1 |
< |
#include <cmath> |
1 |
> |
#include <math.h> |
2 |
|
#include <iostream> |
3 |
|
using namespace std; |
4 |
|
|
10 |
|
#include "SRI.hpp" |
11 |
|
#include "Integrator.hpp" |
12 |
|
#include "simError.h" |
13 |
+ |
#include "MatVec3.h" |
14 |
|
|
15 |
|
#ifdef IS_MPI |
16 |
|
#define __C |
17 |
|
#include "mpiSimulation.hpp" |
18 |
|
#endif // is_mpi |
19 |
|
|
20 |
+ |
inline double roundMe( double x ){ |
21 |
+ |
return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 ); |
22 |
+ |
} |
23 |
|
|
24 |
< |
#define BASE_SEED 123456789 |
25 |
< |
|
26 |
< |
Thermo::Thermo( SimInfo* the_entry_plug ) { |
23 |
< |
entry_plug = the_entry_plug; |
24 |
< |
int baseSeed = BASE_SEED; |
24 |
> |
Thermo::Thermo( SimInfo* the_info ) { |
25 |
> |
info = the_info; |
26 |
> |
int baseSeed = the_info->getSeed(); |
27 |
|
|
28 |
|
gaussStream = new gaussianSPRNG( baseSeed ); |
29 |
|
} |
35 |
|
double Thermo::getKinetic(){ |
36 |
|
|
37 |
|
const double e_convert = 4.184E-4; // convert kcal/mol -> (amu A^2)/fs^2 |
38 |
< |
double vx2, vy2, vz2; |
39 |
< |
double kinetic, v_sqr; |
40 |
< |
int kl; |
41 |
< |
double jx2, jy2, jz2; // the square of the angular momentums |
38 |
> |
double kinetic; |
39 |
> |
double amass; |
40 |
> |
double aVel[3], aJ[3], I[3][3]; |
41 |
> |
int i, j, k, kl; |
42 |
|
|
41 |
– |
DirectionalAtom *dAtom; |
42 |
– |
|
43 |
– |
int n_atoms; |
43 |
|
double kinetic_global; |
44 |
< |
Atom** atoms; |
46 |
< |
|
44 |
> |
vector<StuntDouble *> integrableObjects = info->integrableObjects; |
45 |
|
|
48 |
– |
n_atoms = entry_plug->n_atoms; |
49 |
– |
atoms = entry_plug->atoms; |
50 |
– |
|
46 |
|
kinetic = 0.0; |
47 |
|
kinetic_global = 0.0; |
53 |
– |
for( kl=0; kl < n_atoms; kl++ ){ |
48 |
|
|
49 |
< |
vx2 = atoms[kl]->get_vx() * atoms[kl]->get_vx(); |
50 |
< |
vy2 = atoms[kl]->get_vy() * atoms[kl]->get_vy(); |
51 |
< |
vz2 = atoms[kl]->get_vz() * atoms[kl]->get_vz(); |
49 |
> |
for (kl=0; kl<integrableObjects.size(); kl++) { |
50 |
> |
integrableObjects[kl]->getVel(aVel); |
51 |
> |
amass = integrableObjects[kl]->getMass(); |
52 |
|
|
53 |
< |
v_sqr = vx2 + vy2 + vz2; |
54 |
< |
kinetic += atoms[kl]->getMass() * v_sqr; |
53 |
> |
for(j=0; j<3; j++) |
54 |
> |
kinetic += amass*aVel[j]*aVel[j]; |
55 |
|
|
56 |
< |
if( atoms[kl]->isDirectional() ){ |
57 |
< |
|
58 |
< |
dAtom = (DirectionalAtom *)atoms[kl]; |
59 |
< |
|
60 |
< |
jx2 = dAtom->getJx() * dAtom->getJx(); |
61 |
< |
jy2 = dAtom->getJy() * dAtom->getJy(); |
62 |
< |
jz2 = dAtom->getJz() * dAtom->getJz(); |
63 |
< |
|
64 |
< |
kinetic += (jx2 / dAtom->getIxx()) + (jy2 / dAtom->getIyy()) |
65 |
< |
+ (jz2 / dAtom->getIzz()); |
66 |
< |
} |
56 |
> |
if (integrableObjects[kl]->isDirectional()){ |
57 |
> |
|
58 |
> |
integrableObjects[kl]->getJ( aJ ); |
59 |
> |
integrableObjects[kl]->getI( I ); |
60 |
> |
|
61 |
> |
if (integrableObjects[kl]->isLinear()) { |
62 |
> |
i = integrableObjects[kl]->linearAxis(); |
63 |
> |
j = (i+1)%3; |
64 |
> |
k = (i+2)%3; |
65 |
> |
kinetic += aJ[j]*aJ[j]/I[j][j] + aJ[k]*aJ[k]/I[k][k]; |
66 |
> |
} else { |
67 |
> |
for (j=0; j<3; j++) |
68 |
> |
kinetic += aJ[j]*aJ[j] / I[j][j]; |
69 |
> |
} |
70 |
> |
} |
71 |
|
} |
72 |
|
#ifdef IS_MPI |
73 |
|
MPI_Allreduce(&kinetic,&kinetic_global,1,MPI_DOUBLE, |
74 |
|
MPI_SUM, MPI_COMM_WORLD); |
75 |
|
kinetic = kinetic_global; |
76 |
|
#endif //is_mpi |
77 |
< |
|
77 |
> |
|
78 |
|
kinetic = kinetic * 0.5 / e_convert; |
79 |
|
|
80 |
|
return kinetic; |
87 |
|
int el, nSRI; |
88 |
|
Molecule* molecules; |
89 |
|
|
90 |
< |
molecules = entry_plug->molecules; |
91 |
< |
nSRI = entry_plug->n_SRI; |
90 |
> |
molecules = info->molecules; |
91 |
> |
nSRI = info->n_SRI; |
92 |
|
|
93 |
|
potential_local = 0.0; |
94 |
|
potential = 0.0; |
95 |
< |
potential_local += entry_plug->lrPot; |
95 |
> |
potential_local += info->lrPot; |
96 |
|
|
97 |
< |
for( el=0; el<entry_plug->n_mol; el++ ){ |
97 |
> |
for( el=0; el<info->n_mol; el++ ){ |
98 |
|
potential_local += molecules[el].getPotential(); |
99 |
|
} |
100 |
|
|
106 |
|
potential = potential_local; |
107 |
|
#endif // is_mpi |
108 |
|
|
111 |
– |
#ifdef IS_MPI |
112 |
– |
/* |
113 |
– |
std::cerr << "node " << worldRank << ": after pot = " << potential << "\n"; |
114 |
– |
*/ |
115 |
– |
#endif |
116 |
– |
|
109 |
|
return potential; |
110 |
|
} |
111 |
|
|
117 |
|
return total; |
118 |
|
} |
119 |
|
|
120 |
< |
int Thermo::getNDF(){ |
121 |
< |
int ndf_local, ndf; |
120 |
> |
double Thermo::getTemperature(){ |
121 |
> |
|
122 |
> |
const double kb = 1.9872156E-3; // boltzman's constant in kcal/(mol K) |
123 |
> |
double temperature; |
124 |
> |
|
125 |
> |
temperature = ( 2.0 * this->getKinetic() ) / ((double)info->ndf * kb ); |
126 |
> |
return temperature; |
127 |
> |
} |
128 |
> |
|
129 |
> |
double Thermo::getVolume() { |
130 |
> |
|
131 |
> |
return info->boxVol; |
132 |
> |
} |
133 |
> |
|
134 |
> |
double Thermo::getPressure() { |
135 |
> |
|
136 |
> |
// Relies on the calculation of the full molecular pressure tensor |
137 |
|
|
138 |
< |
ndf_local = 3 * entry_plug->n_atoms + 3 * entry_plug->n_oriented |
139 |
< |
- entry_plug->n_constraints; |
138 |
> |
const double p_convert = 1.63882576e8; |
139 |
> |
double press[3][3]; |
140 |
> |
double pressure; |
141 |
|
|
142 |
< |
#ifdef IS_MPI |
135 |
< |
MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
136 |
< |
#else |
137 |
< |
ndf = ndf_local; |
138 |
< |
#endif |
142 |
> |
this->getPressureTensor(press); |
143 |
|
|
144 |
< |
ndf = ndf - 3; |
144 |
> |
pressure = p_convert * (press[0][0] + press[1][1] + press[2][2]) / 3.0; |
145 |
|
|
146 |
< |
return ndf; |
146 |
> |
return pressure; |
147 |
|
} |
148 |
|
|
149 |
< |
int Thermo::getNDFraw() { |
146 |
< |
int ndfRaw_local, ndfRaw; |
149 |
> |
double Thermo::getPressureX() { |
150 |
|
|
151 |
< |
// Raw degrees of freedom that we have to set |
149 |
< |
ndfRaw_local = 3 * entry_plug->n_atoms + 3 * entry_plug->n_oriented; |
151 |
> |
// Relies on the calculation of the full molecular pressure tensor |
152 |
|
|
153 |
< |
#ifdef IS_MPI |
154 |
< |
MPI_Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
155 |
< |
#else |
154 |
< |
ndfRaw = ndfRaw_local; |
155 |
< |
#endif |
153 |
> |
const double p_convert = 1.63882576e8; |
154 |
> |
double press[3][3]; |
155 |
> |
double pressureX; |
156 |
|
|
157 |
< |
return ndfRaw; |
157 |
> |
this->getPressureTensor(press); |
158 |
> |
|
159 |
> |
pressureX = p_convert * press[0][0]; |
160 |
> |
|
161 |
> |
return pressureX; |
162 |
|
} |
163 |
|
|
164 |
+ |
double Thermo::getPressureY() { |
165 |
|
|
166 |
< |
double Thermo::getTemperature(){ |
166 |
> |
// Relies on the calculation of the full molecular pressure tensor |
167 |
> |
|
168 |
> |
const double p_convert = 1.63882576e8; |
169 |
> |
double press[3][3]; |
170 |
> |
double pressureY; |
171 |
|
|
172 |
< |
const double kb = 1.9872179E-3; // boltzman's constant in kcal/(mol K) |
173 |
< |
double temperature; |
172 |
> |
this->getPressureTensor(press); |
173 |
> |
|
174 |
> |
pressureY = p_convert * press[1][1]; |
175 |
> |
|
176 |
> |
return pressureY; |
177 |
> |
} |
178 |
> |
|
179 |
> |
double Thermo::getPressureZ() { |
180 |
> |
|
181 |
> |
// Relies on the calculation of the full molecular pressure tensor |
182 |
|
|
183 |
< |
temperature = ( 2.0 * this->getKinetic() ) / ( (double)this->getNDF() * kb ); |
184 |
< |
return temperature; |
183 |
> |
const double p_convert = 1.63882576e8; |
184 |
> |
double press[3][3]; |
185 |
> |
double pressureZ; |
186 |
> |
|
187 |
> |
this->getPressureTensor(press); |
188 |
> |
|
189 |
> |
pressureZ = p_convert * press[2][2]; |
190 |
> |
|
191 |
> |
return pressureZ; |
192 |
|
} |
193 |
|
|
194 |
< |
double Thermo::getPressure(){ |
195 |
< |
// returns pressure in units amu*fs^-2*Ang^-1 |
194 |
> |
|
195 |
> |
void Thermo::getPressureTensor(double press[3][3]){ |
196 |
> |
// returns pressure tensor in units amu*fs^-2*Ang^-1 |
197 |
|
// routine derived via viral theorem description in: |
198 |
|
// Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322 |
199 |
|
|
200 |
< |
return 0.0; |
200 |
> |
const double e_convert = 4.184e-4; |
201 |
> |
|
202 |
> |
double molmass, volume; |
203 |
> |
double vcom[3], pcom[3], fcom[3], scaled[3]; |
204 |
> |
double p_local[9], p_global[9]; |
205 |
> |
int i, j, k, nMols; |
206 |
> |
Molecule* molecules; |
207 |
> |
|
208 |
> |
nMols = info->n_mol; |
209 |
> |
molecules = info->molecules; |
210 |
> |
//tau = info->tau; |
211 |
> |
|
212 |
> |
// use velocities of molecular centers of mass and molecular masses: |
213 |
> |
for (i=0; i < 9; i++) { |
214 |
> |
p_local[i] = 0.0; |
215 |
> |
p_global[i] = 0.0; |
216 |
> |
} |
217 |
> |
|
218 |
> |
for (i=0; i < info->integrableObjects.size(); i++) { |
219 |
> |
|
220 |
> |
molmass = info->integrableObjects[i]->getMass(); |
221 |
> |
|
222 |
> |
info->integrableObjects[i]->getVel(vcom); |
223 |
> |
info->integrableObjects[i]->getPos(pcom); |
224 |
> |
info->integrableObjects[i]->getFrc(fcom); |
225 |
> |
|
226 |
> |
matVecMul3(info->HmatInv, pcom, scaled); |
227 |
> |
|
228 |
> |
for(j=0; j<3; j++) |
229 |
> |
scaled[j] -= roundMe(scaled[j]); |
230 |
> |
|
231 |
> |
// calc the wrapped real coordinates from the wrapped scaled coordinates |
232 |
> |
|
233 |
> |
matVecMul3(info->Hmat, scaled, pcom); |
234 |
> |
|
235 |
> |
p_local[0] += molmass * (vcom[0] * vcom[0]) + fcom[0]*pcom[0]*eConvert; |
236 |
> |
p_local[1] += molmass * (vcom[0] * vcom[1]) + fcom[0]*pcom[1]*eConvert; |
237 |
> |
p_local[2] += molmass * (vcom[0] * vcom[2]) + fcom[0]*pcom[2]*eConvert; |
238 |
> |
p_local[3] += molmass * (vcom[1] * vcom[0]) + fcom[1]*pcom[0]*eConvert; |
239 |
> |
p_local[4] += molmass * (vcom[1] * vcom[1]) + fcom[1]*pcom[1]*eConvert; |
240 |
> |
p_local[5] += molmass * (vcom[1] * vcom[2]) + fcom[1]*pcom[2]*eConvert; |
241 |
> |
p_local[6] += molmass * (vcom[2] * vcom[0]) + fcom[2]*pcom[0]*eConvert; |
242 |
> |
p_local[7] += molmass * (vcom[2] * vcom[1]) + fcom[2]*pcom[1]*eConvert; |
243 |
> |
p_local[8] += molmass * (vcom[2] * vcom[2]) + fcom[2]*pcom[2]*eConvert; |
244 |
> |
|
245 |
> |
} |
246 |
> |
|
247 |
> |
// Get total for entire system from MPI. |
248 |
> |
|
249 |
> |
#ifdef IS_MPI |
250 |
> |
MPI_Allreduce(p_local,p_global,9,MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD); |
251 |
> |
#else |
252 |
> |
for (i=0; i<9; i++) { |
253 |
> |
p_global[i] = p_local[i]; |
254 |
> |
} |
255 |
> |
#endif // is_mpi |
256 |
> |
|
257 |
> |
volume = this->getVolume(); |
258 |
> |
|
259 |
> |
for(i = 0; i < 3; i++) { |
260 |
> |
for (j = 0; j < 3; j++) { |
261 |
> |
k = 3*i + j; |
262 |
> |
press[i][j] = p_global[k] / volume; |
263 |
> |
|
264 |
> |
} |
265 |
> |
} |
266 |
|
} |
267 |
|
|
268 |
|
void Thermo::velocitize() { |
269 |
|
|
270 |
< |
double x,y; |
271 |
< |
double vx, vy, vz; |
182 |
< |
double jx, jy, jz; |
183 |
< |
int i, vr, vd; // velocity randomizer loop counters |
270 |
> |
double aVel[3], aJ[3], I[3][3]; |
271 |
> |
int i, j, l, m, n, vr, vd; // velocity randomizer loop counters |
272 |
|
double vdrift[3]; |
273 |
|
double vbar; |
274 |
|
const double kb = 8.31451e-7; // kb in amu, angstroms, fs, etc. |
275 |
|
double av2; |
276 |
|
double kebar; |
189 |
– |
int ndf, ndf_local; // number of degrees of freedom |
190 |
– |
int ndfRaw, ndfRaw_local; // the raw number of degrees of freedom |
191 |
– |
int n_atoms; |
192 |
– |
Atom** atoms; |
193 |
– |
DirectionalAtom* dAtom; |
277 |
|
double temperature; |
278 |
< |
int n_oriented; |
196 |
< |
int n_constraints; |
278 |
> |
int nobj; |
279 |
|
|
280 |
< |
atoms = entry_plug->atoms; |
199 |
< |
n_atoms = entry_plug->n_atoms; |
200 |
< |
temperature = entry_plug->target_temp; |
201 |
< |
n_oriented = entry_plug->n_oriented; |
202 |
< |
n_constraints = entry_plug->n_constraints; |
280 |
> |
nobj = info->integrableObjects.size(); |
281 |
|
|
282 |
< |
kebar = kb * temperature * (double)this->getNDF() / |
205 |
< |
( 2.0 * (double)this->getNDFraw() ); |
282 |
> |
temperature = info->target_temp; |
283 |
|
|
284 |
< |
for(vr = 0; vr < n_atoms; vr++){ |
284 |
> |
kebar = kb * temperature * (double)info->ndfRaw / |
285 |
> |
( 2.0 * (double)info->ndf ); |
286 |
> |
|
287 |
> |
for(vr = 0; vr < nobj; vr++){ |
288 |
|
|
289 |
|
// uses equipartition theory to solve for vbar in angstrom/fs |
290 |
|
|
291 |
< |
av2 = 2.0 * kebar / atoms[vr]->getMass(); |
291 |
> |
av2 = 2.0 * kebar / info->integrableObjects[vr]->getMass(); |
292 |
|
vbar = sqrt( av2 ); |
293 |
< |
|
214 |
< |
// vbar = sqrt( 8.31451e-7 * temperature / atoms[vr]->getMass() ); |
215 |
< |
|
293 |
> |
|
294 |
|
// picks random velocities from a gaussian distribution |
295 |
|
// centered on vbar |
296 |
|
|
297 |
< |
vx = vbar * gaussStream->getGaussian(); |
298 |
< |
vy = vbar * gaussStream->getGaussian(); |
299 |
< |
vz = vbar * gaussStream->getGaussian(); |
297 |
> |
for (j=0; j<3; j++) |
298 |
> |
aVel[j] = vbar * gaussStream->getGaussian(); |
299 |
> |
|
300 |
> |
info->integrableObjects[vr]->setVel( aVel ); |
301 |
> |
|
302 |
> |
if(info->integrableObjects[vr]->isDirectional()){ |
303 |
|
|
304 |
< |
atoms[vr]->set_vx( vx ); |
305 |
< |
atoms[vr]->set_vy( vy ); |
306 |
< |
atoms[vr]->set_vz( vz ); |
304 |
> |
info->integrableObjects[vr]->getI( I ); |
305 |
> |
|
306 |
> |
if (info->integrableObjects[vr]->isLinear()) { |
307 |
> |
|
308 |
> |
l= info->integrableObjects[vr]->linearAxis(); |
309 |
> |
m = (l+1)%3; |
310 |
> |
n = (l+2)%3; |
311 |
> |
|
312 |
> |
aJ[l] = 0.0; |
313 |
> |
vbar = sqrt( 2.0 * kebar * I[m][m] ); |
314 |
> |
aJ[m] = vbar * gaussStream->getGaussian(); |
315 |
> |
vbar = sqrt( 2.0 * kebar * I[n][n] ); |
316 |
> |
aJ[n] = vbar * gaussStream->getGaussian(); |
317 |
> |
|
318 |
> |
} else { |
319 |
> |
for (j = 0 ; j < 3; j++) { |
320 |
> |
vbar = sqrt( 2.0 * kebar * I[j][j] ); |
321 |
> |
aJ[j] = vbar * gaussStream->getGaussian(); |
322 |
> |
} |
323 |
> |
} // else isLinear |
324 |
> |
|
325 |
> |
info->integrableObjects[vr]->setJ( aJ ); |
326 |
> |
|
327 |
> |
}//isDirectional |
328 |
> |
|
329 |
|
} |
330 |
|
|
331 |
|
// Get the Center of Mass drift velocity. |
335 |
|
// Corrects for the center of mass drift. |
336 |
|
// sums all the momentum and divides by total mass. |
337 |
|
|
338 |
< |
for(vd = 0; vd < n_atoms; vd++){ |
338 |
> |
for(vd = 0; vd < nobj; vd++){ |
339 |
|
|
340 |
< |
vx = atoms[vd]->get_vx(); |
238 |
< |
vy = atoms[vd]->get_vy(); |
239 |
< |
vz = atoms[vd]->get_vz(); |
240 |
< |
|
241 |
< |
vx -= vdrift[0]; |
242 |
< |
vy -= vdrift[1]; |
243 |
< |
vz -= vdrift[2]; |
340 |
> |
info->integrableObjects[vd]->getVel(aVel); |
341 |
|
|
342 |
< |
atoms[vd]->set_vx(vx); |
343 |
< |
atoms[vd]->set_vy(vy); |
247 |
< |
atoms[vd]->set_vz(vz); |
248 |
< |
} |
249 |
< |
if( n_oriented ){ |
250 |
< |
|
251 |
< |
for( i=0; i<n_atoms; i++ ){ |
252 |
< |
|
253 |
< |
if( atoms[i]->isDirectional() ){ |
254 |
< |
|
255 |
< |
dAtom = (DirectionalAtom *)atoms[i]; |
256 |
< |
|
257 |
< |
vbar = sqrt( 2.0 * kebar * dAtom->getIxx() ); |
258 |
< |
jx = vbar * gaussStream->getGaussian(); |
259 |
< |
|
260 |
< |
vbar = sqrt( 2.0 * kebar * dAtom->getIyy() ); |
261 |
< |
jy = vbar * gaussStream->getGaussian(); |
342 |
> |
for (j=0; j < 3; j++) |
343 |
> |
aVel[j] -= vdrift[j]; |
344 |
|
|
345 |
< |
vbar = sqrt( 2.0 * kebar * dAtom->getIzz() ); |
264 |
< |
jz = vbar * gaussStream->getGaussian(); |
265 |
< |
|
266 |
< |
dAtom->setJx( jx ); |
267 |
< |
dAtom->setJy( jy ); |
268 |
< |
dAtom->setJz( jz ); |
269 |
< |
} |
270 |
< |
} |
345 |
> |
info->integrableObjects[vd]->setVel( aVel ); |
346 |
|
} |
347 |
+ |
|
348 |
|
} |
349 |
|
|
350 |
|
void Thermo::getCOMVel(double vdrift[3]){ |
351 |
|
|
352 |
|
double mtot, mtot_local; |
353 |
+ |
double aVel[3], amass; |
354 |
|
double vdrift_local[3]; |
355 |
< |
int vd, n_atoms; |
356 |
< |
Atom** atoms; |
355 |
> |
int vd, j; |
356 |
> |
int nobj; |
357 |
|
|
358 |
< |
// We are very careless here with the distinction between n_atoms and n_local |
282 |
< |
// We should really fix this before someone pokes an eye out. |
358 |
> |
nobj = info->integrableObjects.size(); |
359 |
|
|
284 |
– |
n_atoms = entry_plug->n_atoms; |
285 |
– |
atoms = entry_plug->atoms; |
286 |
– |
|
360 |
|
mtot_local = 0.0; |
361 |
|
vdrift_local[0] = 0.0; |
362 |
|
vdrift_local[1] = 0.0; |
363 |
|
vdrift_local[2] = 0.0; |
364 |
|
|
365 |
< |
for(vd = 0; vd < n_atoms; vd++){ |
365 |
> |
for(vd = 0; vd < nobj; vd++){ |
366 |
|
|
367 |
< |
vdrift_local[0] += atoms[vd]->get_vx() * atoms[vd]->getMass(); |
368 |
< |
vdrift_local[1] += atoms[vd]->get_vy() * atoms[vd]->getMass(); |
369 |
< |
vdrift_local[2] += atoms[vd]->get_vz() * atoms[vd]->getMass(); |
367 |
> |
amass = info->integrableObjects[vd]->getMass(); |
368 |
> |
info->integrableObjects[vd]->getVel( aVel ); |
369 |
> |
|
370 |
> |
for(j = 0; j < 3; j++) |
371 |
> |
vdrift_local[j] += aVel[j] * amass; |
372 |
|
|
373 |
< |
mtot_local += atoms[vd]->getMass(); |
373 |
> |
mtot_local += amass; |
374 |
|
} |
375 |
|
|
376 |
|
#ifdef IS_MPI |
389 |
|
|
390 |
|
} |
391 |
|
|
392 |
+ |
void Thermo::getCOM(double COM[3]){ |
393 |
+ |
|
394 |
+ |
double mtot, mtot_local; |
395 |
+ |
double aPos[3], amass; |
396 |
+ |
double COM_local[3]; |
397 |
+ |
int i, j; |
398 |
+ |
int nobj; |
399 |
+ |
|
400 |
+ |
mtot_local = 0.0; |
401 |
+ |
COM_local[0] = 0.0; |
402 |
+ |
COM_local[1] = 0.0; |
403 |
+ |
COM_local[2] = 0.0; |
404 |
+ |
|
405 |
+ |
nobj = info->integrableObjects.size(); |
406 |
+ |
for(i = 0; i < nobj; i++){ |
407 |
+ |
|
408 |
+ |
amass = info->integrableObjects[i]->getMass(); |
409 |
+ |
info->integrableObjects[i]->getPos( aPos ); |
410 |
+ |
|
411 |
+ |
for(j = 0; j < 3; j++) |
412 |
+ |
COM_local[j] += aPos[j] * amass; |
413 |
+ |
|
414 |
+ |
mtot_local += amass; |
415 |
+ |
} |
416 |
+ |
|
417 |
+ |
#ifdef IS_MPI |
418 |
+ |
MPI_Allreduce(&mtot_local,&mtot,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
419 |
+ |
MPI_Allreduce(COM_local,COM,3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
420 |
+ |
#else |
421 |
+ |
mtot = mtot_local; |
422 |
+ |
for(i = 0; i < 3; i++) { |
423 |
+ |
COM[i] = COM_local[i]; |
424 |
+ |
} |
425 |
+ |
#endif |
426 |
+ |
|
427 |
+ |
for (i = 0; i < 3; i++) { |
428 |
+ |
COM[i] = COM[i] / mtot; |
429 |
+ |
} |
430 |
+ |
} |
431 |
+ |
|
432 |
+ |
void Thermo::removeCOMdrift() { |
433 |
+ |
double vdrift[3], aVel[3]; |
434 |
+ |
int vd, j, nobj; |
435 |
+ |
|
436 |
+ |
nobj = info->integrableObjects.size(); |
437 |
+ |
|
438 |
+ |
// Get the Center of Mass drift velocity. |
439 |
+ |
|
440 |
+ |
getCOMVel(vdrift); |
441 |
+ |
|
442 |
+ |
// Corrects for the center of mass drift. |
443 |
+ |
// sums all the momentum and divides by total mass. |
444 |
+ |
|
445 |
+ |
for(vd = 0; vd < nobj; vd++){ |
446 |
+ |
|
447 |
+ |
info->integrableObjects[vd]->getVel(aVel); |
448 |
+ |
|
449 |
+ |
for (j=0; j < 3; j++) |
450 |
+ |
aVel[j] -= vdrift[j]; |
451 |
+ |
|
452 |
+ |
info->integrableObjects[vd]->setVel( aVel ); |
453 |
+ |
} |
454 |
+ |
} |