4 |
|
|
5 |
|
#ifdef IS_MPI |
6 |
|
#include <mpi.h> |
7 |
– |
#include <mpi++.h> |
7 |
|
#endif //is_mpi |
8 |
|
|
9 |
|
#include "Thermo.hpp" |
10 |
|
#include "SRI.hpp" |
11 |
|
#include "Integrator.hpp" |
12 |
+ |
#include "simError.h" |
13 |
+ |
|
14 |
+ |
#ifdef IS_MPI |
15 |
|
#define __C |
16 |
< |
//#include "mpiSimulation.hpp" |
16 |
> |
#include "mpiSimulation.hpp" |
17 |
> |
#endif // is_mpi |
18 |
|
|
19 |
+ |
|
20 |
|
#define BASE_SEED 123456789 |
21 |
|
|
22 |
|
Thermo::Thermo( SimInfo* the_entry_plug ) { |
33 |
|
double Thermo::getKinetic(){ |
34 |
|
|
35 |
|
const double e_convert = 4.184E-4; // convert kcal/mol -> (amu A^2)/fs^2 |
36 |
< |
double vx2, vy2, vz2; |
37 |
< |
double kinetic, v_sqr; |
38 |
< |
int kl; |
39 |
< |
double jx2, jy2, jz2; // the square of the angular momentums |
36 |
> |
double kinetic; |
37 |
> |
double amass; |
38 |
> |
double aVel[3], aJ[3], I[3][3]; |
39 |
> |
int j, kl; |
40 |
|
|
41 |
|
DirectionalAtom *dAtom; |
42 |
|
|
51 |
|
kinetic = 0.0; |
52 |
|
kinetic_global = 0.0; |
53 |
|
for( kl=0; kl < n_atoms; kl++ ){ |
54 |
+ |
|
55 |
+ |
atoms[kl]->getVel(aVel); |
56 |
+ |
amass = atoms[kl]->getMass(); |
57 |
+ |
|
58 |
+ |
for (j=0; j < 3; j++) |
59 |
+ |
kinetic += amass * aVel[j] * aVel[j]; |
60 |
|
|
51 |
– |
vx2 = atoms[kl]->get_vx() * atoms[kl]->get_vx(); |
52 |
– |
vy2 = atoms[kl]->get_vy() * atoms[kl]->get_vy(); |
53 |
– |
vz2 = atoms[kl]->get_vz() * atoms[kl]->get_vz(); |
54 |
– |
|
55 |
– |
v_sqr = vx2 + vy2 + vz2; |
56 |
– |
kinetic += atoms[kl]->getMass() * v_sqr; |
57 |
– |
|
61 |
|
if( atoms[kl]->isDirectional() ){ |
62 |
|
|
63 |
|
dAtom = (DirectionalAtom *)atoms[kl]; |
64 |
+ |
|
65 |
+ |
dAtom->getJ( aJ ); |
66 |
+ |
dAtom->getI( I ); |
67 |
|
|
68 |
< |
jx2 = dAtom->getJx() * dAtom->getJx(); |
69 |
< |
jy2 = dAtom->getJy() * dAtom->getJy(); |
64 |
< |
jz2 = dAtom->getJz() * dAtom->getJz(); |
68 |
> |
for (j=0; j<3; j++) |
69 |
> |
kinetic += aJ[j]*aJ[j] / I[j][j]; |
70 |
|
|
66 |
– |
kinetic += (jx2 / dAtom->getIxx()) + (jy2 / dAtom->getIyy()) |
67 |
– |
+ (jz2 / dAtom->getIzz()); |
71 |
|
} |
72 |
|
} |
73 |
|
#ifdef IS_MPI |
74 |
< |
MPI::COMM_WORLD.Allreduce(&kinetic,&kinetic_global,1,MPI_DOUBLE,MPI_SUM); |
74 |
> |
MPI_Allreduce(&kinetic,&kinetic_global,1,MPI_DOUBLE, |
75 |
> |
MPI_SUM, MPI_COMM_WORLD); |
76 |
|
kinetic = kinetic_global; |
77 |
|
#endif //is_mpi |
78 |
|
|
86 |
|
double potential_local; |
87 |
|
double potential; |
88 |
|
int el, nSRI; |
89 |
< |
SRI** sris; |
89 |
> |
Molecule* molecules; |
90 |
|
|
91 |
< |
sris = entry_plug->sr_interactions; |
91 |
> |
molecules = entry_plug->molecules; |
92 |
|
nSRI = entry_plug->n_SRI; |
93 |
|
|
94 |
|
potential_local = 0.0; |
95 |
+ |
potential = 0.0; |
96 |
|
potential_local += entry_plug->lrPot; |
97 |
|
|
98 |
< |
for( el=0; el<nSRI; el++ ){ |
99 |
< |
potential_local += sris[el]->get_potential(); |
98 |
> |
for( el=0; el<entry_plug->n_mol; el++ ){ |
99 |
> |
potential_local += molecules[el].getPotential(); |
100 |
|
} |
101 |
|
|
102 |
|
// Get total potential for entire system from MPI. |
103 |
|
#ifdef IS_MPI |
104 |
< |
MPI::COMM_WORLD.Allreduce(&potential_local,&potential,1,MPI_DOUBLE,MPI_SUM); |
104 |
> |
MPI_Allreduce(&potential_local,&potential,1,MPI_DOUBLE, |
105 |
> |
MPI_SUM, MPI_COMM_WORLD); |
106 |
|
#else |
107 |
|
potential = potential_local; |
108 |
|
#endif // is_mpi |
109 |
|
|
110 |
+ |
#ifdef IS_MPI |
111 |
+ |
/* |
112 |
+ |
std::cerr << "node " << worldRank << ": after pot = " << potential << "\n"; |
113 |
+ |
*/ |
114 |
+ |
#endif |
115 |
+ |
|
116 |
|
return potential; |
117 |
|
} |
118 |
|
|
128 |
|
|
129 |
|
const double kb = 1.9872179E-3; // boltzman's constant in kcal/(mol K) |
130 |
|
double temperature; |
119 |
– |
int ndf_local, ndf; |
131 |
|
|
132 |
< |
ndf_local = 3 * entry_plug->n_atoms + 3 * entry_plug->n_oriented |
133 |
< |
- entry_plug->n_constraints; |
132 |
> |
temperature = ( 2.0 * this->getKinetic() ) / ((double)entry_plug->ndf * kb ); |
133 |
> |
return temperature; |
134 |
> |
} |
135 |
|
|
136 |
< |
#ifdef IS_MPI |
125 |
< |
MPI::COMM_WORLD.Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM); |
126 |
< |
#else |
127 |
< |
ndf = ndf_local; |
128 |
< |
#endif |
136 |
> |
double Thermo::getEnthalpy() { |
137 |
|
|
138 |
< |
ndf = ndf - 3; |
138 |
> |
const double e_convert = 4.184E-4; // convert kcal/mol -> (amu A^2)/fs^2 |
139 |
> |
double u, p, v; |
140 |
> |
double press[3][3]; |
141 |
> |
|
142 |
> |
u = this->getTotalE(); |
143 |
> |
|
144 |
> |
this->getPressureTensor(press); |
145 |
> |
p = (press[0][0] + press[1][1] + press[2][2]) / 3.0; |
146 |
> |
|
147 |
> |
v = this->getVolume(); |
148 |
> |
|
149 |
> |
return (u + (p*v)/e_convert); |
150 |
> |
} |
151 |
> |
|
152 |
> |
double Thermo::getVolume() { |
153 |
> |
|
154 |
> |
return entry_plug->boxVol; |
155 |
> |
} |
156 |
> |
|
157 |
> |
double Thermo::getPressure() { |
158 |
> |
|
159 |
> |
// Relies on the calculation of the full molecular pressure tensor |
160 |
|
|
161 |
< |
temperature = ( 2.0 * this->getKinetic() ) / ( ndf * kb ); |
162 |
< |
return temperature; |
161 |
> |
const double p_convert = 1.63882576e8; |
162 |
> |
double press[3][3]; |
163 |
> |
double pressure; |
164 |
> |
|
165 |
> |
this->getPressureTensor(press); |
166 |
> |
|
167 |
> |
pressure = p_convert * (press[0][0] + press[1][1] + press[2][2]) / 3.0; |
168 |
> |
|
169 |
> |
return pressure; |
170 |
|
} |
171 |
|
|
136 |
– |
double Thermo::getPressure(){ |
172 |
|
|
173 |
< |
// const double conv_Pa_atm = 9.901E-6; // convert Pa -> atm |
174 |
< |
// const double conv_internal_Pa = 1.661E-7; //convert amu/(fs^2 A) -> Pa |
175 |
< |
// const double conv_A_m = 1.0E-10; //convert A -> m |
173 |
> |
void Thermo::getPressureTensor(double press[3][3]){ |
174 |
> |
// returns pressure tensor in units amu*fs^-2*Ang^-1 |
175 |
> |
// routine derived via viral theorem description in: |
176 |
> |
// Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322 |
177 |
|
|
178 |
< |
return 0.0; |
178 |
> |
const double e_convert = 4.184e-4; |
179 |
> |
|
180 |
> |
double molmass, volume; |
181 |
> |
double vcom[3]; |
182 |
> |
double p_local[9], p_global[9]; |
183 |
> |
int i, j, k, l, nMols; |
184 |
> |
Molecule* molecules; |
185 |
> |
|
186 |
> |
nMols = entry_plug->n_mol; |
187 |
> |
molecules = entry_plug->molecules; |
188 |
> |
//tau = entry_plug->tau; |
189 |
> |
|
190 |
> |
// use velocities of molecular centers of mass and molecular masses: |
191 |
> |
for (i=0; i < 9; i++) { |
192 |
> |
p_local[i] = 0.0; |
193 |
> |
p_global[i] = 0.0; |
194 |
> |
} |
195 |
> |
|
196 |
> |
for (i=0; i < nMols; i++) { |
197 |
> |
molmass = molecules[i].getCOMvel(vcom); |
198 |
> |
|
199 |
> |
p_local[0] += molmass * (vcom[0] * vcom[0]); |
200 |
> |
p_local[1] += molmass * (vcom[0] * vcom[1]); |
201 |
> |
p_local[2] += molmass * (vcom[0] * vcom[2]); |
202 |
> |
p_local[3] += molmass * (vcom[1] * vcom[0]); |
203 |
> |
p_local[4] += molmass * (vcom[1] * vcom[1]); |
204 |
> |
p_local[5] += molmass * (vcom[1] * vcom[2]); |
205 |
> |
p_local[6] += molmass * (vcom[2] * vcom[0]); |
206 |
> |
p_local[7] += molmass * (vcom[2] * vcom[1]); |
207 |
> |
p_local[8] += molmass * (vcom[2] * vcom[2]); |
208 |
> |
} |
209 |
> |
|
210 |
> |
// Get total for entire system from MPI. |
211 |
> |
|
212 |
> |
#ifdef IS_MPI |
213 |
> |
MPI_Allreduce(p_local,p_global,9,MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD); |
214 |
> |
#else |
215 |
> |
for (i=0; i<9; i++) { |
216 |
> |
p_global[i] = p_local[i]; |
217 |
> |
} |
218 |
> |
#endif // is_mpi |
219 |
> |
|
220 |
> |
volume = this->getVolume(); |
221 |
> |
|
222 |
> |
for(i = 0; i < 3; i++) { |
223 |
> |
for (j = 0; j < 3; j++) { |
224 |
> |
k = 3*i + j; |
225 |
> |
press[i][j] = (p_global[k] + entry_plug->tau[k]*e_convert) / volume; |
226 |
> |
} |
227 |
> |
} |
228 |
|
} |
229 |
|
|
230 |
|
void Thermo::velocitize() { |
231 |
|
|
232 |
|
double x,y; |
233 |
< |
double vx, vy, vz; |
234 |
< |
double jx, jy, jz; |
235 |
< |
int i, vr, vd; // velocity randomizer loop counters |
151 |
< |
double *vdrift; |
233 |
> |
double aVel[3], aJ[3], I[3][3]; |
234 |
> |
int i, j, vr, vd; // velocity randomizer loop counters |
235 |
> |
double vdrift[3]; |
236 |
|
double vbar; |
237 |
|
const double kb = 8.31451e-7; // kb in amu, angstroms, fs, etc. |
238 |
|
double av2; |
239 |
|
double kebar; |
156 |
– |
int ndf; // number of degrees of freedom |
157 |
– |
int ndfRaw; // the raw number of degrees of freedom |
240 |
|
int n_atoms; |
241 |
|
Atom** atoms; |
242 |
|
DirectionalAtom* dAtom; |
250 |
|
n_oriented = entry_plug->n_oriented; |
251 |
|
n_constraints = entry_plug->n_constraints; |
252 |
|
|
253 |
< |
|
254 |
< |
ndfRaw = 3 * n_atoms + 3 * n_oriented; |
173 |
< |
ndf = ndfRaw - n_constraints - 3; |
174 |
< |
kebar = kb * temperature * (double)ndf / ( 2.0 * (double)ndfRaw ); |
253 |
> |
kebar = kb * temperature * (double)entry_plug->ndf / |
254 |
> |
( 2.0 * (double)entry_plug->ndfRaw ); |
255 |
|
|
256 |
|
for(vr = 0; vr < n_atoms; vr++){ |
257 |
|
|
259 |
|
|
260 |
|
av2 = 2.0 * kebar / atoms[vr]->getMass(); |
261 |
|
vbar = sqrt( av2 ); |
262 |
< |
|
262 |
> |
|
263 |
|
// vbar = sqrt( 8.31451e-7 * temperature / atoms[vr]->getMass() ); |
264 |
|
|
265 |
|
// picks random velocities from a gaussian distribution |
266 |
|
// centered on vbar |
267 |
|
|
268 |
< |
vx = vbar * gaussStream->getGaussian(); |
269 |
< |
vy = vbar * gaussStream->getGaussian(); |
270 |
< |
vz = vbar * gaussStream->getGaussian(); |
268 |
> |
for (j=0; j<3; j++) |
269 |
> |
aVel[j] = vbar * gaussStream->getGaussian(); |
270 |
> |
|
271 |
> |
atoms[vr]->setVel( aVel ); |
272 |
|
|
192 |
– |
atoms[vr]->set_vx( vx ); |
193 |
– |
atoms[vr]->set_vy( vy ); |
194 |
– |
atoms[vr]->set_vz( vz ); |
273 |
|
} |
274 |
|
|
275 |
|
// Get the Center of Mass drift velocity. |
276 |
|
|
277 |
< |
vdrift = getCOMVel(); |
277 |
> |
getCOMVel(vdrift); |
278 |
|
|
279 |
|
// Corrects for the center of mass drift. |
280 |
|
// sums all the momentum and divides by total mass. |
281 |
|
|
282 |
|
for(vd = 0; vd < n_atoms; vd++){ |
283 |
|
|
284 |
< |
vx = atoms[vd]->get_vx(); |
207 |
< |
vy = atoms[vd]->get_vy(); |
208 |
< |
vz = atoms[vd]->get_vz(); |
209 |
< |
|
210 |
< |
vx -= vdrift[0]; |
211 |
< |
vy -= vdrift[1]; |
212 |
< |
vz -= vdrift[2]; |
284 |
> |
atoms[vd]->getVel(aVel); |
285 |
|
|
286 |
< |
atoms[vd]->set_vx(vx); |
287 |
< |
atoms[vd]->set_vy(vy); |
288 |
< |
atoms[vd]->set_vz(vz); |
286 |
> |
for (j=0; j < 3; j++) |
287 |
> |
aVel[j] -= vdrift[j]; |
288 |
> |
|
289 |
> |
atoms[vd]->setVel( aVel ); |
290 |
|
} |
291 |
|
if( n_oriented ){ |
292 |
|
|
295 |
|
if( atoms[i]->isDirectional() ){ |
296 |
|
|
297 |
|
dAtom = (DirectionalAtom *)atoms[i]; |
298 |
+ |
dAtom->getI( I ); |
299 |
+ |
|
300 |
+ |
for (j = 0 ; j < 3; j++) { |
301 |
|
|
302 |
< |
vbar = sqrt( 2.0 * kebar * dAtom->getIxx() ); |
303 |
< |
jx = vbar * gaussStream->getGaussian(); |
302 |
> |
vbar = sqrt( 2.0 * kebar * I[j][j] ); |
303 |
> |
aJ[j] = vbar * gaussStream->getGaussian(); |
304 |
|
|
305 |
< |
vbar = sqrt( 2.0 * kebar * dAtom->getIyy() ); |
230 |
< |
jy = vbar * gaussStream->getGaussian(); |
305 |
> |
} |
306 |
|
|
307 |
< |
vbar = sqrt( 2.0 * kebar * dAtom->getIzz() ); |
308 |
< |
jz = vbar * gaussStream->getGaussian(); |
234 |
< |
|
235 |
< |
dAtom->setJx( jx ); |
236 |
< |
dAtom->setJy( jy ); |
237 |
< |
dAtom->setJz( jz ); |
307 |
> |
dAtom->setJ( aJ ); |
308 |
> |
|
309 |
|
} |
310 |
|
} |
311 |
|
} |
312 |
|
} |
313 |
|
|
314 |
< |
double* Thermo::getCOMVel(){ |
314 |
> |
void Thermo::getCOMVel(double vdrift[3]){ |
315 |
|
|
316 |
|
double mtot, mtot_local; |
317 |
< |
double* vdrift; |
317 |
> |
double aVel[3], amass; |
318 |
|
double vdrift_local[3]; |
319 |
< |
int vd, n_atoms; |
319 |
> |
int vd, n_atoms, j; |
320 |
|
Atom** atoms; |
321 |
|
|
251 |
– |
vdrift = new double[3]; |
322 |
|
// We are very careless here with the distinction between n_atoms and n_local |
323 |
|
// We should really fix this before someone pokes an eye out. |
324 |
|
|
332 |
|
|
333 |
|
for(vd = 0; vd < n_atoms; vd++){ |
334 |
|
|
335 |
< |
vdrift_local[0] += atoms[vd]->get_vx() * atoms[vd]->getMass(); |
336 |
< |
vdrift_local[1] += atoms[vd]->get_vy() * atoms[vd]->getMass(); |
337 |
< |
vdrift_local[2] += atoms[vd]->get_vz() * atoms[vd]->getMass(); |
335 |
> |
amass = atoms[vd]->getMass(); |
336 |
> |
atoms[vd]->getVel( aVel ); |
337 |
> |
|
338 |
> |
for(j = 0; j < 3; j++) |
339 |
> |
vdrift_local[j] += aVel[j] * amass; |
340 |
|
|
341 |
< |
mtot_local += atoms[vd]->getMass(); |
341 |
> |
mtot_local += amass; |
342 |
|
} |
343 |
|
|
344 |
|
#ifdef IS_MPI |
345 |
< |
MPI::COMM_WORLD.Allreduce(&mtot_local,&mtot,1,MPI_DOUBLE,MPI_SUM); |
346 |
< |
MPI::COMM_WORLD.Allreduce(&vdrift_local,&vdrift,3,MPI_DOUBLE,MPI_SUM); |
345 |
> |
MPI_Allreduce(&mtot_local,&mtot,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
346 |
> |
MPI_Allreduce(vdrift_local,vdrift,3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
347 |
|
#else |
348 |
|
mtot = mtot_local; |
349 |
|
for(vd = 0; vd < 3; vd++) { |
355 |
|
vdrift[vd] = vdrift[vd] / mtot; |
356 |
|
} |
357 |
|
|
286 |
– |
return vdrift; |
358 |
|
} |
359 |
|
|