1 |
mmeineke |
377 |
#include <iostream> |
2 |
|
|
#include <cstdlib> |
3 |
|
|
|
4 |
mmeineke |
542 |
#ifdef IS_MPI |
5 |
|
|
#include "mpiSimulation.hpp" |
6 |
|
|
#include <unistd.h> |
7 |
|
|
#endif //is_mpi |
8 |
|
|
|
9 |
mmeineke |
377 |
#include "Integrator.hpp" |
10 |
|
|
#include "simError.h" |
11 |
|
|
|
12 |
mmeineke |
542 |
|
13 |
|
|
Symplectic::Symplectic( SimInfo* theInfo, ForceFields* the_ff ){ |
14 |
mmeineke |
377 |
|
15 |
mmeineke |
542 |
info = theInfo; |
16 |
mmeineke |
377 |
myFF = the_ff; |
17 |
|
|
isFirst = 1; |
18 |
|
|
|
19 |
mmeineke |
542 |
molecules = info->molecules; |
20 |
|
|
nMols = info->n_mol; |
21 |
mmeineke |
377 |
|
22 |
|
|
// give a little love back to the SimInfo object |
23 |
|
|
|
24 |
mmeineke |
542 |
if( info->the_integrator != NULL ) delete info->the_integrator; |
25 |
|
|
info->the_integrator = this; |
26 |
mmeineke |
377 |
|
27 |
|
|
// check for constraints |
28 |
mmeineke |
542 |
|
29 |
|
|
constrainedI = NULL; |
30 |
|
|
constrainedJ = NULL; |
31 |
|
|
constrainedDsqr = NULL; |
32 |
|
|
nConstrained = 0; |
33 |
mmeineke |
377 |
|
34 |
mmeineke |
542 |
checkConstraints(); |
35 |
|
|
} |
36 |
mmeineke |
377 |
|
37 |
mmeineke |
542 |
Symplectic::~Symplectic() { |
38 |
|
|
|
39 |
|
|
if( nConstrained ){ |
40 |
|
|
delete[] constrainedI; |
41 |
|
|
delete[] constrainedJ; |
42 |
|
|
delete[] constrainedDsqr; |
43 |
|
|
} |
44 |
|
|
|
45 |
|
|
} |
46 |
|
|
|
47 |
|
|
void Symplectic::checkConstraints( void ){ |
48 |
|
|
|
49 |
|
|
|
50 |
|
|
isConstrained = 0; |
51 |
|
|
|
52 |
mmeineke |
377 |
Constraint *temp_con; |
53 |
|
|
Constraint *dummy_plug; |
54 |
mmeineke |
542 |
temp_con = new Constraint[info->n_SRI]; |
55 |
|
|
nConstrained = 0; |
56 |
mmeineke |
377 |
int constrained = 0; |
57 |
|
|
|
58 |
mmeineke |
423 |
SRI** theArray; |
59 |
|
|
for(int i = 0; i < nMols; i++){ |
60 |
mmeineke |
377 |
|
61 |
mmeineke |
428 |
theArray = (SRI**) molecules[i].getMyBonds(); |
62 |
|
|
for(int j=0; j<molecules[i].getNBonds(); j++){ |
63 |
mmeineke |
377 |
|
64 |
mmeineke |
423 |
constrained = theArray[j]->is_constrained(); |
65 |
|
|
|
66 |
|
|
if(constrained){ |
67 |
|
|
|
68 |
|
|
dummy_plug = theArray[j]->get_constraint(); |
69 |
mmeineke |
542 |
temp_con[nConstrained].set_a( dummy_plug->get_a() ); |
70 |
|
|
temp_con[nConstrained].set_b( dummy_plug->get_b() ); |
71 |
|
|
temp_con[nConstrained].set_dsqr( dummy_plug->get_dsqr() ); |
72 |
mmeineke |
423 |
|
73 |
mmeineke |
542 |
nConstrained++; |
74 |
mmeineke |
423 |
constrained = 0; |
75 |
|
|
} |
76 |
|
|
} |
77 |
mmeineke |
377 |
|
78 |
mmeineke |
428 |
theArray = (SRI**) molecules[i].getMyBends(); |
79 |
|
|
for(int j=0; j<molecules[i].getNBends(); j++){ |
80 |
mmeineke |
423 |
|
81 |
|
|
constrained = theArray[j]->is_constrained(); |
82 |
|
|
|
83 |
|
|
if(constrained){ |
84 |
|
|
|
85 |
|
|
dummy_plug = theArray[j]->get_constraint(); |
86 |
mmeineke |
542 |
temp_con[nConstrained].set_a( dummy_plug->get_a() ); |
87 |
|
|
temp_con[nConstrained].set_b( dummy_plug->get_b() ); |
88 |
|
|
temp_con[nConstrained].set_dsqr( dummy_plug->get_dsqr() ); |
89 |
mmeineke |
423 |
|
90 |
mmeineke |
542 |
nConstrained++; |
91 |
mmeineke |
423 |
constrained = 0; |
92 |
|
|
} |
93 |
mmeineke |
377 |
} |
94 |
mmeineke |
423 |
|
95 |
mmeineke |
428 |
theArray = (SRI**) molecules[i].getMyTorsions(); |
96 |
|
|
for(int j=0; j<molecules[i].getNTorsions(); j++){ |
97 |
mmeineke |
423 |
|
98 |
|
|
constrained = theArray[j]->is_constrained(); |
99 |
|
|
|
100 |
|
|
if(constrained){ |
101 |
|
|
|
102 |
|
|
dummy_plug = theArray[j]->get_constraint(); |
103 |
mmeineke |
542 |
temp_con[nConstrained].set_a( dummy_plug->get_a() ); |
104 |
|
|
temp_con[nConstrained].set_b( dummy_plug->get_b() ); |
105 |
|
|
temp_con[nConstrained].set_dsqr( dummy_plug->get_dsqr() ); |
106 |
mmeineke |
423 |
|
107 |
mmeineke |
542 |
nConstrained++; |
108 |
mmeineke |
423 |
constrained = 0; |
109 |
|
|
} |
110 |
|
|
} |
111 |
mmeineke |
377 |
} |
112 |
|
|
|
113 |
mmeineke |
542 |
if(nConstrained > 0){ |
114 |
mmeineke |
377 |
|
115 |
mmeineke |
542 |
isConstrained = 1; |
116 |
|
|
|
117 |
|
|
if(constrainedI != NULL ) delete[] constrainedI; |
118 |
|
|
if(constrainedJ != NULL ) delete[] constrainedJ; |
119 |
|
|
if(constrainedDsqr != NULL ) delete[] constrainedDsqr; |
120 |
|
|
|
121 |
|
|
constrainedI = new int[nConstrained]; |
122 |
|
|
constrainedJ = new int[nConstrained]; |
123 |
|
|
constrainedDsqr = new double[nConstrained]; |
124 |
mmeineke |
377 |
|
125 |
mmeineke |
542 |
for( int i = 0; i < nConstrained; i++){ |
126 |
mmeineke |
377 |
|
127 |
mmeineke |
542 |
constrainedI[i] = temp_con[i].get_a(); |
128 |
|
|
constrainedJ[i] = temp_con[i].get_b(); |
129 |
|
|
constrainedDsqr[i] = temp_con[i].get_dsqr(); |
130 |
mmeineke |
377 |
} |
131 |
|
|
} |
132 |
|
|
|
133 |
|
|
delete[] temp_con; |
134 |
|
|
} |
135 |
|
|
|
136 |
|
|
|
137 |
|
|
void Symplectic::integrate( void ){ |
138 |
|
|
|
139 |
|
|
int i, j; // loop counters |
140 |
mmeineke |
542 |
int nAtoms = info->n_atoms; // the number of atoms |
141 |
mmeineke |
377 |
double kE = 0.0; // the kinetic energy |
142 |
|
|
double rot_kE; |
143 |
|
|
double trans_kE; |
144 |
|
|
int tl; // the time loop conter |
145 |
|
|
double dt2; // half the dt |
146 |
|
|
|
147 |
|
|
double vx, vy, vz; // the velocities |
148 |
chuckv |
482 |
double vx2, vy2, vz2; // the square of the velocities |
149 |
mmeineke |
377 |
double rx, ry, rz; // the postitions |
150 |
|
|
|
151 |
|
|
double ji[3]; // the body frame angular momentum |
152 |
|
|
double jx2, jy2, jz2; // the square of the angular momentums |
153 |
|
|
double Tb[3]; // torque in the body frame |
154 |
|
|
double angle; // the angle through which to rotate the rotation matrix |
155 |
|
|
double A[3][3]; // the rotation matrix |
156 |
gezelter |
483 |
double press[9]; |
157 |
mmeineke |
377 |
|
158 |
|
|
int time; |
159 |
|
|
|
160 |
mmeineke |
542 |
double dt = info->dt; |
161 |
|
|
double runTime = info->run_time; |
162 |
|
|
double sampleTime = info->sampleTime; |
163 |
|
|
double statusTime = info->statusTime; |
164 |
|
|
double thermalTime = info->thermalTime; |
165 |
mmeineke |
377 |
|
166 |
|
|
int n_loops = (int)( runTime / dt ); |
167 |
|
|
int sample_n = (int)( sampleTime / dt ); |
168 |
|
|
int status_n = (int)( statusTime / dt ); |
169 |
|
|
int vel_n = (int)( thermalTime / dt ); |
170 |
|
|
|
171 |
gezelter |
468 |
int calcPot, calcStress; |
172 |
mmeineke |
542 |
int isError; |
173 |
mmeineke |
377 |
|
174 |
mmeineke |
542 |
tStats = new Thermo( info ); |
175 |
|
|
e_out = new StatWriter( info ); |
176 |
|
|
dump_out = new DumpWriter( info ); |
177 |
mmeineke |
377 |
|
178 |
mmeineke |
542 |
Atom** atoms = info->atoms; |
179 |
mmeineke |
377 |
DirectionalAtom* dAtom; |
180 |
|
|
dt2 = 0.5 * dt; |
181 |
|
|
|
182 |
mmeineke |
542 |
// initialize the forces before the first step |
183 |
mmeineke |
377 |
|
184 |
gezelter |
468 |
myFF->doForces(1,1); |
185 |
mmeineke |
377 |
|
186 |
mmeineke |
542 |
if( info->setTemp ){ |
187 |
mmeineke |
377 |
|
188 |
|
|
tStats->velocitize(); |
189 |
|
|
} |
190 |
|
|
|
191 |
|
|
dump_out->writeDump( 0.0 ); |
192 |
|
|
e_out->writeStat( 0.0 ); |
193 |
|
|
|
194 |
|
|
calcPot = 0; |
195 |
|
|
|
196 |
mmeineke |
542 |
for( tl=0; tl<nLoops; tl++){ |
197 |
gezelter |
475 |
|
198 |
mmeineke |
542 |
integrateStep( calcPot, calcStress ); |
199 |
|
|
|
200 |
|
|
time = tl + 1; |
201 |
mmeineke |
377 |
|
202 |
mmeineke |
542 |
if( info->setTemp ){ |
203 |
|
|
if( !(time % vel_n) ) tStats->velocitize(); |
204 |
|
|
} |
205 |
|
|
if( !(time % sample_n) ) dump_out->writeDump( time * dt ); |
206 |
|
|
if( !((time+1) % status_n) ) { |
207 |
|
|
calcPot = 1; |
208 |
|
|
calcStress = 1; |
209 |
|
|
} |
210 |
|
|
if( !(time % status_n) ){ |
211 |
|
|
e_out->writeStat( time * dt ); |
212 |
|
|
calcPot = 0; |
213 |
|
|
if (!strcasecmp(info->ensemble, "NPT")) calcStress = 1; |
214 |
|
|
else calcStress = 0; |
215 |
|
|
} |
216 |
mmeineke |
377 |
|
217 |
mmeineke |
542 |
|
218 |
|
|
} |
219 |
gezelter |
475 |
|
220 |
mmeineke |
542 |
dump_out->writeFinal(); |
221 |
mmeineke |
377 |
|
222 |
mmeineke |
542 |
delete dump_out; |
223 |
|
|
delete e_out; |
224 |
|
|
} |
225 |
mmeineke |
377 |
|
226 |
|
|
|
227 |
mmeineke |
542 |
void Symplectic::moveA( void ){ |
228 |
|
|
|
229 |
|
|
int i,j,k; |
230 |
|
|
int atomIndex, aMatIndex; |
231 |
|
|
DirectionalAtom* dAtom; |
232 |
|
|
double Tb[3]; |
233 |
|
|
double ji[3]; |
234 |
mmeineke |
377 |
|
235 |
mmeineke |
542 |
for( i=0; i<nAtoms; i++ ){ |
236 |
|
|
atomIndex = i * 3; |
237 |
|
|
aMatIndex = i * 9; |
238 |
|
|
|
239 |
|
|
// velocity half step |
240 |
|
|
for( j=atomIndex; j<(atomIndex+3); j++ ) |
241 |
|
|
vel[j] += ( dt2 * frc[j] / atoms[i]->getMass() ) * eConvert; |
242 |
mmeineke |
377 |
|
243 |
mmeineke |
542 |
// position whole step |
244 |
|
|
for( j=atomIndex; j<(atomIndex+3); j++ ) |
245 |
|
|
pos[j] += dt * vel[j]; |
246 |
mmeineke |
377 |
|
247 |
mmeineke |
542 |
|
248 |
|
|
if( atoms[i]->isDirectional() ){ |
249 |
mmeineke |
377 |
|
250 |
mmeineke |
542 |
dAtom = (DirectionalAtom *)atoms[i]; |
251 |
mmeineke |
377 |
|
252 |
mmeineke |
542 |
// get and convert the torque to body frame |
253 |
mmeineke |
377 |
|
254 |
mmeineke |
542 |
Tb[0] = dAtom->getTx(); |
255 |
|
|
Tb[1] = dAtom->getTy(); |
256 |
|
|
Tb[2] = dAtom->getTz(); |
257 |
mmeineke |
377 |
|
258 |
mmeineke |
542 |
dAtom->lab2Body( Tb ); |
259 |
mmeineke |
377 |
|
260 |
mmeineke |
542 |
// get the angular momentum, and propagate a half step |
261 |
mmeineke |
377 |
|
262 |
mmeineke |
542 |
ji[0] = dAtom->getJx() + ( dt2 * Tb[0] ) * eConvert; |
263 |
|
|
ji[1] = dAtom->getJy() + ( dt2 * Tb[1] ) * eConvert; |
264 |
|
|
ji[2] = dAtom->getJz() + ( dt2 * Tb[2] ) * eConvert; |
265 |
mmeineke |
377 |
|
266 |
mmeineke |
542 |
// use the angular velocities to propagate the rotation matrix a |
267 |
|
|
// full time step |
268 |
mmeineke |
377 |
|
269 |
mmeineke |
542 |
// rotate about the x-axis |
270 |
|
|
angle = dt2 * ji[0] / dAtom->getIxx(); |
271 |
|
|
this->rotate( 1, 2, angle, ji, &aMat[aMatIndex] ); |
272 |
|
|
|
273 |
|
|
// rotate about the y-axis |
274 |
|
|
angle = dt2 * ji[1] / dAtom->getIyy(); |
275 |
|
|
this->rotate( 2, 0, angle, ji, &aMat[aMatIndex] ); |
276 |
|
|
|
277 |
|
|
// rotate about the z-axis |
278 |
|
|
angle = dt * ji[2] / dAtom->getIzz(); |
279 |
|
|
this->rotate( 0, 1, angle, ji, &aMat[aMatIndex] ); |
280 |
|
|
|
281 |
|
|
// rotate about the y-axis |
282 |
|
|
angle = dt2 * ji[1] / dAtom->getIyy(); |
283 |
|
|
this->rotate( 2, 0, angle, ji, &aMat[aMatIndex] ); |
284 |
|
|
|
285 |
|
|
// rotate about the x-axis |
286 |
|
|
angle = dt2 * ji[0] / dAtom->getIxx(); |
287 |
|
|
this->rotate( 1, 2, angle, ji, &aMat[aMatIndex] ); |
288 |
|
|
|
289 |
|
|
dAtom->setJx( ji[0] ); |
290 |
|
|
dAtom->setJy( ji[1] ); |
291 |
|
|
dAtom->setJz( ji[2] ); |
292 |
mmeineke |
377 |
} |
293 |
mmeineke |
542 |
|
294 |
mmeineke |
377 |
} |
295 |
mmeineke |
542 |
} |
296 |
mmeineke |
377 |
|
297 |
gezelter |
475 |
|
298 |
mmeineke |
542 |
void Integrator::moveB( void ){ |
299 |
|
|
int i,j,k; |
300 |
|
|
int atomIndex; |
301 |
|
|
DirectionalAtom* dAtom; |
302 |
|
|
double Tb[3]; |
303 |
|
|
double ji[3]; |
304 |
mmeineke |
377 |
|
305 |
mmeineke |
542 |
for( i=0; i<nAtoms; i++ ){ |
306 |
|
|
atomIndex = i * 3; |
307 |
chuckv |
497 |
|
308 |
mmeineke |
542 |
// velocity half step |
309 |
|
|
for( j=atomIndex; j<(atomIndex+3); j++ ) |
310 |
|
|
vel[j] += ( dt2 * frc[j] / atoms[i]->getMass() ) * eConvert; |
311 |
|
|
|
312 |
|
|
if( atoms[i]->isDirectional() ){ |
313 |
mmeineke |
377 |
|
314 |
mmeineke |
542 |
dAtom = (DirectionalAtom *)atoms[i]; |
315 |
chuckv |
497 |
|
316 |
mmeineke |
542 |
// get and convert the torque to body frame |
317 |
mmeineke |
377 |
|
318 |
mmeineke |
542 |
Tb[0] = dAtom->getTx(); |
319 |
|
|
Tb[1] = dAtom->getTy(); |
320 |
|
|
Tb[2] = dAtom->getTz(); |
321 |
mmeineke |
377 |
|
322 |
mmeineke |
542 |
dAtom->lab2Body( Tb ); |
323 |
|
|
|
324 |
|
|
// get the angular momentum, and complete the angular momentum |
325 |
|
|
// half step |
326 |
|
|
|
327 |
|
|
ji[0] = dAtom->getJx() + ( dt2 * Tb[0] ) * eConvert; |
328 |
|
|
ji[1] = dAtom->getJy() + ( dt2 * Tb[1] ) * eConvert; |
329 |
|
|
ji[2] = dAtom->getJz() + ( dt2 * Tb[2] ) * eConvert; |
330 |
|
|
|
331 |
|
|
jx2 = ji[0] * ji[0]; |
332 |
|
|
jy2 = ji[1] * ji[1]; |
333 |
|
|
jz2 = ji[2] * ji[2]; |
334 |
|
|
|
335 |
|
|
dAtom->setJx( ji[0] ); |
336 |
|
|
dAtom->setJy( ji[1] ); |
337 |
|
|
dAtom->setJz( ji[2] ); |
338 |
|
|
} |
339 |
|
|
} |
340 |
mmeineke |
377 |
|
341 |
mmeineke |
542 |
} |
342 |
mmeineke |
486 |
|
343 |
gezelter |
475 |
|
344 |
mmeineke |
542 |
void Integrator::constrainA(){ |
345 |
|
|
|
346 |
gezelter |
475 |
|
347 |
mmeineke |
377 |
|
348 |
|
|
|
349 |
|
|
} |
350 |
|
|
|
351 |
mmeineke |
542 |
|
352 |
|
|
|
353 |
|
|
|
354 |
|
|
|
355 |
|
|
|
356 |
|
|
|
357 |
|
|
|
358 |
|
|
|
359 |
mmeineke |
377 |
void Symplectic::rotate( int axes1, int axes2, double angle, double ji[3], |
360 |
|
|
double A[3][3] ){ |
361 |
|
|
|
362 |
|
|
int i,j,k; |
363 |
|
|
double sinAngle; |
364 |
|
|
double cosAngle; |
365 |
|
|
double angleSqr; |
366 |
|
|
double angleSqrOver4; |
367 |
|
|
double top, bottom; |
368 |
|
|
double rot[3][3]; |
369 |
|
|
double tempA[3][3]; |
370 |
|
|
double tempJ[3]; |
371 |
|
|
|
372 |
|
|
// initialize the tempA |
373 |
|
|
|
374 |
|
|
for(i=0; i<3; i++){ |
375 |
|
|
for(j=0; j<3; j++){ |
376 |
mmeineke |
443 |
tempA[j][i] = A[i][j]; |
377 |
mmeineke |
377 |
} |
378 |
|
|
} |
379 |
|
|
|
380 |
|
|
// initialize the tempJ |
381 |
|
|
|
382 |
|
|
for( i=0; i<3; i++) tempJ[i] = ji[i]; |
383 |
|
|
|
384 |
|
|
// initalize rot as a unit matrix |
385 |
|
|
|
386 |
|
|
rot[0][0] = 1.0; |
387 |
|
|
rot[0][1] = 0.0; |
388 |
|
|
rot[0][2] = 0.0; |
389 |
|
|
|
390 |
|
|
rot[1][0] = 0.0; |
391 |
|
|
rot[1][1] = 1.0; |
392 |
|
|
rot[1][2] = 0.0; |
393 |
|
|
|
394 |
|
|
rot[2][0] = 0.0; |
395 |
|
|
rot[2][1] = 0.0; |
396 |
|
|
rot[2][2] = 1.0; |
397 |
|
|
|
398 |
|
|
// use a small angle aproximation for sin and cosine |
399 |
|
|
|
400 |
|
|
angleSqr = angle * angle; |
401 |
|
|
angleSqrOver4 = angleSqr / 4.0; |
402 |
|
|
top = 1.0 - angleSqrOver4; |
403 |
|
|
bottom = 1.0 + angleSqrOver4; |
404 |
|
|
|
405 |
|
|
cosAngle = top / bottom; |
406 |
|
|
sinAngle = angle / bottom; |
407 |
|
|
|
408 |
|
|
rot[axes1][axes1] = cosAngle; |
409 |
|
|
rot[axes2][axes2] = cosAngle; |
410 |
|
|
|
411 |
|
|
rot[axes1][axes2] = sinAngle; |
412 |
|
|
rot[axes2][axes1] = -sinAngle; |
413 |
|
|
|
414 |
|
|
// rotate the momentum acoording to: ji[] = rot[][] * ji[] |
415 |
|
|
|
416 |
|
|
for(i=0; i<3; i++){ |
417 |
|
|
ji[i] = 0.0; |
418 |
|
|
for(k=0; k<3; k++){ |
419 |
|
|
ji[i] += rot[i][k] * tempJ[k]; |
420 |
|
|
} |
421 |
|
|
} |
422 |
|
|
|
423 |
|
|
// rotate the Rotation matrix acording to: |
424 |
|
|
// A[][] = A[][] * transpose(rot[][]) |
425 |
|
|
|
426 |
|
|
|
427 |
|
|
// NOte for as yet unknown reason, we are setting the performing the |
428 |
|
|
// calculation as: |
429 |
|
|
// transpose(A[][]) = transpose(A[][]) * transpose(rot[][]) |
430 |
|
|
|
431 |
|
|
for(i=0; i<3; i++){ |
432 |
|
|
for(j=0; j<3; j++){ |
433 |
|
|
A[j][i] = 0.0; |
434 |
|
|
for(k=0; k<3; k++){ |
435 |
mmeineke |
443 |
A[j][i] += tempA[i][k] * rot[j][k]; |
436 |
mmeineke |
377 |
} |
437 |
|
|
} |
438 |
|
|
} |
439 |
|
|
} |