1 |
#include <iostream> |
2 |
#include <cstdlib> |
3 |
|
4 |
#ifdef IS_MPI |
5 |
#include "mpiSimulation.hpp" |
6 |
#include <unistd.h> |
7 |
#endif //is_mpi |
8 |
|
9 |
#include "Integrator.hpp" |
10 |
#include "simError.h" |
11 |
|
12 |
|
13 |
Integrator::Integrator( SimInfo* theInfo, ForceFields* the_ff ){ |
14 |
|
15 |
info = theInfo; |
16 |
myFF = the_ff; |
17 |
isFirst = 1; |
18 |
|
19 |
molecules = info->molecules; |
20 |
nMols = info->n_mol; |
21 |
|
22 |
// give a little love back to the SimInfo object |
23 |
|
24 |
if( info->the_integrator != NULL ) delete info->the_integrator; |
25 |
info->the_integrator = this; |
26 |
|
27 |
nAtoms = info->n_atoms; |
28 |
|
29 |
// check for constraints |
30 |
|
31 |
constrainedA = NULL; |
32 |
constrainedB = NULL; |
33 |
constrainedDsqr = NULL; |
34 |
moving = NULL; |
35 |
moved = NULL; |
36 |
prePos = NULL; |
37 |
|
38 |
nConstrained = 0; |
39 |
|
40 |
checkConstraints(); |
41 |
} |
42 |
|
43 |
Integrator::~Integrator() { |
44 |
|
45 |
if( nConstrained ){ |
46 |
delete[] constrainedA; |
47 |
delete[] constrainedB; |
48 |
delete[] constrainedDsqr; |
49 |
delete[] moving; |
50 |
delete[] moved; |
51 |
delete[] prePos; |
52 |
k |
53 |
} |
54 |
|
55 |
} |
56 |
|
57 |
void Integrator::checkConstraints( void ){ |
58 |
|
59 |
|
60 |
isConstrained = 0; |
61 |
|
62 |
Constraint *temp_con; |
63 |
Constraint *dummy_plug; |
64 |
temp_con = new Constraint[info->n_SRI]; |
65 |
nConstrained = 0; |
66 |
int constrained = 0; |
67 |
|
68 |
SRI** theArray; |
69 |
for(int i = 0; i < nMols; i++){ |
70 |
|
71 |
theArray = (SRI**) molecules[i].getMyBonds(); |
72 |
for(int j=0; j<molecules[i].getNBonds(); j++){ |
73 |
|
74 |
constrained = theArray[j]->is_constrained(); |
75 |
|
76 |
if(constrained){ |
77 |
|
78 |
dummy_plug = theArray[j]->get_constraint(); |
79 |
temp_con[nConstrained].set_a( dummy_plug->get_a() ); |
80 |
temp_con[nConstrained].set_b( dummy_plug->get_b() ); |
81 |
temp_con[nConstrained].set_dsqr( dummy_plug->get_dsqr() ); |
82 |
|
83 |
nConstrained++; |
84 |
constrained = 0; |
85 |
} |
86 |
} |
87 |
|
88 |
theArray = (SRI**) molecules[i].getMyBends(); |
89 |
for(int j=0; j<molecules[i].getNBends(); j++){ |
90 |
|
91 |
constrained = theArray[j]->is_constrained(); |
92 |
|
93 |
if(constrained){ |
94 |
|
95 |
dummy_plug = theArray[j]->get_constraint(); |
96 |
temp_con[nConstrained].set_a( dummy_plug->get_a() ); |
97 |
temp_con[nConstrained].set_b( dummy_plug->get_b() ); |
98 |
temp_con[nConstrained].set_dsqr( dummy_plug->get_dsqr() ); |
99 |
|
100 |
nConstrained++; |
101 |
constrained = 0; |
102 |
} |
103 |
} |
104 |
|
105 |
theArray = (SRI**) molecules[i].getMyTorsions(); |
106 |
for(int j=0; j<molecules[i].getNTorsions(); j++){ |
107 |
|
108 |
constrained = theArray[j]->is_constrained(); |
109 |
|
110 |
if(constrained){ |
111 |
|
112 |
dummy_plug = theArray[j]->get_constraint(); |
113 |
temp_con[nConstrained].set_a( dummy_plug->get_a() ); |
114 |
temp_con[nConstrained].set_b( dummy_plug->get_b() ); |
115 |
temp_con[nConstrained].set_dsqr( dummy_plug->get_dsqr() ); |
116 |
|
117 |
nConstrained++; |
118 |
constrained = 0; |
119 |
} |
120 |
} |
121 |
} |
122 |
|
123 |
if(nConstrained > 0){ |
124 |
|
125 |
isConstrained = 1; |
126 |
|
127 |
if(constrainedA != NULL ) delete[] constrainedA; |
128 |
if(constrainedB != NULL ) delete[] constrainedB; |
129 |
if(constrainedDsqr != NULL ) delete[] constrainedDsqr; |
130 |
|
131 |
constrainedA = new int[nConstrained]; |
132 |
constrainedB = new int[nConstrained]; |
133 |
constrainedDsqr = new double[nConstrained]; |
134 |
|
135 |
for( int i = 0; i < nConstrained; i++){ |
136 |
|
137 |
constrainedA[i] = temp_con[i].get_a(); |
138 |
constrainedB[i] = temp_con[i].get_b(); |
139 |
constrainedDsqr[i] = temp_con[i].get_dsqr(); |
140 |
} |
141 |
|
142 |
|
143 |
// save oldAtoms to check for lode balanceing later on. |
144 |
|
145 |
oldAtoms = nAtoms; |
146 |
|
147 |
moving = new int[nAtoms]; |
148 |
moved = new int[nAtoms]; |
149 |
|
150 |
prePos = new double[nAtoms*3]; |
151 |
} |
152 |
|
153 |
delete[] temp_con; |
154 |
} |
155 |
|
156 |
|
157 |
void Integrator::integrate( void ){ |
158 |
|
159 |
int i, j; // loop counters |
160 |
double kE = 0.0; // the kinetic energy |
161 |
double rot_kE; |
162 |
double trans_kE; |
163 |
int tl; // the time loop conter |
164 |
double dt2; // half the dt |
165 |
|
166 |
double vx, vy, vz; // the velocities |
167 |
double vx2, vy2, vz2; // the square of the velocities |
168 |
double rx, ry, rz; // the postitions |
169 |
|
170 |
double ji[3]; // the body frame angular momentum |
171 |
double jx2, jy2, jz2; // the square of the angular momentums |
172 |
double Tb[3]; // torque in the body frame |
173 |
double angle; // the angle through which to rotate the rotation matrix |
174 |
double A[3][3]; // the rotation matrix |
175 |
double press[9]; |
176 |
|
177 |
int time; |
178 |
|
179 |
double dt = info->dt; |
180 |
double runTime = info->run_time; |
181 |
double sampleTime = info->sampleTime; |
182 |
double statusTime = info->statusTime; |
183 |
double thermalTime = info->thermalTime; |
184 |
|
185 |
int n_loops = (int)( runTime / dt ); |
186 |
int sample_n = (int)( sampleTime / dt ); |
187 |
int status_n = (int)( statusTime / dt ); |
188 |
int vel_n = (int)( thermalTime / dt ); |
189 |
|
190 |
int calcPot, calcStress; |
191 |
int isError; |
192 |
|
193 |
tStats = new Thermo( info ); |
194 |
e_out = new StatWriter( info ); |
195 |
dump_out = new DumpWriter( info ); |
196 |
|
197 |
Atom** atoms = info->atoms; |
198 |
DirectionalAtom* dAtom; |
199 |
dt2 = 0.5 * dt; |
200 |
|
201 |
// initialize the forces before the first step |
202 |
|
203 |
myFF->doForces(1,1); |
204 |
|
205 |
if( info->setTemp ){ |
206 |
|
207 |
tStats->velocitize(); |
208 |
} |
209 |
|
210 |
dump_out->writeDump( 0.0 ); |
211 |
e_out->writeStat( 0.0 ); |
212 |
|
213 |
calcPot = 0; |
214 |
|
215 |
for( tl=0; tl<nLoops; tl++){ |
216 |
|
217 |
integrateStep( calcPot, calcStress ); |
218 |
|
219 |
time = tl + 1; |
220 |
|
221 |
if( info->setTemp ){ |
222 |
if( !(time % vel_n) ) tStats->velocitize(); |
223 |
} |
224 |
if( !(time % sample_n) ) dump_out->writeDump( time * dt ); |
225 |
if( !((time+1) % status_n) ) { |
226 |
calcPot = 1; |
227 |
calcStress = 1; |
228 |
} |
229 |
if( !(time % status_n) ){ |
230 |
e_out->writeStat( time * dt ); |
231 |
calcPot = 0; |
232 |
if (!strcasecmp(info->ensemble, "NPT")) calcStress = 1; |
233 |
else calcStress = 0; |
234 |
} |
235 |
|
236 |
|
237 |
} |
238 |
|
239 |
dump_out->writeFinal(); |
240 |
|
241 |
delete dump_out; |
242 |
delete e_out; |
243 |
} |
244 |
|
245 |
|
246 |
void Integrator::moveA( void ){ |
247 |
|
248 |
int i,j,k; |
249 |
int atomIndex, aMatIndex; |
250 |
DirectionalAtom* dAtom; |
251 |
double Tb[3]; |
252 |
double ji[3]; |
253 |
|
254 |
for( i=0; i<nAtoms; i++ ){ |
255 |
atomIndex = i * 3; |
256 |
aMatIndex = i * 9; |
257 |
|
258 |
// velocity half step |
259 |
for( j=atomIndex; j<(atomIndex+3); j++ ) |
260 |
vel[j] += ( dt2 * frc[j] / atoms[i]->getMass() ) * eConvert; |
261 |
|
262 |
// position whole step |
263 |
for( j=atomIndex; j<(atomIndex+3); j++ ) |
264 |
pos[j] += dt * vel[j]; |
265 |
|
266 |
|
267 |
if( atoms[i]->isDirectional() ){ |
268 |
|
269 |
dAtom = (DirectionalAtom *)atoms[i]; |
270 |
|
271 |
// get and convert the torque to body frame |
272 |
|
273 |
Tb[0] = dAtom->getTx(); |
274 |
Tb[1] = dAtom->getTy(); |
275 |
Tb[2] = dAtom->getTz(); |
276 |
|
277 |
dAtom->lab2Body( Tb ); |
278 |
|
279 |
// get the angular momentum, and propagate a half step |
280 |
|
281 |
ji[0] = dAtom->getJx() + ( dt2 * Tb[0] ) * eConvert; |
282 |
ji[1] = dAtom->getJy() + ( dt2 * Tb[1] ) * eConvert; |
283 |
ji[2] = dAtom->getJz() + ( dt2 * Tb[2] ) * eConvert; |
284 |
|
285 |
// use the angular velocities to propagate the rotation matrix a |
286 |
// full time step |
287 |
|
288 |
// rotate about the x-axis |
289 |
angle = dt2 * ji[0] / dAtom->getIxx(); |
290 |
this->rotate( 1, 2, angle, ji, &aMat[aMatIndex] ); |
291 |
|
292 |
// rotate about the y-axis |
293 |
angle = dt2 * ji[1] / dAtom->getIyy(); |
294 |
this->rotate( 2, 0, angle, ji, &aMat[aMatIndex] ); |
295 |
|
296 |
// rotate about the z-axis |
297 |
angle = dt * ji[2] / dAtom->getIzz(); |
298 |
this->rotate( 0, 1, angle, ji, &aMat[aMatIndex] ); |
299 |
|
300 |
// rotate about the y-axis |
301 |
angle = dt2 * ji[1] / dAtom->getIyy(); |
302 |
this->rotate( 2, 0, angle, ji, &aMat[aMatIndex] ); |
303 |
|
304 |
// rotate about the x-axis |
305 |
angle = dt2 * ji[0] / dAtom->getIxx(); |
306 |
this->rotate( 1, 2, angle, ji, &aMat[aMatIndex] ); |
307 |
|
308 |
dAtom->setJx( ji[0] ); |
309 |
dAtom->setJy( ji[1] ); |
310 |
dAtom->setJz( ji[2] ); |
311 |
} |
312 |
|
313 |
} |
314 |
} |
315 |
|
316 |
|
317 |
void Integrator::moveB( void ){ |
318 |
int i,j,k; |
319 |
int atomIndex; |
320 |
DirectionalAtom* dAtom; |
321 |
double Tb[3]; |
322 |
double ji[3]; |
323 |
|
324 |
for( i=0; i<nAtoms; i++ ){ |
325 |
atomIndex = i * 3; |
326 |
|
327 |
// velocity half step |
328 |
for( j=atomIndex; j<(atomIndex+3); j++ ) |
329 |
vel[j] += ( dt2 * frc[j] / atoms[i]->getMass() ) * eConvert; |
330 |
|
331 |
if( atoms[i]->isDirectional() ){ |
332 |
|
333 |
dAtom = (DirectionalAtom *)atoms[i]; |
334 |
|
335 |
// get and convert the torque to body frame |
336 |
|
337 |
Tb[0] = dAtom->getTx(); |
338 |
Tb[1] = dAtom->getTy(); |
339 |
Tb[2] = dAtom->getTz(); |
340 |
|
341 |
dAtom->lab2Body( Tb ); |
342 |
|
343 |
// get the angular momentum, and complete the angular momentum |
344 |
// half step |
345 |
|
346 |
ji[0] = dAtom->getJx() + ( dt2 * Tb[0] ) * eConvert; |
347 |
ji[1] = dAtom->getJy() + ( dt2 * Tb[1] ) * eConvert; |
348 |
ji[2] = dAtom->getJz() + ( dt2 * Tb[2] ) * eConvert; |
349 |
|
350 |
jx2 = ji[0] * ji[0]; |
351 |
jy2 = ji[1] * ji[1]; |
352 |
jz2 = ji[2] * ji[2]; |
353 |
|
354 |
dAtom->setJx( ji[0] ); |
355 |
dAtom->setJy( ji[1] ); |
356 |
dAtom->setJz( ji[2] ); |
357 |
} |
358 |
} |
359 |
|
360 |
} |
361 |
|
362 |
void Integrator::preMove( void ){ |
363 |
int i; |
364 |
|
365 |
if( nConstrained ){ |
366 |
if( oldAtoms != nAtoms ){ |
367 |
|
368 |
// save oldAtoms to check for lode balanceing later on. |
369 |
|
370 |
oldAtoms = nAtoms; |
371 |
|
372 |
delete[] moving; |
373 |
delete[] moved; |
374 |
delete[] oldPos; |
375 |
|
376 |
moving = new int[nAtoms]; |
377 |
moved = new int[nAtoms]; |
378 |
|
379 |
oldPos = new double[nAtoms*3]; |
380 |
} |
381 |
|
382 |
for(i=0; i<(nAtoms*3); i++) oldPos[i] = pos[i]; |
383 |
} |
384 |
} |
385 |
|
386 |
void Integrator::constrainA(){ |
387 |
|
388 |
int i,j,k; |
389 |
int done; |
390 |
double pxab, pyab, pzab; |
391 |
double rxab, ryab, rzab; |
392 |
int a, b; |
393 |
double rma, rmb; |
394 |
double dx, dy, dz; |
395 |
double rabsq, pabsq, rpabsq; |
396 |
double diffsq; |
397 |
double gab; |
398 |
int iteration; |
399 |
|
400 |
|
401 |
|
402 |
for( i=0; i<nAtoms; i++){ |
403 |
|
404 |
moving[i] = 0; |
405 |
moved[i] = 1; |
406 |
} |
407 |
|
408 |
|
409 |
iteration = 0; |
410 |
done = 0; |
411 |
while( !done && (iteration < maxIteration )){ |
412 |
|
413 |
done = 1; |
414 |
for(i=0; i<nConstrained; i++){ |
415 |
|
416 |
a = constrainedA[i]; |
417 |
b = constrainedB[i]; |
418 |
|
419 |
if( moved[a] || moved[b] ){ |
420 |
|
421 |
pxab = pos[3*a+0] - pos[3*b+0]; |
422 |
pyab = pos[3*a+1] - pos[3*b+1]; |
423 |
pzab = pos[3*a+2] - pos[3*b+2]; |
424 |
|
425 |
//periodic boundary condition |
426 |
pxab = pxab - info->box_x * copysign(1, pxab) |
427 |
* int(pxab / info->box_x + 0.5); |
428 |
pyab = pyab - info->box_y * copysign(1, pyab) |
429 |
* int(pyab / info->box_y + 0.5); |
430 |
pzab = pzab - info->box_z * copysign(1, pzab) |
431 |
* int(pzab / info->box_z + 0.5); |
432 |
|
433 |
pabsq = pxab * pxab + pyab * pyab + pzab * pzab; |
434 |
rabsq = constraintedDsqr[i]; |
435 |
diffsq = pabsq - rabsq; |
436 |
|
437 |
// the original rattle code from alan tidesley |
438 |
if (fabs(diffsq) > tol*rabsq*2) { |
439 |
rxab = oldPos[3*a+0] - oldPos[3*b+0]; |
440 |
ryab = oldPos[3*a+1] - oldPos[3*b+1]; |
441 |
rzab = oldPos[3*a+2] - oldPos[3*b+2]; |
442 |
|
443 |
rxab = rxab - info->box_x * copysign(1, rxab) |
444 |
* int(rxab / info->box_x + 0.5); |
445 |
ryab = ryab - info->box_y * copysign(1, ryab) |
446 |
* int(ryab / info->box_y + 0.5); |
447 |
rzab = rzab - info->box_z * copysign(1, rzab) |
448 |
* int(rzab / info->box_z + 0.5); |
449 |
|
450 |
rpab = rxab * pxab + ryab * pyab + rzab * pzab; |
451 |
rpabsq = rpab * rpab; |
452 |
|
453 |
|
454 |
if (rpabsq < (rabsq * -diffsq)){ |
455 |
#ifdef IS_MPI |
456 |
a = atoms[a]->getGlobalIndex(); |
457 |
b = atoms[b]->getGlobalIndex(); |
458 |
#endif //is_mpi |
459 |
sprintf( painCave.errMsg, |
460 |
"Constraint failure in constrainA at atom %d and %d\n.", |
461 |
a, b ); |
462 |
painCave.isFatal = 1; |
463 |
simError(); |
464 |
} |
465 |
|
466 |
rma = 1.0 / atoms[a]->getMass(); |
467 |
rmb = 1.0 / atoms[b]->getMass(); |
468 |
|
469 |
gab = diffsq / ( 2.0 * ( rma + rmb ) * rpab ); |
470 |
dx = rxab * gab; |
471 |
dy = ryab * gab; |
472 |
dz = rzab * gab; |
473 |
|
474 |
pos[3*a+0] += rma * dx; |
475 |
pos[3*a+1] += rma * dy; |
476 |
pos[3*a+2] += rma * dz; |
477 |
|
478 |
pos[3*b+0] -= rmb * dx; |
479 |
pos[3*b+1] -= rmb * dy; |
480 |
pos[3*b+2] -= rmb * dz; |
481 |
|
482 |
dx = dx / dt; |
483 |
dy = dy / dt; |
484 |
dz = dz / dt; |
485 |
|
486 |
vel[3*a+0] += rma * dx; |
487 |
vel[3*a+1] += rma * dy; |
488 |
vel[3*a+2] += rma * dz; |
489 |
|
490 |
vel[3*b+0] -= rmb * dx; |
491 |
vel[3*b+1] -= rmb * dy; |
492 |
vel[3*b+2] -= rmb * dz; |
493 |
|
494 |
moving[a] = 1; |
495 |
moving[b] = 1; |
496 |
done = 0; |
497 |
} |
498 |
} |
499 |
} |
500 |
|
501 |
for(i=0; i<nAtoms; i++){ |
502 |
|
503 |
moved[i] = moving[i]; |
504 |
moving[i] = 0; |
505 |
} |
506 |
|
507 |
iteration++; |
508 |
} |
509 |
|
510 |
if( !done ){ |
511 |
|
512 |
sprintf( painCae.errMsg, |
513 |
"Constraint failure in constrainA, too many iterations: %d\n", |
514 |
iterations ); |
515 |
painCave.isFatal = 1; |
516 |
simError(); |
517 |
} |
518 |
|
519 |
} |
520 |
|
521 |
void Integrator::constrainB( void ){ |
522 |
|
523 |
int i,j,k; |
524 |
int done; |
525 |
double vxab, vyab, vzab; |
526 |
double rxab, ryab, rzab; |
527 |
int a, b; |
528 |
double rma, rmb; |
529 |
double dx, dy, dz; |
530 |
double rabsq, pabsq, rvab; |
531 |
double diffsq; |
532 |
double gab; |
533 |
int iteration; |
534 |
|
535 |
for(i=0; i<nAtom; i++){ |
536 |
moving[i] = 0; |
537 |
moved[i] = 1; |
538 |
} |
539 |
|
540 |
done = 0; |
541 |
while( !done && (iteration < maxIteration ) ){ |
542 |
|
543 |
for(i=0; i<nConstrained; i++){ |
544 |
|
545 |
a = constrainedA[i]; |
546 |
b = constrainedB[i]; |
547 |
|
548 |
if( moved[a] || moved[b] ){ |
549 |
|
550 |
vxab = vel[3*a+0] - vel[3*b+0]; |
551 |
vyab = vel[3*a+1] - vel[3*b+1]; |
552 |
vzab = vel[3*a+2] - vel[3*b+2]; |
553 |
|
554 |
rxab = pos[3*a+0] - pos[3*b+0];q |
555 |
ryab = pos[3*a+1] - pos[3*b+1]; |
556 |
rzab = pos[3*a+2] - pos[3*b+2]; |
557 |
|
558 |
rxab = rxab - info->box_x * copysign(1, rxab) |
559 |
* int(rxab / info->box_x + 0.5); |
560 |
ryab = ryab - info->box_y * copysign(1, ryab) |
561 |
* int(ryab / info->box_y + 0.5); |
562 |
rzab = rzab - info->box_z * copysign(1, rzab) |
563 |
* int(rzab / info->box_z + 0.5); |
564 |
|
565 |
rma = 1.0 / atoms[a]->getMass(); |
566 |
rmb = 1.0 / atoms[b]->getMass(); |
567 |
|
568 |
rvab = rxab * vxab + ryab * vyab + rzab * vzab; |
569 |
|
570 |
gab = -rvab / ( ( rma + rmb ) * constraintsDsqr[i] ); |
571 |
|
572 |
if (fabs(gab) > tol) { |
573 |
|
574 |
dx = rxab * gab; |
575 |
dy = ryab * gab; |
576 |
dz = rzab * gab; |
577 |
|
578 |
vel[3*a+0] += rma * dx; |
579 |
vel[3*a+1] += rma * dy; |
580 |
vel[3*a+2] += rma * dz; |
581 |
|
582 |
vel[3*b+0] -= rmb * dx; |
583 |
vel[3*b+1] -= rmb * dy; |
584 |
vel[3*b+2] -= rmb * dz; |
585 |
|
586 |
moving[a] = 1; |
587 |
moving[b] = 1; |
588 |
done = 0; |
589 |
} |
590 |
} |
591 |
} |
592 |
|
593 |
for(i=0; i<nAtoms; i++){ |
594 |
moved[i] = moving[i]; |
595 |
moving[i] = 0; |
596 |
} |
597 |
|
598 |
iteration++; |
599 |
} |
600 |
|
601 |
if( !done ){ |
602 |
|
603 |
|
604 |
sprintf( painCae.errMsg, |
605 |
"Constraint failure in constrainB, too many iterations: %d\n", |
606 |
iterations ); |
607 |
painCave.isFatal = 1; |
608 |
simError(); |
609 |
} |
610 |
|
611 |
} |
612 |
|
613 |
|
614 |
|
615 |
|
616 |
|
617 |
|
618 |
|
619 |
void Integrator::rotate( int axes1, int axes2, double angle, double ji[3], |
620 |
double A[3][3] ){ |
621 |
|
622 |
int i,j,k; |
623 |
double sinAngle; |
624 |
double cosAngle; |
625 |
double angleSqr; |
626 |
double angleSqrOver4; |
627 |
double top, bottom; |
628 |
double rot[3][3]; |
629 |
double tempA[3][3]; |
630 |
double tempJ[3]; |
631 |
|
632 |
// initialize the tempA |
633 |
|
634 |
for(i=0; i<3; i++){ |
635 |
for(j=0; j<3; j++){ |
636 |
tempA[j][i] = A[i][j]; |
637 |
} |
638 |
} |
639 |
|
640 |
// initialize the tempJ |
641 |
|
642 |
for( i=0; i<3; i++) tempJ[i] = ji[i]; |
643 |
|
644 |
// initalize rot as a unit matrix |
645 |
|
646 |
rot[0][0] = 1.0; |
647 |
rot[0][1] = 0.0; |
648 |
rot[0][2] = 0.0; |
649 |
|
650 |
rot[1][0] = 0.0; |
651 |
rot[1][1] = 1.0; |
652 |
rot[1][2] = 0.0; |
653 |
|
654 |
rot[2][0] = 0.0; |
655 |
rot[2][1] = 0.0; |
656 |
rot[2][2] = 1.0; |
657 |
|
658 |
// use a small angle aproximation for sin and cosine |
659 |
|
660 |
angleSqr = angle * angle; |
661 |
angleSqrOver4 = angleSqr / 4.0; |
662 |
top = 1.0 - angleSqrOver4; |
663 |
bottom = 1.0 + angleSqrOver4; |
664 |
|
665 |
cosAngle = top / bottom; |
666 |
sinAngle = angle / bottom; |
667 |
|
668 |
rot[axes1][axes1] = cosAngle; |
669 |
rot[axes2][axes2] = cosAngle; |
670 |
|
671 |
rot[axes1][axes2] = sinAngle; |
672 |
rot[axes2][axes1] = -sinAngle; |
673 |
|
674 |
// rotate the momentum acoording to: ji[] = rot[][] * ji[] |
675 |
|
676 |
for(i=0; i<3; i++){ |
677 |
ji[i] = 0.0; |
678 |
for(k=0; k<3; k++){ |
679 |
ji[i] += rot[i][k] * tempJ[k]; |
680 |
} |
681 |
} |
682 |
|
683 |
// rotate the Rotation matrix acording to: |
684 |
// A[][] = A[][] * transpose(rot[][]) |
685 |
|
686 |
|
687 |
// NOte for as yet unknown reason, we are setting the performing the |
688 |
// calculation as: |
689 |
// transpose(A[][]) = transpose(A[][]) * transpose(rot[][]) |
690 |
|
691 |
for(i=0; i<3; i++){ |
692 |
for(j=0; j<3; j++){ |
693 |
A[j][i] = 0.0; |
694 |
for(k=0; k<3; k++){ |
695 |
A[j][i] += tempA[i][k] * rot[j][k]; |
696 |
} |
697 |
} |
698 |
} |
699 |
} |