| 1 |
#include <iostream> |
| 2 |
#include <cstdlib> |
| 3 |
|
| 4 |
#ifdef IS_MPI |
| 5 |
#include "mpiSimulation.hpp" |
| 6 |
#include <unistd.h> |
| 7 |
#endif //is_mpi |
| 8 |
|
| 9 |
#include "Integrator.hpp" |
| 10 |
#include "simError.h" |
| 11 |
|
| 12 |
|
| 13 |
Symplectic::Symplectic( SimInfo* theInfo, ForceFields* the_ff ){ |
| 14 |
|
| 15 |
info = theInfo; |
| 16 |
myFF = the_ff; |
| 17 |
isFirst = 1; |
| 18 |
|
| 19 |
molecules = info->molecules; |
| 20 |
nMols = info->n_mol; |
| 21 |
|
| 22 |
// give a little love back to the SimInfo object |
| 23 |
|
| 24 |
if( info->the_integrator != NULL ) delete info->the_integrator; |
| 25 |
info->the_integrator = this; |
| 26 |
|
| 27 |
// check for constraints |
| 28 |
|
| 29 |
constrainedI = NULL; |
| 30 |
constrainedJ = NULL; |
| 31 |
constrainedDsqr = NULL; |
| 32 |
nConstrained = 0; |
| 33 |
|
| 34 |
checkConstraints(); |
| 35 |
} |
| 36 |
|
| 37 |
Symplectic::~Symplectic() { |
| 38 |
|
| 39 |
if( nConstrained ){ |
| 40 |
delete[] constrainedI; |
| 41 |
delete[] constrainedJ; |
| 42 |
delete[] constrainedDsqr; |
| 43 |
} |
| 44 |
|
| 45 |
} |
| 46 |
|
| 47 |
void Symplectic::checkConstraints( void ){ |
| 48 |
|
| 49 |
|
| 50 |
isConstrained = 0; |
| 51 |
|
| 52 |
Constraint *temp_con; |
| 53 |
Constraint *dummy_plug; |
| 54 |
temp_con = new Constraint[info->n_SRI]; |
| 55 |
nConstrained = 0; |
| 56 |
int constrained = 0; |
| 57 |
|
| 58 |
SRI** theArray; |
| 59 |
for(int i = 0; i < nMols; i++){ |
| 60 |
|
| 61 |
theArray = (SRI**) molecules[i].getMyBonds(); |
| 62 |
for(int j=0; j<molecules[i].getNBonds(); j++){ |
| 63 |
|
| 64 |
constrained = theArray[j]->is_constrained(); |
| 65 |
|
| 66 |
if(constrained){ |
| 67 |
|
| 68 |
dummy_plug = theArray[j]->get_constraint(); |
| 69 |
temp_con[nConstrained].set_a( dummy_plug->get_a() ); |
| 70 |
temp_con[nConstrained].set_b( dummy_plug->get_b() ); |
| 71 |
temp_con[nConstrained].set_dsqr( dummy_plug->get_dsqr() ); |
| 72 |
|
| 73 |
nConstrained++; |
| 74 |
constrained = 0; |
| 75 |
} |
| 76 |
} |
| 77 |
|
| 78 |
theArray = (SRI**) molecules[i].getMyBends(); |
| 79 |
for(int j=0; j<molecules[i].getNBends(); j++){ |
| 80 |
|
| 81 |
constrained = theArray[j]->is_constrained(); |
| 82 |
|
| 83 |
if(constrained){ |
| 84 |
|
| 85 |
dummy_plug = theArray[j]->get_constraint(); |
| 86 |
temp_con[nConstrained].set_a( dummy_plug->get_a() ); |
| 87 |
temp_con[nConstrained].set_b( dummy_plug->get_b() ); |
| 88 |
temp_con[nConstrained].set_dsqr( dummy_plug->get_dsqr() ); |
| 89 |
|
| 90 |
nConstrained++; |
| 91 |
constrained = 0; |
| 92 |
} |
| 93 |
} |
| 94 |
|
| 95 |
theArray = (SRI**) molecules[i].getMyTorsions(); |
| 96 |
for(int j=0; j<molecules[i].getNTorsions(); j++){ |
| 97 |
|
| 98 |
constrained = theArray[j]->is_constrained(); |
| 99 |
|
| 100 |
if(constrained){ |
| 101 |
|
| 102 |
dummy_plug = theArray[j]->get_constraint(); |
| 103 |
temp_con[nConstrained].set_a( dummy_plug->get_a() ); |
| 104 |
temp_con[nConstrained].set_b( dummy_plug->get_b() ); |
| 105 |
temp_con[nConstrained].set_dsqr( dummy_plug->get_dsqr() ); |
| 106 |
|
| 107 |
nConstrained++; |
| 108 |
constrained = 0; |
| 109 |
} |
| 110 |
} |
| 111 |
} |
| 112 |
|
| 113 |
if(nConstrained > 0){ |
| 114 |
|
| 115 |
isConstrained = 1; |
| 116 |
|
| 117 |
if(constrainedI != NULL ) delete[] constrainedI; |
| 118 |
if(constrainedJ != NULL ) delete[] constrainedJ; |
| 119 |
if(constrainedDsqr != NULL ) delete[] constrainedDsqr; |
| 120 |
|
| 121 |
constrainedI = new int[nConstrained]; |
| 122 |
constrainedJ = new int[nConstrained]; |
| 123 |
constrainedDsqr = new double[nConstrained]; |
| 124 |
|
| 125 |
for( int i = 0; i < nConstrained; i++){ |
| 126 |
|
| 127 |
constrainedI[i] = temp_con[i].get_a(); |
| 128 |
constrainedJ[i] = temp_con[i].get_b(); |
| 129 |
constrainedDsqr[i] = temp_con[i].get_dsqr(); |
| 130 |
} |
| 131 |
} |
| 132 |
|
| 133 |
delete[] temp_con; |
| 134 |
} |
| 135 |
|
| 136 |
|
| 137 |
void Symplectic::integrate( void ){ |
| 138 |
|
| 139 |
int i, j; // loop counters |
| 140 |
int nAtoms = info->n_atoms; // the number of atoms |
| 141 |
double kE = 0.0; // the kinetic energy |
| 142 |
double rot_kE; |
| 143 |
double trans_kE; |
| 144 |
int tl; // the time loop conter |
| 145 |
double dt2; // half the dt |
| 146 |
|
| 147 |
double vx, vy, vz; // the velocities |
| 148 |
double vx2, vy2, vz2; // the square of the velocities |
| 149 |
double rx, ry, rz; // the postitions |
| 150 |
|
| 151 |
double ji[3]; // the body frame angular momentum |
| 152 |
double jx2, jy2, jz2; // the square of the angular momentums |
| 153 |
double Tb[3]; // torque in the body frame |
| 154 |
double angle; // the angle through which to rotate the rotation matrix |
| 155 |
double A[3][3]; // the rotation matrix |
| 156 |
double press[9]; |
| 157 |
|
| 158 |
int time; |
| 159 |
|
| 160 |
double dt = info->dt; |
| 161 |
double runTime = info->run_time; |
| 162 |
double sampleTime = info->sampleTime; |
| 163 |
double statusTime = info->statusTime; |
| 164 |
double thermalTime = info->thermalTime; |
| 165 |
|
| 166 |
int n_loops = (int)( runTime / dt ); |
| 167 |
int sample_n = (int)( sampleTime / dt ); |
| 168 |
int status_n = (int)( statusTime / dt ); |
| 169 |
int vel_n = (int)( thermalTime / dt ); |
| 170 |
|
| 171 |
int calcPot, calcStress; |
| 172 |
int isError; |
| 173 |
|
| 174 |
tStats = new Thermo( info ); |
| 175 |
e_out = new StatWriter( info ); |
| 176 |
dump_out = new DumpWriter( info ); |
| 177 |
|
| 178 |
Atom** atoms = info->atoms; |
| 179 |
DirectionalAtom* dAtom; |
| 180 |
dt2 = 0.5 * dt; |
| 181 |
|
| 182 |
// initialize the forces before the first step |
| 183 |
|
| 184 |
myFF->doForces(1,1); |
| 185 |
|
| 186 |
if( info->setTemp ){ |
| 187 |
|
| 188 |
tStats->velocitize(); |
| 189 |
} |
| 190 |
|
| 191 |
dump_out->writeDump( 0.0 ); |
| 192 |
e_out->writeStat( 0.0 ); |
| 193 |
|
| 194 |
calcPot = 0; |
| 195 |
|
| 196 |
for( tl=0; tl<nLoops; tl++){ |
| 197 |
|
| 198 |
integrateStep( calcPot, calcStress ); |
| 199 |
|
| 200 |
time = tl + 1; |
| 201 |
|
| 202 |
if( info->setTemp ){ |
| 203 |
if( !(time % vel_n) ) tStats->velocitize(); |
| 204 |
} |
| 205 |
if( !(time % sample_n) ) dump_out->writeDump( time * dt ); |
| 206 |
if( !((time+1) % status_n) ) { |
| 207 |
calcPot = 1; |
| 208 |
calcStress = 1; |
| 209 |
} |
| 210 |
if( !(time % status_n) ){ |
| 211 |
e_out->writeStat( time * dt ); |
| 212 |
calcPot = 0; |
| 213 |
if (!strcasecmp(info->ensemble, "NPT")) calcStress = 1; |
| 214 |
else calcStress = 0; |
| 215 |
} |
| 216 |
|
| 217 |
|
| 218 |
} |
| 219 |
|
| 220 |
dump_out->writeFinal(); |
| 221 |
|
| 222 |
delete dump_out; |
| 223 |
delete e_out; |
| 224 |
} |
| 225 |
|
| 226 |
|
| 227 |
void Symplectic::moveA( void ){ |
| 228 |
|
| 229 |
int i,j,k; |
| 230 |
int atomIndex, aMatIndex; |
| 231 |
DirectionalAtom* dAtom; |
| 232 |
double Tb[3]; |
| 233 |
double ji[3]; |
| 234 |
|
| 235 |
for( i=0; i<nAtoms; i++ ){ |
| 236 |
atomIndex = i * 3; |
| 237 |
aMatIndex = i * 9; |
| 238 |
|
| 239 |
// velocity half step |
| 240 |
for( j=atomIndex; j<(atomIndex+3); j++ ) |
| 241 |
vel[j] += ( dt2 * frc[j] / atoms[i]->getMass() ) * eConvert; |
| 242 |
|
| 243 |
// position whole step |
| 244 |
for( j=atomIndex; j<(atomIndex+3); j++ ) |
| 245 |
pos[j] += dt * vel[j]; |
| 246 |
|
| 247 |
|
| 248 |
if( atoms[i]->isDirectional() ){ |
| 249 |
|
| 250 |
dAtom = (DirectionalAtom *)atoms[i]; |
| 251 |
|
| 252 |
// get and convert the torque to body frame |
| 253 |
|
| 254 |
Tb[0] = dAtom->getTx(); |
| 255 |
Tb[1] = dAtom->getTy(); |
| 256 |
Tb[2] = dAtom->getTz(); |
| 257 |
|
| 258 |
dAtom->lab2Body( Tb ); |
| 259 |
|
| 260 |
// get the angular momentum, and propagate a half step |
| 261 |
|
| 262 |
ji[0] = dAtom->getJx() + ( dt2 * Tb[0] ) * eConvert; |
| 263 |
ji[1] = dAtom->getJy() + ( dt2 * Tb[1] ) * eConvert; |
| 264 |
ji[2] = dAtom->getJz() + ( dt2 * Tb[2] ) * eConvert; |
| 265 |
|
| 266 |
// use the angular velocities to propagate the rotation matrix a |
| 267 |
// full time step |
| 268 |
|
| 269 |
// rotate about the x-axis |
| 270 |
angle = dt2 * ji[0] / dAtom->getIxx(); |
| 271 |
this->rotate( 1, 2, angle, ji, &aMat[aMatIndex] ); |
| 272 |
|
| 273 |
// rotate about the y-axis |
| 274 |
angle = dt2 * ji[1] / dAtom->getIyy(); |
| 275 |
this->rotate( 2, 0, angle, ji, &aMat[aMatIndex] ); |
| 276 |
|
| 277 |
// rotate about the z-axis |
| 278 |
angle = dt * ji[2] / dAtom->getIzz(); |
| 279 |
this->rotate( 0, 1, angle, ji, &aMat[aMatIndex] ); |
| 280 |
|
| 281 |
// rotate about the y-axis |
| 282 |
angle = dt2 * ji[1] / dAtom->getIyy(); |
| 283 |
this->rotate( 2, 0, angle, ji, &aMat[aMatIndex] ); |
| 284 |
|
| 285 |
// rotate about the x-axis |
| 286 |
angle = dt2 * ji[0] / dAtom->getIxx(); |
| 287 |
this->rotate( 1, 2, angle, ji, &aMat[aMatIndex] ); |
| 288 |
|
| 289 |
dAtom->setJx( ji[0] ); |
| 290 |
dAtom->setJy( ji[1] ); |
| 291 |
dAtom->setJz( ji[2] ); |
| 292 |
} |
| 293 |
|
| 294 |
} |
| 295 |
} |
| 296 |
|
| 297 |
|
| 298 |
void Integrator::moveB( void ){ |
| 299 |
int i,j,k; |
| 300 |
int atomIndex; |
| 301 |
DirectionalAtom* dAtom; |
| 302 |
double Tb[3]; |
| 303 |
double ji[3]; |
| 304 |
|
| 305 |
for( i=0; i<nAtoms; i++ ){ |
| 306 |
atomIndex = i * 3; |
| 307 |
|
| 308 |
// velocity half step |
| 309 |
for( j=atomIndex; j<(atomIndex+3); j++ ) |
| 310 |
vel[j] += ( dt2 * frc[j] / atoms[i]->getMass() ) * eConvert; |
| 311 |
|
| 312 |
if( atoms[i]->isDirectional() ){ |
| 313 |
|
| 314 |
dAtom = (DirectionalAtom *)atoms[i]; |
| 315 |
|
| 316 |
// get and convert the torque to body frame |
| 317 |
|
| 318 |
Tb[0] = dAtom->getTx(); |
| 319 |
Tb[1] = dAtom->getTy(); |
| 320 |
Tb[2] = dAtom->getTz(); |
| 321 |
|
| 322 |
dAtom->lab2Body( Tb ); |
| 323 |
|
| 324 |
// get the angular momentum, and complete the angular momentum |
| 325 |
// half step |
| 326 |
|
| 327 |
ji[0] = dAtom->getJx() + ( dt2 * Tb[0] ) * eConvert; |
| 328 |
ji[1] = dAtom->getJy() + ( dt2 * Tb[1] ) * eConvert; |
| 329 |
ji[2] = dAtom->getJz() + ( dt2 * Tb[2] ) * eConvert; |
| 330 |
|
| 331 |
jx2 = ji[0] * ji[0]; |
| 332 |
jy2 = ji[1] * ji[1]; |
| 333 |
jz2 = ji[2] * ji[2]; |
| 334 |
|
| 335 |
dAtom->setJx( ji[0] ); |
| 336 |
dAtom->setJy( ji[1] ); |
| 337 |
dAtom->setJz( ji[2] ); |
| 338 |
} |
| 339 |
} |
| 340 |
|
| 341 |
} |
| 342 |
|
| 343 |
|
| 344 |
void Integrator::constrainA(){ |
| 345 |
|
| 346 |
|
| 347 |
|
| 348 |
|
| 349 |
} |
| 350 |
|
| 351 |
|
| 352 |
|
| 353 |
|
| 354 |
|
| 355 |
|
| 356 |
|
| 357 |
|
| 358 |
|
| 359 |
void Symplectic::rotate( int axes1, int axes2, double angle, double ji[3], |
| 360 |
double A[3][3] ){ |
| 361 |
|
| 362 |
int i,j,k; |
| 363 |
double sinAngle; |
| 364 |
double cosAngle; |
| 365 |
double angleSqr; |
| 366 |
double angleSqrOver4; |
| 367 |
double top, bottom; |
| 368 |
double rot[3][3]; |
| 369 |
double tempA[3][3]; |
| 370 |
double tempJ[3]; |
| 371 |
|
| 372 |
// initialize the tempA |
| 373 |
|
| 374 |
for(i=0; i<3; i++){ |
| 375 |
for(j=0; j<3; j++){ |
| 376 |
tempA[j][i] = A[i][j]; |
| 377 |
} |
| 378 |
} |
| 379 |
|
| 380 |
// initialize the tempJ |
| 381 |
|
| 382 |
for( i=0; i<3; i++) tempJ[i] = ji[i]; |
| 383 |
|
| 384 |
// initalize rot as a unit matrix |
| 385 |
|
| 386 |
rot[0][0] = 1.0; |
| 387 |
rot[0][1] = 0.0; |
| 388 |
rot[0][2] = 0.0; |
| 389 |
|
| 390 |
rot[1][0] = 0.0; |
| 391 |
rot[1][1] = 1.0; |
| 392 |
rot[1][2] = 0.0; |
| 393 |
|
| 394 |
rot[2][0] = 0.0; |
| 395 |
rot[2][1] = 0.0; |
| 396 |
rot[2][2] = 1.0; |
| 397 |
|
| 398 |
// use a small angle aproximation for sin and cosine |
| 399 |
|
| 400 |
angleSqr = angle * angle; |
| 401 |
angleSqrOver4 = angleSqr / 4.0; |
| 402 |
top = 1.0 - angleSqrOver4; |
| 403 |
bottom = 1.0 + angleSqrOver4; |
| 404 |
|
| 405 |
cosAngle = top / bottom; |
| 406 |
sinAngle = angle / bottom; |
| 407 |
|
| 408 |
rot[axes1][axes1] = cosAngle; |
| 409 |
rot[axes2][axes2] = cosAngle; |
| 410 |
|
| 411 |
rot[axes1][axes2] = sinAngle; |
| 412 |
rot[axes2][axes1] = -sinAngle; |
| 413 |
|
| 414 |
// rotate the momentum acoording to: ji[] = rot[][] * ji[] |
| 415 |
|
| 416 |
for(i=0; i<3; i++){ |
| 417 |
ji[i] = 0.0; |
| 418 |
for(k=0; k<3; k++){ |
| 419 |
ji[i] += rot[i][k] * tempJ[k]; |
| 420 |
} |
| 421 |
} |
| 422 |
|
| 423 |
// rotate the Rotation matrix acording to: |
| 424 |
// A[][] = A[][] * transpose(rot[][]) |
| 425 |
|
| 426 |
|
| 427 |
// NOte for as yet unknown reason, we are setting the performing the |
| 428 |
// calculation as: |
| 429 |
// transpose(A[][]) = transpose(A[][]) * transpose(rot[][]) |
| 430 |
|
| 431 |
for(i=0; i<3; i++){ |
| 432 |
for(j=0; j<3; j++){ |
| 433 |
A[j][i] = 0.0; |
| 434 |
for(k=0; k<3; k++){ |
| 435 |
A[j][i] += tempA[i][k] * rot[j][k]; |
| 436 |
} |
| 437 |
} |
| 438 |
} |
| 439 |
} |