman's constant in kcal/(mol K) |
117 |
> |
const double kb = 1.9872156E-3; // boltzman's constant in kcal/(mol K) |
118 |
|
double temperature; |
119 |
< |
|
120 |
< |
temperature = ( 2.0 * this->getKinetic() ) / ((double)entry_plug->ndf * kb ); |
119 |
> |
|
120 |
> |
temperature = ( 2.0 * this->getKinetic() ) / ((double)info->ndf * kb ); |
121 |
|
return temperature; |
122 |
|
} |
123 |
|
|
124 |
< |
double Thermo::getPressure(){ |
125 |
< |
// returns pressure in units amu*fs^-2*Ang^-1 |
124 |
> |
double Thermo::getVolume() { |
125 |
> |
|
126 |
> |
return info->boxVol; |
127 |
> |
} |
128 |
> |
|
129 |
> |
double Thermo::getPressure() { |
130 |
> |
|
131 |
> |
// Relies on the calculation of the full molecular pressure tensor |
132 |
> |
|
133 |
> |
const double p_convert = 1.63882576e8; |
134 |
> |
double press[3][3]; |
135 |
> |
double pressure; |
136 |
> |
|
137 |
> |
this->getPressureTensor(press); |
138 |
> |
|
139 |
> |
pressure = p_convert * (press[0][0] + press[1][1] + press[2][2]) / 3.0; |
140 |
> |
|
141 |
> |
return pressure; |
142 |
> |
} |
143 |
> |
|
144 |
> |
double Thermo::getPressureX() { |
145 |
> |
|
146 |
> |
// Relies on the calculation of the full molecular pressure tensor |
147 |
> |
|
148 |
> |
const double p_convert = 1.63882576e8; |
149 |
> |
double press[3][3]; |
150 |
> |
double pressureX; |
151 |
> |
|
152 |
> |
this->getPressureTensor(press); |
153 |
> |
|
154 |
> |
pressureX = p_convert * press[0][0]; |
155 |
> |
|
156 |
> |
return pressureX; |
157 |
> |
} |
158 |
> |
|
159 |
> |
double Thermo::getPressureY() { |
160 |
> |
|
161 |
> |
// Relies on the calculation of the full molecular pressure tensor |
162 |
> |
|
163 |
> |
const double p_convert = 1.63882576e8; |
164 |
> |
double press[3][3]; |
165 |
> |
double pressureY; |
166 |
> |
|
167 |
> |
this->getPressureTensor(press); |
168 |
> |
|
169 |
> |
pressureY = p_convert * press[1][1]; |
170 |
> |
|
171 |
> |
return pressureY; |
172 |
> |
} |
173 |
> |
|
174 |
> |
double Thermo::getPressureZ() { |
175 |
> |
|
176 |
> |
// Relies on the calculation of the full molecular pressure tensor |
177 |
> |
|
178 |
> |
const double p_convert = 1.63882576e8; |
179 |
> |
double press[3][3]; |
180 |
> |
double pressureZ; |
181 |
> |
|
182 |
> |
this->getPressureTensor(press); |
183 |
> |
|
184 |
> |
pressureZ = p_convert * press[2][2]; |
185 |
> |
|
186 |
> |
return pressureZ; |
187 |
> |
} |
188 |
> |
|
189 |
> |
|
190 |
> |
void Thermo::getPressureTensor(double press[3][3]){ |
191 |
> |
// returns pressure tensor in units amu*fs^-2*Ang^-1 |
192 |
|
// routine derived via viral theorem description in: |
193 |
|
// Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322 |
194 |
|
|
195 |
|
const double e_convert = 4.184e-4; |
196 |
< |
const double p_convert = 1.63882576e8; |
197 |
< |
double molmass; |
196 |
> |
|
197 |
> |
double molmass, volume; |
198 |
|
double vcom[3]; |
199 |
< |
double p_local, p_sum, p_mol, virial; |
200 |
< |
double theBox[3]; |
148 |
< |
double* tau; |
149 |
< |
int i, nMols; |
199 |
> |
double p_local[9], p_global[9]; |
200 |
> |
int i, j, k, nMols; |
201 |
|
Molecule* molecules; |
202 |
|
|
203 |
< |
nMols = entry_plug->n_mol; |
204 |
< |
molecules = entry_plug->molecules; |
205 |
< |
tau = entry_plug->tau; |
203 |
> |
nMols = info->n_mol; |
204 |
> |
molecules = info->molecules; |
205 |
> |
//tau = info->tau; |
206 |
|
|
207 |
|
// use velocities of molecular centers of mass and molecular masses: |
208 |
< |
p_local = 0.0; |
208 |
> |
for (i=0; i < 9; i++) { |
209 |
> |
p_local[i] = 0.0; |
210 |
> |
p_global[i] = 0.0; |
211 |
> |
} |
212 |
|
|
213 |
|
for (i=0; i < nMols; i++) { |
214 |
|
molmass = molecules[i].getCOMvel(vcom); |
215 |
< |
p_local += (vcom[0]*vcom[0] + vcom[1]*vcom[1] + vcom[2]*vcom[2]) * molmass; |
215 |
> |
|
216 |
> |
p_local[0] += molmass * (vcom[0] * vcom[0]); |
217 |
> |
p_local[1] += molmass * (vcom[0] * vcom[1]); |
218 |
> |
p_local[2] += molmass * (vcom[0] * vcom[2]); |
219 |
> |
p_local[3] += molmass * (vcom[1] * vcom[0]); |
220 |
> |
p_local[4] += molmass * (vcom[1] * vcom[1]); |
221 |
> |
p_local[5] += molmass * (vcom[1] * vcom[2]); |
222 |
> |
p_local[6] += molmass * (vcom[2] * vcom[0]); |
223 |
> |
p_local[7] += molmass * (vcom[2] * vcom[1]); |
224 |
> |
p_local[8] += molmass * (vcom[2] * vcom[2]); |
225 |
|
} |
226 |
|
|
227 |
|
// Get total for entire system from MPI. |
228 |
+ |
|
229 |
|
#ifdef IS_MPI |
230 |
< |
MPI_Allreduce(&p_local,&p_sum,1,MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD); |
230 |
> |
MPI_Allreduce(p_local,p_global,9,MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD); |
231 |
|
#else |
232 |
< |
p_sum = p_local; |
232 |
> |
for (i=0; i<9; i++) { |
233 |
> |
p_global[i] = p_local[i]; |
234 |
> |
} |
235 |
|
#endif // is_mpi |
236 |
|
|
237 |
< |
virial = tau[0] + tau[4] + tau[8]; |
172 |
< |
entry_plug->getBox(theBox); |
237 |
> |
volume = this->getVolume(); |
238 |
|
|
239 |
< |
p_mol = p_convert * (p_sum - virial*e_convert) / |
240 |
< |
(3.0 * theBox[0] * theBox[1]* theBox[2]); |
239 |
> |
for(i = 0; i < 3; i++) { |
240 |
> |
for (j = 0; j < 3; j++) { |
241 |
> |
k = 3*i + j; |
242 |
> |
press[i][j] = (p_global[k] + info->tau[k]*e_convert) / volume; |
243 |
|
|
244 |
< |
return p_mol; |
244 |
> |
} |
245 |
> |
} |
246 |
|
} |
247 |
|
|
248 |
|
void Thermo::velocitize() { |
249 |
|
|
250 |
< |
double x,y; |
251 |
< |
double vx, vy, vz; |
184 |
< |
double jx, jy, jz; |
185 |
< |
int i, vr, vd; // velocity randomizer loop counters |
250 |
> |
double aVel[3], aJ[3], I[3][3]; |
251 |
> |
int i, j, vr, vd; // velocity randomizer loop counters |
252 |
|
double vdrift[3]; |
253 |
|
double vbar; |
254 |
|
const double kb = 8.31451e-7; // kb in amu, angstroms, fs, etc. |
261 |
|
int n_oriented; |
262 |
|
int n_constraints; |
263 |
|
|
264 |
< |
atoms = entry_plug->atoms; |
265 |
< |
n_atoms = entry_plug->n_atoms; |
266 |
< |
temperature = entry_plug->target_temp; |
267 |
< |
n_oriented = entry_plug->n_oriented; |
268 |
< |
n_constraints = entry_plug->n_constraints; |
264 |
> |
atoms = info->atoms; |
265 |
> |
n_atoms = info->n_atoms; |
266 |
> |
temperature = info->target_temp; |
267 |
> |
n_oriented = info->n_oriented; |
268 |
> |
n_constraints = info->n_constraints; |
269 |
|
|
270 |
< |
kebar = kb * temperature * (double)entry_plug->ndf / |
271 |
< |
( 2.0 * (double)entry_plug->ndfRaw ); |
270 |
> |
kebar = kb * temperature * (double)info->ndfRaw / |
271 |
> |
( 2.0 * (double)info->ndf ); |
272 |
|
|
273 |
|
for(vr = 0; vr < n_atoms; vr++){ |
274 |
|
|
276 |
|
|
277 |
|
av2 = 2.0 * kebar / atoms[vr]->getMass(); |
278 |
|
vbar = sqrt( av2 ); |
279 |
< |
|
214 |
< |
// vbar = sqrt( 8.31451e-7 * temperature / atoms[vr]->getMass() ); |
215 |
< |
|
279 |
> |
|
280 |
|
// picks random velocities from a gaussian distribution |
281 |
|
// centered on vbar |
282 |
|
|
283 |
< |
vx = vbar * gaussStream->getGaussian(); |
284 |
< |
vy = vbar * gaussStream->getGaussian(); |
285 |
< |
vz = vbar * gaussStream->getGaussian(); |
283 |
> |
for (j=0; j<3; j++) |
284 |
> |
aVel[j] = vbar * gaussStream->getGaussian(); |
285 |
> |
|
286 |
> |
atoms[vr]->setVel( aVel ); |
287 |
|
|
223 |
– |
atoms[vr]->set_vx( vx ); |
224 |
– |
atoms[vr]->set_vy( vy ); |
225 |
– |
atoms[vr]->set_vz( vz ); |
288 |
|
} |
289 |
|
|
290 |
|
// Get the Center of Mass drift velocity. |
296 |
|
|
297 |
|
for(vd = 0; vd < n_atoms; vd++){ |
298 |
|
|
299 |
< |
vx = atoms[vd]->get_vx(); |
238 |
< |
vy = atoms[vd]->get_vy(); |
239 |
< |
vz = atoms[vd]->get_vz(); |
240 |
< |
|
241 |
< |
vx -= vdrift[0]; |
242 |
< |
vy -= vdrift[1]; |
243 |
< |
vz -= vdrift[2]; |
299 |
> |
atoms[vd]->getVel(aVel); |
300 |
|
|
301 |
< |
atoms[vd]->set_vx(vx); |
302 |
< |
atoms[vd]->set_vy(vy); |
303 |
< |
atoms[vd]->set_vz(vz); |
301 |
> |
for (j=0; j < 3; j++) |
302 |
> |
aVel[j] -= vdrift[j]; |
303 |
> |
|
304 |
> |
atoms[vd]->setVel( aVel ); |
305 |
|
} |
306 |
|
if( n_oriented ){ |
307 |
|
|
310 |
|
if( atoms[i]->isDirectional() ){ |
311 |
|
|
312 |
|
dAtom = (DirectionalAtom *)atoms[i]; |
313 |
+ |
dAtom->getI( I ); |
314 |
+ |
|
315 |
+ |
for (j = 0 ; j < 3; j++) { |
316 |
|
|
317 |
< |
vbar = sqrt( 2.0 * kebar * dAtom->getIxx() ); |
318 |
< |
jx = vbar * gaussStream->getGaussian(); |
317 |
> |
vbar = sqrt( 2.0 * kebar * I[j][j] ); |
318 |
> |
aJ[j] = vbar * gaussStream->getGaussian(); |
319 |
|
|
320 |
< |
vbar = sqrt( 2.0 * kebar * dAtom->getIyy() ); |
321 |
< |
jy = vbar * gaussStream->getGaussian(); |
322 |
< |
|
323 |
< |
vbar = sqrt( 2.0 * kebar * dAtom->getIzz() ); |
264 |
< |
jz = vbar * gaussStream->getGaussian(); |
265 |
< |
|
266 |
< |
dAtom->setJx( jx ); |
267 |
< |
dAtom->setJy( jy ); |
268 |
< |
dAtom->setJz( jz ); |
320 |
> |
} |
321 |
> |
|
322 |
> |
dAtom->setJ( aJ ); |
323 |
> |
|
324 |
|
} |
325 |
|
} |
326 |
|
} |
329 |
|
void Thermo::getCOMVel(double vdrift[3]){ |
330 |
|
|
331 |
|
double mtot, mtot_local; |
332 |
+ |
double aVel[3], amass; |
333 |
|
double vdrift_local[3]; |
334 |
< |
int vd, n_atoms; |
334 |
> |
int vd, n_atoms, j; |
335 |
|
Atom** atoms; |
336 |
|
|
337 |
|
// We are very careless here with the distinction between n_atoms and n_local |
338 |
|
// We should really fix this before someone pokes an eye out. |
339 |
|
|
340 |
< |
n_atoms = entry_plug->n_atoms; |
341 |
< |
atoms = entry_plug->atoms; |
340 |
> |
n_atoms = info->n_atoms; |
341 |
> |
atoms = info->atoms; |
342 |
|
|
343 |
|
mtot_local = 0.0; |
344 |
|
vdrift_local[0] = 0.0; |
347 |
|
|
348 |
|
for(vd = 0; vd < n_atoms; vd++){ |
349 |
|
|
350 |
< |
vdrift_local[0] += atoms[vd]->get_vx() * atoms[vd]->getMass(); |
351 |
< |
vdrift_local[1] += atoms[vd]->get_vy() * atoms[vd]->getMass(); |
352 |
< |
vdrift_local[2] += atoms[vd]->get_vz() * atoms[vd]->getMass(); |
350 |
> |
amass = atoms[vd]->getMass(); |
351 |
> |
atoms[vd]->getVel( aVel ); |
352 |
> |
|
353 |
> |
for(j = 0; j < 3; j++) |
354 |
> |
vdrift_local[j] += aVel[j] * amass; |
355 |
|
|
356 |
< |
mtot_local += atoms[vd]->getMass(); |
356 |
> |
mtot_local += amass; |
357 |
|
} |
358 |
|
|
359 |
|
#ifdef IS_MPI |
372 |
|
|
373 |
|
} |
374 |
|
|
375 |
+ |
void Thermo::getCOM(double COM[3]){ |
376 |
+ |
|
377 |
+ |
double mtot, mtot_local; |
378 |
+ |
double aPos[3], amass; |
379 |
+ |
double COM_local[3]; |
380 |
+ |
int i, n_atoms, j; |
381 |
+ |
Atom** atoms; |
382 |
+ |
|
383 |
+ |
// We are very careless here with the distinction between n_atoms and n_local |
384 |
+ |
// We should really fix this before someone pokes an eye out. |
385 |
+ |
|
386 |
+ |
n_atoms = info->n_atoms; |
387 |
+ |
atoms = info->atoms; |
388 |
+ |
|
389 |
+ |
mtot_local = 0.0; |
390 |
+ |
COM_local[0] = 0.0; |
391 |
+ |
COM_local[1] = 0.0; |
392 |
+ |
COM_local[2] = 0.0; |
393 |
+ |
|
394 |
+ |
for(i = 0; i < n_atoms; i++){ |
395 |
+ |
|
396 |
+ |
amass = atoms[i]->getMass(); |
397 |
+ |
atoms[i]->getPos( aPos ); |
398 |
+ |
|
399 |
+ |
for(j = 0; j < 3; j++) |
400 |
+ |
COM_local[j] += aPos[j] * amass; |
401 |
+ |
|
402 |
+ |
mtot_local += amass; |
403 |
+ |
} |
404 |
+ |
|
405 |
+ |
#ifdef IS_MPI |
406 |
+ |
MPI_Allreduce(&mtot_local,&mtot,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
407 |
+ |
MPI_Allreduce(COM_local,COM,3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
408 |
+ |
#else |
409 |
+ |
mtot = mtot_local; |
410 |
+ |
for(i = 0; i < 3; i++) { |
411 |
+ |
COM[i] = COM_local[i]; |
412 |
+ |
} |
413 |
+ |
#endif |
414 |
+ |
|
415 |
+ |
for (i = 0; i < 3; i++) { |
416 |
+ |
COM[i] = COM[i] / mtot; |
417 |
+ |
} |
418 |
+ |
} |