1 |
#include <algorithm> |
2 |
#include <stdlib.h> |
3 |
#include <iostream> |
4 |
#include <math.h> |
5 |
#include <string> |
6 |
#include <sprng.h> |
7 |
#include "SimSetup.hpp" |
8 |
#include "ReadWrite.hpp" |
9 |
#include "parse_me.h" |
10 |
#include "Integrator.hpp" |
11 |
#include "simError.h" |
12 |
#include "RigidBody.hpp" |
13 |
#include "OOPSEMinimizer.hpp" |
14 |
#include "ConstraintElement.hpp" |
15 |
#include "ConstraintPair.hpp" |
16 |
#include "ConstraintManager.hpp" |
17 |
|
18 |
#ifdef IS_MPI |
19 |
#include "mpiBASS.h" |
20 |
#include "mpiSimulation.hpp" |
21 |
#endif |
22 |
|
23 |
// some defines for ensemble and Forcefield cases |
24 |
|
25 |
#define NVE_ENS 0 |
26 |
#define NVT_ENS 1 |
27 |
#define NPTi_ENS 2 |
28 |
#define NPTf_ENS 3 |
29 |
#define NPTxyz_ENS 4 |
30 |
|
31 |
|
32 |
#define FF_DUFF 0 |
33 |
#define FF_LJ 1 |
34 |
#define FF_EAM 2 |
35 |
#define FF_H2O 3 |
36 |
|
37 |
using namespace std; |
38 |
|
39 |
/** |
40 |
* Check whether dividend is divisble by divisor or not |
41 |
*/ |
42 |
bool isDivisible(double dividend, double divisor){ |
43 |
double tolerance = 0.000001; |
44 |
double quotient; |
45 |
double diff; |
46 |
int intQuotient; |
47 |
|
48 |
quotient = dividend / divisor; |
49 |
|
50 |
if (quotient < 0) |
51 |
quotient = -quotient; |
52 |
|
53 |
intQuotient = int (quotient + tolerance); |
54 |
|
55 |
diff = fabs(fabs(dividend) - intQuotient * fabs(divisor)); |
56 |
|
57 |
if (diff <= tolerance) |
58 |
return true; |
59 |
else |
60 |
return false; |
61 |
} |
62 |
|
63 |
SimSetup::SimSetup(){ |
64 |
|
65 |
initSuspend = false; |
66 |
isInfoArray = 0; |
67 |
nInfo = 1; |
68 |
|
69 |
stamps = new MakeStamps(); |
70 |
globals = new Globals(); |
71 |
|
72 |
|
73 |
#ifdef IS_MPI |
74 |
strcpy(checkPointMsg, "SimSetup creation successful"); |
75 |
MPIcheckPoint(); |
76 |
#endif // IS_MPI |
77 |
} |
78 |
|
79 |
SimSetup::~SimSetup(){ |
80 |
delete stamps; |
81 |
delete globals; |
82 |
} |
83 |
|
84 |
void SimSetup::setSimInfo(SimInfo* the_info, int theNinfo){ |
85 |
info = the_info; |
86 |
nInfo = theNinfo; |
87 |
isInfoArray = 1; |
88 |
initSuspend = true; |
89 |
} |
90 |
|
91 |
|
92 |
void SimSetup::parseFile(char* fileName){ |
93 |
#ifdef IS_MPI |
94 |
if (worldRank == 0){ |
95 |
#endif // is_mpi |
96 |
|
97 |
inFileName = fileName; |
98 |
set_interface_stamps(stamps, globals); |
99 |
|
100 |
#ifdef IS_MPI |
101 |
mpiEventInit(); |
102 |
#endif |
103 |
|
104 |
yacc_BASS(fileName); |
105 |
|
106 |
#ifdef IS_MPI |
107 |
throwMPIEvent(NULL); |
108 |
} |
109 |
else{ |
110 |
receiveParse(); |
111 |
} |
112 |
#endif |
113 |
|
114 |
} |
115 |
|
116 |
#ifdef IS_MPI |
117 |
void SimSetup::receiveParse(void){ |
118 |
set_interface_stamps(stamps, globals); |
119 |
mpiEventInit(); |
120 |
MPIcheckPoint(); |
121 |
mpiEventLoop(); |
122 |
} |
123 |
|
124 |
#endif // is_mpi |
125 |
|
126 |
void SimSetup::createSim(void){ |
127 |
|
128 |
// gather all of the information from the Bass file |
129 |
|
130 |
gatherInfo(); |
131 |
|
132 |
// creation of complex system objects |
133 |
|
134 |
sysObjectsCreation(); |
135 |
|
136 |
// check on the post processing info |
137 |
|
138 |
finalInfoCheck(); |
139 |
|
140 |
// initialize the system coordinates |
141 |
|
142 |
if ( !initSuspend ){ |
143 |
initSystemCoords(); |
144 |
|
145 |
if( !(globals->getUseInitTime()) ) |
146 |
info[0].currentTime = 0.0; |
147 |
} |
148 |
|
149 |
// make the output filenames |
150 |
|
151 |
makeOutNames(); |
152 |
|
153 |
#ifdef IS_MPI |
154 |
mpiSim->mpiRefresh(); |
155 |
#endif |
156 |
|
157 |
// initialize the Fortran |
158 |
|
159 |
initFortran(); |
160 |
|
161 |
//creat constraint manager |
162 |
for(int i = 0; i < nInfo; i++) |
163 |
info[i].consMan = new ConstraintManager(&info[i]); |
164 |
|
165 |
if (globals->haveMinimizer()) |
166 |
// make minimizer |
167 |
makeMinimizer(); |
168 |
else |
169 |
// make the integrator |
170 |
makeIntegrator(); |
171 |
|
172 |
} |
173 |
|
174 |
|
175 |
void SimSetup::makeMolecules(void){ |
176 |
int i, j, k; |
177 |
int exI, exJ, exK, exL, slI, slJ; |
178 |
int tempI, tempJ, tempK, tempL; |
179 |
int molI, globalID; |
180 |
int stampID, atomOffset, rbOffset, groupOffset; |
181 |
molInit molInfo; |
182 |
DirectionalAtom* dAtom; |
183 |
RigidBody* myRB; |
184 |
StuntDouble* mySD; |
185 |
LinkedAssign* extras; |
186 |
LinkedAssign* current_extra; |
187 |
AtomStamp* currentAtom; |
188 |
BondStamp* currentBond; |
189 |
BendStamp* currentBend; |
190 |
TorsionStamp* currentTorsion; |
191 |
RigidBodyStamp* currentRigidBody; |
192 |
CutoffGroupStamp* currentCutoffGroup; |
193 |
CutoffGroup* myCutoffGroup; |
194 |
int nCutoffGroups;// number of cutoff group of a molecule defined in mdl file |
195 |
set<int> cutoffAtomSet; //atoms belong to cutoffgroup defined at mdl file |
196 |
|
197 |
bond_pair* theBonds; |
198 |
bend_set* theBends; |
199 |
torsion_set* theTorsions; |
200 |
|
201 |
set<int> skipList; |
202 |
|
203 |
double phi, theta, psi; |
204 |
char* molName; |
205 |
char rbName[100]; |
206 |
|
207 |
ConstraintPair* consPair; //constraint pair |
208 |
ConstraintElement* consElement1; //first element of constraint pair |
209 |
ConstraintElement* consElement2; //second element of constraint pair |
210 |
int whichRigidBody; |
211 |
int consAtomIndex; //index of constraint atom in rigid body's atom array |
212 |
vector<pair<int, int> > jointAtoms; |
213 |
double bondLength2; |
214 |
//init the forceField paramters |
215 |
|
216 |
the_ff->readParams(); |
217 |
|
218 |
// init the atoms |
219 |
|
220 |
int nMembers, nNew, rb1, rb2; |
221 |
|
222 |
for (k = 0; k < nInfo; k++){ |
223 |
the_ff->setSimInfo(&(info[k])); |
224 |
|
225 |
#ifdef IS_MPI |
226 |
info[k].globalGroupMembership = new int[mpiSim->getNAtomsGlobal()]; |
227 |
for (i = 0; i < mpiSim->getNAtomsGlobal(); i++) |
228 |
info[k].globalGroupMembership[i] = 0; |
229 |
#else |
230 |
info[k].globalGroupMembership = new int[info[k].n_atoms]; |
231 |
for (i = 0; i < info[k].n_atoms; i++) |
232 |
info[k].globalGroupMembership[i] = 0; |
233 |
#endif |
234 |
|
235 |
atomOffset = 0; |
236 |
groupOffset = 0; |
237 |
|
238 |
for (i = 0; i < info[k].n_mol; i++){ |
239 |
stampID = info[k].molecules[i].getStampID(); |
240 |
molName = comp_stamps[stampID]->getID(); |
241 |
|
242 |
molInfo.nAtoms = comp_stamps[stampID]->getNAtoms(); |
243 |
molInfo.nBonds = comp_stamps[stampID]->getNBonds(); |
244 |
molInfo.nBends = comp_stamps[stampID]->getNBends(); |
245 |
molInfo.nTorsions = comp_stamps[stampID]->getNTorsions(); |
246 |
molInfo.nRigidBodies = comp_stamps[stampID]->getNRigidBodies(); |
247 |
|
248 |
nCutoffGroups = comp_stamps[stampID]->getNCutoffGroups(); |
249 |
|
250 |
molInfo.myAtoms = &(info[k].atoms[atomOffset]); |
251 |
|
252 |
if (molInfo.nBonds > 0) |
253 |
molInfo.myBonds = new Bond*[molInfo.nBonds]; |
254 |
else |
255 |
molInfo.myBonds = NULL; |
256 |
|
257 |
if (molInfo.nBends > 0) |
258 |
molInfo.myBends = new Bend*[molInfo.nBends]; |
259 |
else |
260 |
molInfo.myBends = NULL; |
261 |
|
262 |
if (molInfo.nTorsions > 0) |
263 |
molInfo.myTorsions = new Torsion *[molInfo.nTorsions]; |
264 |
else |
265 |
molInfo.myTorsions = NULL; |
266 |
|
267 |
theBonds = new bond_pair[molInfo.nBonds]; |
268 |
theBends = new bend_set[molInfo.nBends]; |
269 |
theTorsions = new torsion_set[molInfo.nTorsions]; |
270 |
|
271 |
// make the Atoms |
272 |
|
273 |
for (j = 0; j < molInfo.nAtoms; j++){ |
274 |
currentAtom = comp_stamps[stampID]->getAtom(j); |
275 |
|
276 |
if (currentAtom->haveOrientation()){ |
277 |
dAtom = new DirectionalAtom((j + atomOffset), |
278 |
info[k].getConfiguration()); |
279 |
info[k].n_oriented++; |
280 |
molInfo.myAtoms[j] = dAtom; |
281 |
|
282 |
// Directional Atoms have standard unit vectors which are oriented |
283 |
// in space using the three Euler angles. We assume the standard |
284 |
// unit vector was originally along the z axis below. |
285 |
|
286 |
phi = currentAtom->getEulerPhi() * M_PI / 180.0; |
287 |
theta = currentAtom->getEulerTheta() * M_PI / 180.0; |
288 |
psi = currentAtom->getEulerPsi()* M_PI / 180.0; |
289 |
|
290 |
dAtom->setUnitFrameFromEuler(phi, theta, psi); |
291 |
|
292 |
} |
293 |
else{ |
294 |
|
295 |
molInfo.myAtoms[j] = new Atom((j + atomOffset), info[k].getConfiguration()); |
296 |
|
297 |
} |
298 |
|
299 |
molInfo.myAtoms[j]->setType(currentAtom->getType()); |
300 |
#ifdef IS_MPI |
301 |
molInfo.myAtoms[j]->setGlobalIndex(globalAtomIndex[j + atomOffset]); |
302 |
#endif // is_mpi |
303 |
} |
304 |
|
305 |
// make the bonds |
306 |
for (j = 0; j < molInfo.nBonds; j++){ |
307 |
currentBond = comp_stamps[stampID]->getBond(j); |
308 |
theBonds[j].a = currentBond->getA() + atomOffset; |
309 |
theBonds[j].b = currentBond->getB() + atomOffset; |
310 |
|
311 |
tempI = theBonds[j].a; |
312 |
tempJ = theBonds[j].b; |
313 |
|
314 |
#ifdef IS_MPI |
315 |
exI = info[k].atoms[tempI]->getGlobalIndex() + 1; |
316 |
exJ = info[k].atoms[tempJ]->getGlobalIndex() + 1; |
317 |
#else |
318 |
exI = tempI + 1; |
319 |
exJ = tempJ + 1; |
320 |
#endif |
321 |
|
322 |
info[k].excludes->addPair(exI, exJ); |
323 |
} |
324 |
|
325 |
//make the bends |
326 |
for (j = 0; j < molInfo.nBends; j++){ |
327 |
currentBend = comp_stamps[stampID]->getBend(j); |
328 |
theBends[j].a = currentBend->getA() + atomOffset; |
329 |
theBends[j].b = currentBend->getB() + atomOffset; |
330 |
theBends[j].c = currentBend->getC() + atomOffset; |
331 |
|
332 |
if (currentBend->haveExtras()){ |
333 |
extras = currentBend->getExtras(); |
334 |
current_extra = extras; |
335 |
|
336 |
while (current_extra != NULL){ |
337 |
if (!strcmp(current_extra->getlhs(), "ghostVectorSource")){ |
338 |
switch (current_extra->getType()){ |
339 |
case 0: |
340 |
theBends[j].ghost = current_extra->getInt() + atomOffset; |
341 |
theBends[j].isGhost = 1; |
342 |
break; |
343 |
|
344 |
case 1: |
345 |
theBends[j].ghost = (int) current_extra->getDouble() + |
346 |
atomOffset; |
347 |
theBends[j].isGhost = 1; |
348 |
break; |
349 |
|
350 |
default: |
351 |
sprintf(painCave.errMsg, |
352 |
"SimSetup Error: ghostVectorSource was neither a " |
353 |
"double nor an int.\n" |
354 |
"-->Bend[%d] in %s\n", |
355 |
j, comp_stamps[stampID]->getID()); |
356 |
painCave.isFatal = 1; |
357 |
simError(); |
358 |
} |
359 |
} |
360 |
else{ |
361 |
sprintf(painCave.errMsg, |
362 |
"SimSetup Error: unhandled bend assignment:\n" |
363 |
" -->%s in Bend[%d] in %s\n", |
364 |
current_extra->getlhs(), j, comp_stamps[stampID]->getID()); |
365 |
painCave.isFatal = 1; |
366 |
simError(); |
367 |
} |
368 |
|
369 |
current_extra = current_extra->getNext(); |
370 |
} |
371 |
} |
372 |
|
373 |
if (theBends[j].isGhost) { |
374 |
|
375 |
tempI = theBends[j].a; |
376 |
tempJ = theBends[j].b; |
377 |
|
378 |
#ifdef IS_MPI |
379 |
exI = info[k].atoms[tempI]->getGlobalIndex() + 1; |
380 |
exJ = info[k].atoms[tempJ]->getGlobalIndex() + 1; |
381 |
#else |
382 |
exI = tempI + 1; |
383 |
exJ = tempJ + 1; |
384 |
#endif |
385 |
info[k].excludes->addPair(exI, exJ); |
386 |
|
387 |
} else { |
388 |
|
389 |
tempI = theBends[j].a; |
390 |
tempJ = theBends[j].b; |
391 |
tempK = theBends[j].c; |
392 |
|
393 |
#ifdef IS_MPI |
394 |
exI = info[k].atoms[tempI]->getGlobalIndex() + 1; |
395 |
exJ = info[k].atoms[tempJ]->getGlobalIndex() + 1; |
396 |
exK = info[k].atoms[tempK]->getGlobalIndex() + 1; |
397 |
#else |
398 |
exI = tempI + 1; |
399 |
exJ = tempJ + 1; |
400 |
exK = tempK + 1; |
401 |
#endif |
402 |
|
403 |
info[k].excludes->addPair(exI, exK); |
404 |
info[k].excludes->addPair(exI, exJ); |
405 |
info[k].excludes->addPair(exJ, exK); |
406 |
} |
407 |
} |
408 |
|
409 |
for (j = 0; j < molInfo.nTorsions; j++){ |
410 |
currentTorsion = comp_stamps[stampID]->getTorsion(j); |
411 |
theTorsions[j].a = currentTorsion->getA() + atomOffset; |
412 |
theTorsions[j].b = currentTorsion->getB() + atomOffset; |
413 |
theTorsions[j].c = currentTorsion->getC() + atomOffset; |
414 |
theTorsions[j].d = currentTorsion->getD() + atomOffset; |
415 |
|
416 |
tempI = theTorsions[j].a; |
417 |
tempJ = theTorsions[j].b; |
418 |
tempK = theTorsions[j].c; |
419 |
tempL = theTorsions[j].d; |
420 |
|
421 |
#ifdef IS_MPI |
422 |
exI = info[k].atoms[tempI]->getGlobalIndex() + 1; |
423 |
exJ = info[k].atoms[tempJ]->getGlobalIndex() + 1; |
424 |
exK = info[k].atoms[tempK]->getGlobalIndex() + 1; |
425 |
exL = info[k].atoms[tempL]->getGlobalIndex() + 1; |
426 |
#else |
427 |
exI = tempI + 1; |
428 |
exJ = tempJ + 1; |
429 |
exK = tempK + 1; |
430 |
exL = tempL + 1; |
431 |
#endif |
432 |
|
433 |
info[k].excludes->addPair(exI, exJ); |
434 |
info[k].excludes->addPair(exI, exK); |
435 |
info[k].excludes->addPair(exI, exL); |
436 |
info[k].excludes->addPair(exJ, exK); |
437 |
info[k].excludes->addPair(exJ, exL); |
438 |
info[k].excludes->addPair(exK, exL); |
439 |
} |
440 |
|
441 |
|
442 |
molInfo.myRigidBodies.clear(); |
443 |
|
444 |
for (j = 0; j < molInfo.nRigidBodies; j++){ |
445 |
|
446 |
currentRigidBody = comp_stamps[stampID]->getRigidBody(j); |
447 |
nMembers = currentRigidBody->getNMembers(); |
448 |
|
449 |
// Create the Rigid Body: |
450 |
|
451 |
myRB = new RigidBody(); |
452 |
|
453 |
sprintf(rbName,"%s_RB_%d", molName, j); |
454 |
myRB->setType(rbName); |
455 |
|
456 |
for (rb1 = 0; rb1 < nMembers; rb1++) { |
457 |
|
458 |
// molI is atom numbering inside this molecule |
459 |
molI = currentRigidBody->getMember(rb1); |
460 |
|
461 |
// tempI is atom numbering on local processor |
462 |
tempI = molI + atomOffset; |
463 |
|
464 |
// currentAtom is the AtomStamp (which we need for |
465 |
// rigid body reference positions) |
466 |
currentAtom = comp_stamps[stampID]->getAtom(molI); |
467 |
|
468 |
// When we add to the rigid body, add the atom itself and |
469 |
// the stamp info: |
470 |
|
471 |
myRB->addAtom(info[k].atoms[tempI], currentAtom); |
472 |
|
473 |
// Add this atom to the Skip List for the integrators |
474 |
#ifdef IS_MPI |
475 |
slI = info[k].atoms[tempI]->getGlobalIndex(); |
476 |
#else |
477 |
slI = tempI; |
478 |
#endif |
479 |
skipList.insert(slI); |
480 |
|
481 |
} |
482 |
|
483 |
for(rb1 = 0; rb1 < nMembers - 1; rb1++) { |
484 |
for(rb2 = rb1+1; rb2 < nMembers; rb2++) { |
485 |
|
486 |
tempI = currentRigidBody->getMember(rb1); |
487 |
tempJ = currentRigidBody->getMember(rb2); |
488 |
|
489 |
// Some explanation is required here. |
490 |
// Fortran indexing starts at 1, while c indexing starts at 0 |
491 |
// Also, in parallel computations, the GlobalIndex is |
492 |
// used for the exclude list: |
493 |
|
494 |
#ifdef IS_MPI |
495 |
exI = molInfo.myAtoms[tempI]->getGlobalIndex() + 1; |
496 |
exJ = molInfo.myAtoms[tempJ]->getGlobalIndex() + 1; |
497 |
#else |
498 |
exI = molInfo.myAtoms[tempI]->getIndex() + 1; |
499 |
exJ = molInfo.myAtoms[tempJ]->getIndex() + 1; |
500 |
#endif |
501 |
|
502 |
info[k].excludes->addPair(exI, exJ); |
503 |
|
504 |
} |
505 |
} |
506 |
|
507 |
molInfo.myRigidBodies.push_back(myRB); |
508 |
info[k].rigidBodies.push_back(myRB); |
509 |
} |
510 |
|
511 |
|
512 |
//create cutoff group for molecule |
513 |
|
514 |
cutoffAtomSet.clear(); |
515 |
molInfo.myCutoffGroups.clear(); |
516 |
|
517 |
for (j = 0; j < nCutoffGroups; j++){ |
518 |
|
519 |
currentCutoffGroup = comp_stamps[stampID]->getCutoffGroup(j); |
520 |
nMembers = currentCutoffGroup->getNMembers(); |
521 |
|
522 |
myCutoffGroup = new CutoffGroup(); |
523 |
|
524 |
#ifdef IS_MPI |
525 |
myCutoffGroup->setGlobalIndex(globalGroupIndex[groupOffset]); |
526 |
#else |
527 |
myCutoffGroup->setGlobalIndex(groupOffset); |
528 |
#endif |
529 |
|
530 |
for (int cg = 0; cg < nMembers; cg++) { |
531 |
|
532 |
// molI is atom numbering inside this molecule |
533 |
molI = currentCutoffGroup->getMember(cg); |
534 |
|
535 |
// tempI is atom numbering on local processor |
536 |
tempI = molI + atomOffset; |
537 |
|
538 |
#ifdef IS_MPI |
539 |
globalID = info[k].atoms[tempI]->getGlobalIndex(); |
540 |
info[k].globalGroupMembership[globalID] = globalGroupIndex[groupOffset]; |
541 |
#else |
542 |
globalID = info[k].atoms[tempI]->getIndex(); |
543 |
info[k].globalGroupMembership[globalID] = groupOffset; |
544 |
#endif |
545 |
myCutoffGroup->addAtom(info[k].atoms[tempI]); |
546 |
cutoffAtomSet.insert(tempI); |
547 |
} |
548 |
|
549 |
molInfo.myCutoffGroups.push_back(myCutoffGroup); |
550 |
groupOffset++; |
551 |
|
552 |
}//end for (j = 0; j < molInfo.nCutoffGroups; j++) |
553 |
|
554 |
|
555 |
// create a cutoff group for every atom in current molecule which |
556 |
// does not belong to cutoffgroup defined at mdl file |
557 |
|
558 |
for(j = 0; j < molInfo.nAtoms; j++){ |
559 |
|
560 |
if(cutoffAtomSet.find(molInfo.myAtoms[j]->getIndex()) == cutoffAtomSet.end()){ |
561 |
myCutoffGroup = new CutoffGroup(); |
562 |
myCutoffGroup->addAtom(molInfo.myAtoms[j]); |
563 |
|
564 |
#ifdef IS_MPI |
565 |
myCutoffGroup->setGlobalIndex(globalGroupIndex[groupOffset]); |
566 |
globalID = info[k].atoms[atomOffset + j]->getGlobalIndex(); |
567 |
info[k].globalGroupMembership[globalID] = globalGroupIndex[groupOffset]; |
568 |
#else |
569 |
myCutoffGroup->setGlobalIndex(groupOffset); |
570 |
globalID = info[k].atoms[atomOffset + j]->getIndex(); |
571 |
info[k].globalGroupMembership[globalID] = groupOffset; |
572 |
#endif |
573 |
molInfo.myCutoffGroups.push_back(myCutoffGroup); |
574 |
groupOffset++; |
575 |
} |
576 |
} |
577 |
|
578 |
// After this is all set up, scan through the atoms to |
579 |
// see if they can be added to the integrableObjects: |
580 |
|
581 |
molInfo.myIntegrableObjects.clear(); |
582 |
|
583 |
|
584 |
for (j = 0; j < molInfo.nAtoms; j++){ |
585 |
|
586 |
#ifdef IS_MPI |
587 |
slJ = molInfo.myAtoms[j]->getGlobalIndex(); |
588 |
#else |
589 |
slJ = j+atomOffset; |
590 |
#endif |
591 |
|
592 |
// if they aren't on the skip list, then they can be integrated |
593 |
|
594 |
if (skipList.find(slJ) == skipList.end()) { |
595 |
mySD = (StuntDouble *) molInfo.myAtoms[j]; |
596 |
info[k].integrableObjects.push_back(mySD); |
597 |
molInfo.myIntegrableObjects.push_back(mySD); |
598 |
} |
599 |
} |
600 |
|
601 |
// all rigid bodies are integrated: |
602 |
|
603 |
for (j = 0; j < molInfo.nRigidBodies; j++) { |
604 |
mySD = (StuntDouble *) molInfo.myRigidBodies[j]; |
605 |
info[k].integrableObjects.push_back(mySD); |
606 |
molInfo.myIntegrableObjects.push_back(mySD); |
607 |
} |
608 |
|
609 |
// send the arrays off to the forceField for init. |
610 |
|
611 |
the_ff->initializeAtoms(molInfo.nAtoms, molInfo.myAtoms); |
612 |
the_ff->initializeBonds(molInfo.nBonds, molInfo.myBonds, theBonds); |
613 |
the_ff->initializeBends(molInfo.nBends, molInfo.myBends, theBends); |
614 |
the_ff->initializeTorsions(molInfo.nTorsions, molInfo.myTorsions, |
615 |
theTorsions); |
616 |
|
617 |
|
618 |
//creat ConstraintPair. |
619 |
molInfo.myConstraintPairs.clear(); |
620 |
|
621 |
for (j = 0; j < molInfo.nBonds; j++){ |
622 |
|
623 |
//if bond is constrained bond, add it into constraint pair |
624 |
if(molInfo.myBonds[j]->is_constrained()){ |
625 |
|
626 |
//if both atoms are in the same rigid body, just skip it |
627 |
currentBond = comp_stamps[stampID]->getBond(j); |
628 |
|
629 |
if(!comp_stamps[stampID]->isBondInSameRigidBody(currentBond)){ |
630 |
|
631 |
tempI = currentBond->getA() + atomOffset; |
632 |
if( comp_stamps[stampID]->isAtomInRigidBody(currentBond->getA(), whichRigidBody, consAtomIndex)) |
633 |
consElement1 = new ConstraintRigidBody(molInfo.myRigidBodies[whichRigidBody], consAtomIndex); |
634 |
else |
635 |
consElement1 = new ConstraintAtom(info[k].atoms[tempI]); |
636 |
|
637 |
tempJ = currentBond->getB() + atomOffset; |
638 |
if(comp_stamps[stampID]->isAtomInRigidBody(currentBond->getB(), whichRigidBody, consAtomIndex)) |
639 |
consElement2 = new ConstraintRigidBody(molInfo.myRigidBodies[whichRigidBody], consAtomIndex); |
640 |
else |
641 |
consElement2 = new ConstraintAtom(info[k].atoms[tempJ]); |
642 |
|
643 |
bondLength2 = molInfo.myBonds[j]->get_constraint()->get_dsqr(); |
644 |
consPair = new DistanceConstraintPair(consElement1, consElement2, bondLength2); |
645 |
|
646 |
molInfo.myConstraintPairs.push_back(consPair); |
647 |
} |
648 |
}//end if(molInfo.myBonds[j]->is_constrained()) |
649 |
} |
650 |
|
651 |
//loop over rigid bodies, if two rigid bodies share same joint, creat a JointConstraintPair |
652 |
for (int rb1 = 0; rb1 < molInfo.nRigidBodies -1 ; rb1++){ |
653 |
for (int rb2 = rb1 + 1; rb2 < molInfo.nRigidBodies ; rb2++){ |
654 |
|
655 |
jointAtoms = comp_stamps[stampID]->getJointAtoms(rb1, rb2); |
656 |
|
657 |
for(size_t m = 0; m < jointAtoms.size(); m++){ |
658 |
consElement1 = new ConstraintRigidBody(molInfo.myRigidBodies[rb1], jointAtoms[m].first); |
659 |
consElement2 = new ConstraintRigidBody(molInfo.myRigidBodies[rb2], jointAtoms[m].second); |
660 |
|
661 |
consPair = new JointConstraintPair(consElement1, consElement2); |
662 |
molInfo.myConstraintPairs.push_back(consPair); |
663 |
} |
664 |
|
665 |
} |
666 |
} |
667 |
|
668 |
|
669 |
info[k].molecules[i].initialize(molInfo); |
670 |
|
671 |
|
672 |
atomOffset += molInfo.nAtoms; |
673 |
delete[] theBonds; |
674 |
delete[] theBends; |
675 |
delete[] theTorsions; |
676 |
} |
677 |
|
678 |
|
679 |
|
680 |
#ifdef IS_MPI |
681 |
// Since the globalGroupMembership has been zero filled and we've only |
682 |
// poked values into the atoms we know, we can do an Allreduce |
683 |
// to get the full globalGroupMembership array (We think). |
684 |
// This would be prettier if we could use MPI_IN_PLACE like the MPI-2 |
685 |
// docs said we could. |
686 |
|
687 |
int* ggMjunk = new int[mpiSim->getNAtomsGlobal()]; |
688 |
|
689 |
MPI_Allreduce(info[k].globalGroupMembership, |
690 |
ggMjunk, |
691 |
mpiSim->getNAtomsGlobal(), |
692 |
MPI_INT, MPI_SUM, MPI_COMM_WORLD); |
693 |
|
694 |
for (i = 0; i < mpiSim->getNAtomsGlobal(); i++) |
695 |
info[k].globalGroupMembership[i] = ggMjunk[i]; |
696 |
|
697 |
delete[] ggMjunk; |
698 |
|
699 |
#endif |
700 |
|
701 |
|
702 |
|
703 |
} |
704 |
|
705 |
#ifdef IS_MPI |
706 |
sprintf(checkPointMsg, "all molecules initialized succesfully"); |
707 |
MPIcheckPoint(); |
708 |
#endif // is_mpi |
709 |
|
710 |
} |
711 |
|
712 |
void SimSetup::initFromBass(void){ |
713 |
int i, j, k; |
714 |
int n_cells; |
715 |
double cellx, celly, cellz; |
716 |
double temp1, temp2, temp3; |
717 |
int n_per_extra; |
718 |
int n_extra; |
719 |
int have_extra, done; |
720 |
|
721 |
double vel[3]; |
722 |
vel[0] = 0.0; |
723 |
vel[1] = 0.0; |
724 |
vel[2] = 0.0; |
725 |
|
726 |
temp1 = (double) tot_nmol / 4.0; |
727 |
temp2 = pow(temp1, (1.0 / 3.0)); |
728 |
temp3 = ceil(temp2); |
729 |
|
730 |
have_extra = 0; |
731 |
if (temp2 < temp3){ |
732 |
// we have a non-complete lattice |
733 |
have_extra = 1; |
734 |
|
735 |
n_cells = (int) temp3 - 1; |
736 |
cellx = info[0].boxL[0] / temp3; |
737 |
celly = info[0].boxL[1] / temp3; |
738 |
cellz = info[0].boxL[2] / temp3; |
739 |
n_extra = tot_nmol - (4 * n_cells * n_cells * n_cells); |
740 |
temp1 = ((double) n_extra) / (pow(temp3, 3.0) - pow(n_cells, 3.0)); |
741 |
n_per_extra = (int) ceil(temp1); |
742 |
|
743 |
if (n_per_extra > 4){ |
744 |
sprintf(painCave.errMsg, |
745 |
"SimSetup error. There has been an error in constructing" |
746 |
" the non-complete lattice.\n"); |
747 |
painCave.isFatal = 1; |
748 |
simError(); |
749 |
} |
750 |
} |
751 |
else{ |
752 |
n_cells = (int) temp3; |
753 |
cellx = info[0].boxL[0] / temp3; |
754 |
celly = info[0].boxL[1] / temp3; |
755 |
cellz = info[0].boxL[2] / temp3; |
756 |
} |
757 |
|
758 |
current_mol = 0; |
759 |
current_comp_mol = 0; |
760 |
current_comp = 0; |
761 |
current_atom_ndx = 0; |
762 |
|
763 |
for (i = 0; i < n_cells ; i++){ |
764 |
for (j = 0; j < n_cells; j++){ |
765 |
for (k = 0; k < n_cells; k++){ |
766 |
makeElement(i * cellx, j * celly, k * cellz); |
767 |
|
768 |
makeElement(i * cellx + 0.5 * cellx, j * celly + 0.5 * celly, k * cellz); |
769 |
|
770 |
makeElement(i * cellx, j * celly + 0.5 * celly, k * cellz + 0.5 * cellz); |
771 |
|
772 |
makeElement(i * cellx + 0.5 * cellx, j * celly, k * cellz + 0.5 * cellz); |
773 |
} |
774 |
} |
775 |
} |
776 |
|
777 |
if (have_extra){ |
778 |
done = 0; |
779 |
|
780 |
int start_ndx; |
781 |
for (i = 0; i < (n_cells + 1) && !done; i++){ |
782 |
for (j = 0; j < (n_cells + 1) && !done; j++){ |
783 |
if (i < n_cells){ |
784 |
if (j < n_cells){ |
785 |
start_ndx = n_cells; |
786 |
} |
787 |
else |
788 |
start_ndx = 0; |
789 |
} |
790 |
else |
791 |
start_ndx = 0; |
792 |
|
793 |
for (k = start_ndx; k < (n_cells + 1) && !done; k++){ |
794 |
makeElement(i * cellx, j * celly, k * cellz); |
795 |
done = (current_mol >= tot_nmol); |
796 |
|
797 |
if (!done && n_per_extra > 1){ |
798 |
makeElement(i * cellx + 0.5 * cellx, j * celly + 0.5 * celly, |
799 |
k * cellz); |
800 |
done = (current_mol >= tot_nmol); |
801 |
} |
802 |
|
803 |
if (!done && n_per_extra > 2){ |
804 |
makeElement(i * cellx, j * celly + 0.5 * celly, |
805 |
k * cellz + 0.5 * cellz); |
806 |
done = (current_mol >= tot_nmol); |
807 |
} |
808 |
|
809 |
if (!done && n_per_extra > 3){ |
810 |
makeElement(i * cellx + 0.5 * cellx, j * celly, |
811 |
k * cellz + 0.5 * cellz); |
812 |
done = (current_mol >= tot_nmol); |
813 |
} |
814 |
} |
815 |
} |
816 |
} |
817 |
} |
818 |
|
819 |
for (i = 0; i < info[0].n_atoms; i++){ |
820 |
info[0].atoms[i]->setVel(vel); |
821 |
} |
822 |
} |
823 |
|
824 |
void SimSetup::makeElement(double x, double y, double z){ |
825 |
int k; |
826 |
AtomStamp* current_atom; |
827 |
DirectionalAtom* dAtom; |
828 |
double rotMat[3][3]; |
829 |
double pos[3]; |
830 |
|
831 |
for (k = 0; k < comp_stamps[current_comp]->getNAtoms(); k++){ |
832 |
current_atom = comp_stamps[current_comp]->getAtom(k); |
833 |
if (!current_atom->havePosition()){ |
834 |
sprintf(painCave.errMsg, |
835 |
"SimSetup:initFromBass error.\n" |
836 |
"\tComponent %s, atom %s does not have a position specified.\n" |
837 |
"\tThe initialization routine is unable to give a start" |
838 |
" position.\n", |
839 |
comp_stamps[current_comp]->getID(), current_atom->getType()); |
840 |
painCave.isFatal = 1; |
841 |
simError(); |
842 |
} |
843 |
|
844 |
pos[0] = x + current_atom->getPosX(); |
845 |
pos[1] = y + current_atom->getPosY(); |
846 |
pos[2] = z + current_atom->getPosZ(); |
847 |
|
848 |
info[0].atoms[current_atom_ndx]->setPos(pos); |
849 |
|
850 |
if (info[0].atoms[current_atom_ndx]->isDirectional()){ |
851 |
dAtom = (DirectionalAtom *) info[0].atoms[current_atom_ndx]; |
852 |
|
853 |
rotMat[0][0] = 1.0; |
854 |
rotMat[0][1] = 0.0; |
855 |
rotMat[0][2] = 0.0; |
856 |
|
857 |
rotMat[1][0] = 0.0; |
858 |
rotMat[1][1] = 1.0; |
859 |
rotMat[1][2] = 0.0; |
860 |
|
861 |
rotMat[2][0] = 0.0; |
862 |
rotMat[2][1] = 0.0; |
863 |
rotMat[2][2] = 1.0; |
864 |
|
865 |
dAtom->setA(rotMat); |
866 |
} |
867 |
|
868 |
current_atom_ndx++; |
869 |
} |
870 |
|
871 |
current_mol++; |
872 |
current_comp_mol++; |
873 |
|
874 |
if (current_comp_mol >= components_nmol[current_comp]){ |
875 |
current_comp_mol = 0; |
876 |
current_comp++; |
877 |
} |
878 |
} |
879 |
|
880 |
|
881 |
void SimSetup::gatherInfo(void){ |
882 |
int i; |
883 |
|
884 |
ensembleCase = -1; |
885 |
ffCase = -1; |
886 |
|
887 |
// set the easy ones first |
888 |
|
889 |
for (i = 0; i < nInfo; i++){ |
890 |
info[i].target_temp = globals->getTargetTemp(); |
891 |
info[i].dt = globals->getDt(); |
892 |
info[i].run_time = globals->getRunTime(); |
893 |
} |
894 |
n_components = globals->getNComponents(); |
895 |
|
896 |
|
897 |
// get the forceField |
898 |
|
899 |
strcpy(force_field, globals->getForceField()); |
900 |
|
901 |
if (!strcasecmp(force_field, "DUFF")){ |
902 |
ffCase = FF_DUFF; |
903 |
} |
904 |
else if (!strcasecmp(force_field, "LJ")){ |
905 |
ffCase = FF_LJ; |
906 |
} |
907 |
else if (!strcasecmp(force_field, "EAM")){ |
908 |
ffCase = FF_EAM; |
909 |
} |
910 |
else if (!strcasecmp(force_field, "WATER")){ |
911 |
ffCase = FF_H2O; |
912 |
} |
913 |
else{ |
914 |
sprintf(painCave.errMsg, "SimSetup Error. Unrecognized force field -> %s\n", |
915 |
force_field); |
916 |
painCave.isFatal = 1; |
917 |
simError(); |
918 |
} |
919 |
if (globals->haveForceFieldVariant()) { |
920 |
strcpy(forcefield_variant, globals->getForceFieldVariant()); |
921 |
has_forcefield_variant = 1; |
922 |
} |
923 |
|
924 |
// get the ensemble |
925 |
|
926 |
strcpy(ensemble, globals->getEnsemble()); |
927 |
|
928 |
if (!strcasecmp(ensemble, "NVE")){ |
929 |
ensembleCase = NVE_ENS; |
930 |
} |
931 |
else if (!strcasecmp(ensemble, "NVT")){ |
932 |
ensembleCase = NVT_ENS; |
933 |
} |
934 |
else if (!strcasecmp(ensemble, "NPTi") || !strcasecmp(ensemble, "NPT")){ |
935 |
ensembleCase = NPTi_ENS; |
936 |
} |
937 |
else if (!strcasecmp(ensemble, "NPTf")){ |
938 |
ensembleCase = NPTf_ENS; |
939 |
} |
940 |
else if (!strcasecmp(ensemble, "NPTxyz")){ |
941 |
ensembleCase = NPTxyz_ENS; |
942 |
} |
943 |
else{ |
944 |
sprintf(painCave.errMsg, |
945 |
"SimSetup Warning. Unrecognized Ensemble -> %s \n" |
946 |
"\treverting to NVE for this simulation.\n", |
947 |
ensemble); |
948 |
painCave.isFatal = 0; |
949 |
simError(); |
950 |
strcpy(ensemble, "NVE"); |
951 |
ensembleCase = NVE_ENS; |
952 |
} |
953 |
|
954 |
for (i = 0; i < nInfo; i++){ |
955 |
strcpy(info[i].ensemble, ensemble); |
956 |
|
957 |
// get the mixing rule |
958 |
|
959 |
strcpy(info[i].mixingRule, globals->getMixingRule()); |
960 |
info[i].usePBC = globals->getPBC(); |
961 |
} |
962 |
|
963 |
// get the components and calculate the tot_nMol and indvidual n_mol |
964 |
|
965 |
the_components = globals->getComponents(); |
966 |
components_nmol = new int[n_components]; |
967 |
|
968 |
|
969 |
if (!globals->haveNMol()){ |
970 |
// we don't have the total number of molecules, so we assume it is |
971 |
// given in each component |
972 |
|
973 |
tot_nmol = 0; |
974 |
for (i = 0; i < n_components; i++){ |
975 |
if (!the_components[i]->haveNMol()){ |
976 |
// we have a problem |
977 |
sprintf(painCave.errMsg, |
978 |
"SimSetup Error. No global NMol or component NMol given.\n" |
979 |
"\tCannot calculate the number of atoms.\n"); |
980 |
painCave.isFatal = 1; |
981 |
simError(); |
982 |
} |
983 |
|
984 |
tot_nmol += the_components[i]->getNMol(); |
985 |
components_nmol[i] = the_components[i]->getNMol(); |
986 |
} |
987 |
} |
988 |
else{ |
989 |
sprintf(painCave.errMsg, |
990 |
"SimSetup error.\n" |
991 |
"\tSorry, the ability to specify total" |
992 |
" nMols and then give molfractions in the components\n" |
993 |
"\tis not currently supported." |
994 |
" Please give nMol in the components.\n"); |
995 |
painCave.isFatal = 1; |
996 |
simError(); |
997 |
} |
998 |
|
999 |
//check whether sample time, status time, thermal time and reset time are divisble by dt |
1000 |
if (globals->haveSampleTime() && !isDivisible(globals->getSampleTime(), globals->getDt())){ |
1001 |
sprintf(painCave.errMsg, |
1002 |
"Sample time is not divisible by dt.\n" |
1003 |
"\tThis will result in samples that are not uniformly\n" |
1004 |
"\tdistributed in time. If this is a problem, change\n" |
1005 |
"\tyour sampleTime variable.\n"); |
1006 |
painCave.isFatal = 0; |
1007 |
simError(); |
1008 |
} |
1009 |
|
1010 |
if (globals->haveStatusTime() && !isDivisible(globals->getStatusTime(), globals->getDt())){ |
1011 |
sprintf(painCave.errMsg, |
1012 |
"Status time is not divisible by dt.\n" |
1013 |
"\tThis will result in status reports that are not uniformly\n" |
1014 |
"\tdistributed in time. If this is a problem, change \n" |
1015 |
"\tyour statusTime variable.\n"); |
1016 |
painCave.isFatal = 0; |
1017 |
simError(); |
1018 |
} |
1019 |
|
1020 |
if (globals->haveThermalTime() && !isDivisible(globals->getThermalTime(), globals->getDt())){ |
1021 |
sprintf(painCave.errMsg, |
1022 |
"Thermal time is not divisible by dt.\n" |
1023 |
"\tThis will result in thermalizations that are not uniformly\n" |
1024 |
"\tdistributed in time. If this is a problem, change \n" |
1025 |
"\tyour thermalTime variable.\n"); |
1026 |
painCave.isFatal = 0; |
1027 |
simError(); |
1028 |
} |
1029 |
|
1030 |
if (globals->haveResetTime() && !isDivisible(globals->getResetTime(), globals->getDt())){ |
1031 |
sprintf(painCave.errMsg, |
1032 |
"Reset time is not divisible by dt.\n" |
1033 |
"\tThis will result in integrator resets that are not uniformly\n" |
1034 |
"\tdistributed in time. If this is a problem, change\n" |
1035 |
"\tyour resetTime variable.\n"); |
1036 |
painCave.isFatal = 0; |
1037 |
simError(); |
1038 |
} |
1039 |
|
1040 |
// set the status, sample, and thermal kick times |
1041 |
|
1042 |
for (i = 0; i < nInfo; i++){ |
1043 |
if (globals->haveSampleTime()){ |
1044 |
info[i].sampleTime = globals->getSampleTime(); |
1045 |
info[i].statusTime = info[i].sampleTime; |
1046 |
} |
1047 |
else{ |
1048 |
info[i].sampleTime = globals->getRunTime(); |
1049 |
info[i].statusTime = info[i].sampleTime; |
1050 |
} |
1051 |
|
1052 |
if (globals->haveStatusTime()){ |
1053 |
info[i].statusTime = globals->getStatusTime(); |
1054 |
} |
1055 |
|
1056 |
if (globals->haveThermalTime()){ |
1057 |
info[i].thermalTime = globals->getThermalTime(); |
1058 |
} else { |
1059 |
info[i].thermalTime = globals->getRunTime(); |
1060 |
} |
1061 |
|
1062 |
info[i].resetIntegrator = 0; |
1063 |
if( globals->haveResetTime() ){ |
1064 |
info[i].resetTime = globals->getResetTime(); |
1065 |
info[i].resetIntegrator = 1; |
1066 |
} |
1067 |
|
1068 |
// check for the temperature set flag |
1069 |
|
1070 |
if (globals->haveTempSet()) |
1071 |
info[i].setTemp = globals->getTempSet(); |
1072 |
|
1073 |
// check for the extended State init |
1074 |
|
1075 |
info[i].useInitXSstate = globals->getUseInitXSstate(); |
1076 |
info[i].orthoTolerance = globals->getOrthoBoxTolerance(); |
1077 |
|
1078 |
// check for thermodynamic integration |
1079 |
if (globals->getUseSolidThermInt() && !globals->getUseLiquidThermInt()) { |
1080 |
if (globals->haveThermIntLambda() && globals->haveThermIntK()) { |
1081 |
info[i].useSolidThermInt = globals->getUseSolidThermInt(); |
1082 |
info[i].thermIntLambda = globals->getThermIntLambda(); |
1083 |
info[i].thermIntK = globals->getThermIntK(); |
1084 |
|
1085 |
Restraints *myRestraint = new Restraints(tot_nmol, info[i].thermIntLambda, info[i].thermIntK); |
1086 |
info[i].restraint = myRestraint; |
1087 |
} |
1088 |
else { |
1089 |
sprintf(painCave.errMsg, |
1090 |
"SimSetup Error:\n" |
1091 |
"\tKeyword useSolidThermInt was set to 'true' but\n" |
1092 |
"\tthermodynamicIntegrationLambda (and/or\n" |
1093 |
"\tthermodynamicIntegrationK) was not specified.\n" |
1094 |
"\tPlease provide a lambda value and k value in your .bass file.\n"); |
1095 |
painCave.isFatal = 1; |
1096 |
simError(); |
1097 |
} |
1098 |
} |
1099 |
else if(globals->getUseLiquidThermInt()) { |
1100 |
if (globals->getUseSolidThermInt()) { |
1101 |
sprintf( painCave.errMsg, |
1102 |
"SimSetup Warning: It appears that you have both solid and\n" |
1103 |
"\tliquid thermodynamic integration activated in your .bass\n" |
1104 |
"\tfile. To avoid confusion, specify only one technique in\n" |
1105 |
"\tyour .bass file. Liquid-state thermodynamic integration\n" |
1106 |
"\twill be assumed for the current simulation. If this is not\n" |
1107 |
"\twhat you desire, set useSolidThermInt to 'true' and\n" |
1108 |
"\tuseLiquidThermInt to 'false' in your .bass file.\n"); |
1109 |
painCave.isFatal = 0; |
1110 |
simError(); |
1111 |
} |
1112 |
if (globals->haveThermIntLambda() && globals->haveThermIntK()) { |
1113 |
info[i].useLiquidThermInt = globals->getUseLiquidThermInt(); |
1114 |
info[i].thermIntLambda = globals->getThermIntLambda(); |
1115 |
info[i].thermIntK = globals->getThermIntK(); |
1116 |
} |
1117 |
else { |
1118 |
sprintf(painCave.errMsg, |
1119 |
"SimSetup Error:\n" |
1120 |
"\tKeyword useLiquidThermInt was set to 'true' but\n" |
1121 |
"\tthermodynamicIntegrationLambda (and/or\n" |
1122 |
"\tthermodynamicIntegrationK) was not specified.\n" |
1123 |
"\tPlease provide a lambda value and k value in your .bass file.\n"); |
1124 |
painCave.isFatal = 1; |
1125 |
simError(); |
1126 |
} |
1127 |
} |
1128 |
else if(globals->haveThermIntLambda() || globals->haveThermIntK()){ |
1129 |
sprintf(painCave.errMsg, |
1130 |
"SimSetup Warning: If you want to use Thermodynamic\n" |
1131 |
"\tIntegration, set useSolidThermInt or useLiquidThermInt to\n" |
1132 |
"\t'true' in your .bass file. These keywords are set to\n" |
1133 |
"\t'false' by default, so your lambda and/or k values are\n" |
1134 |
"\tbeing ignored.\n"); |
1135 |
painCave.isFatal = 0; |
1136 |
simError(); |
1137 |
} |
1138 |
} |
1139 |
|
1140 |
//setup seed for random number generator |
1141 |
int seedValue; |
1142 |
|
1143 |
if (globals->haveSeed()){ |
1144 |
seedValue = globals->getSeed(); |
1145 |
|
1146 |
if(seedValue / 1E9 == 0){ |
1147 |
sprintf(painCave.errMsg, |
1148 |
"Seed for sprng library should contain at least 9 digits\n" |
1149 |
"OOPSE will generate a seed for user\n"); |
1150 |
painCave.isFatal = 0; |
1151 |
simError(); |
1152 |
|
1153 |
//using seed generated by system instead of invalid seed set by user |
1154 |
#ifndef IS_MPI |
1155 |
seedValue = make_sprng_seed(); |
1156 |
#else |
1157 |
if (worldRank == 0){ |
1158 |
seedValue = make_sprng_seed(); |
1159 |
} |
1160 |
MPI_Bcast(&seedValue, 1, MPI_INT, 0, MPI_COMM_WORLD); |
1161 |
#endif |
1162 |
} |
1163 |
}//end of if branch of globals->haveSeed() |
1164 |
else{ |
1165 |
|
1166 |
#ifndef IS_MPI |
1167 |
seedValue = make_sprng_seed(); |
1168 |
#else |
1169 |
if (worldRank == 0){ |
1170 |
seedValue = make_sprng_seed(); |
1171 |
} |
1172 |
MPI_Bcast(&seedValue, 1, MPI_INT, 0, MPI_COMM_WORLD); |
1173 |
#endif |
1174 |
}//end of globals->haveSeed() |
1175 |
|
1176 |
for (int i = 0; i < nInfo; i++){ |
1177 |
info[i].setSeed(seedValue); |
1178 |
} |
1179 |
|
1180 |
#ifdef IS_MPI |
1181 |
strcpy(checkPointMsg, "Successfully gathered all information from Bass\n"); |
1182 |
MPIcheckPoint(); |
1183 |
#endif // is_mpi |
1184 |
} |
1185 |
|
1186 |
|
1187 |
void SimSetup::finalInfoCheck(void){ |
1188 |
int index; |
1189 |
int usesDipoles; |
1190 |
int usesCharges; |
1191 |
int i; |
1192 |
|
1193 |
for (i = 0; i < nInfo; i++){ |
1194 |
// check electrostatic parameters |
1195 |
|
1196 |
index = 0; |
1197 |
usesDipoles = 0; |
1198 |
while ((index < info[i].n_atoms) && !usesDipoles){ |
1199 |
usesDipoles = (info[i].atoms[index])->hasDipole(); |
1200 |
index++; |
1201 |
} |
1202 |
index = 0; |
1203 |
usesCharges = 0; |
1204 |
while ((index < info[i].n_atoms) && !usesCharges){ |
1205 |
usesCharges= (info[i].atoms[index])->hasCharge(); |
1206 |
index++; |
1207 |
} |
1208 |
#ifdef IS_MPI |
1209 |
int myUse = usesDipoles; |
1210 |
MPI_Allreduce(&myUse, &usesDipoles, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD); |
1211 |
#endif //is_mpi |
1212 |
|
1213 |
double theRcut, theRsw; |
1214 |
|
1215 |
if (globals->haveRcut()) { |
1216 |
theRcut = globals->getRcut(); |
1217 |
|
1218 |
if (globals->haveRsw()) |
1219 |
theRsw = globals->getRsw(); |
1220 |
else |
1221 |
theRsw = theRcut; |
1222 |
|
1223 |
info[i].setDefaultRcut(theRcut, theRsw); |
1224 |
|
1225 |
} else { |
1226 |
|
1227 |
the_ff->calcRcut(); |
1228 |
theRcut = info[i].getRcut(); |
1229 |
|
1230 |
if (globals->haveRsw()) |
1231 |
theRsw = globals->getRsw(); |
1232 |
else |
1233 |
theRsw = theRcut; |
1234 |
|
1235 |
info[i].setDefaultRcut(theRcut, theRsw); |
1236 |
} |
1237 |
|
1238 |
if (globals->getUseRF()){ |
1239 |
info[i].useReactionField = 1; |
1240 |
|
1241 |
if (!globals->haveRcut()){ |
1242 |
sprintf(painCave.errMsg, |
1243 |
"SimSetup Warning: No value was set for the cutoffRadius.\n" |
1244 |
"\tOOPSE will use a default value of 15.0 angstroms" |
1245 |
"\tfor the cutoffRadius.\n"); |
1246 |
painCave.isFatal = 0; |
1247 |
simError(); |
1248 |
theRcut = 15.0; |
1249 |
} |
1250 |
else{ |
1251 |
theRcut = globals->getRcut(); |
1252 |
} |
1253 |
|
1254 |
if (!globals->haveRsw()){ |
1255 |
sprintf(painCave.errMsg, |
1256 |
"SimSetup Warning: No value was set for switchingRadius.\n" |
1257 |
"\tOOPSE will use a default value of\n" |
1258 |
"\t0.95 * cutoffRadius for the switchingRadius\n"); |
1259 |
painCave.isFatal = 0; |
1260 |
simError(); |
1261 |
theRsw = 0.95 * theRcut; |
1262 |
} |
1263 |
else{ |
1264 |
theRsw = globals->getRsw(); |
1265 |
} |
1266 |
|
1267 |
info[i].setDefaultRcut(theRcut, theRsw); |
1268 |
|
1269 |
if (!globals->haveDielectric()){ |
1270 |
sprintf(painCave.errMsg, |
1271 |
"SimSetup Error: No Dielectric constant was set.\n" |
1272 |
"\tYou are trying to use Reaction Field without" |
1273 |
"\tsetting a dielectric constant!\n"); |
1274 |
painCave.isFatal = 1; |
1275 |
simError(); |
1276 |
} |
1277 |
info[i].dielectric = globals->getDielectric(); |
1278 |
} |
1279 |
else{ |
1280 |
if (usesDipoles || usesCharges){ |
1281 |
|
1282 |
if (!globals->haveRcut()){ |
1283 |
sprintf(painCave.errMsg, |
1284 |
"SimSetup Warning: No value was set for the cutoffRadius.\n" |
1285 |
"\tOOPSE will use a default value of 15.0 angstroms" |
1286 |
"\tfor the cutoffRadius.\n"); |
1287 |
painCave.isFatal = 0; |
1288 |
simError(); |
1289 |
theRcut = 15.0; |
1290 |
} |
1291 |
else{ |
1292 |
theRcut = globals->getRcut(); |
1293 |
} |
1294 |
|
1295 |
if (!globals->haveRsw()){ |
1296 |
sprintf(painCave.errMsg, |
1297 |
"SimSetup Warning: No value was set for switchingRadius.\n" |
1298 |
"\tOOPSE will use a default value of\n" |
1299 |
"\t0.95 * cutoffRadius for the switchingRadius\n"); |
1300 |
painCave.isFatal = 0; |
1301 |
simError(); |
1302 |
theRsw = 0.95 * theRcut; |
1303 |
} |
1304 |
else{ |
1305 |
theRsw = globals->getRsw(); |
1306 |
} |
1307 |
|
1308 |
info[i].setDefaultRcut(theRcut, theRsw); |
1309 |
|
1310 |
} |
1311 |
} |
1312 |
} |
1313 |
#ifdef IS_MPI |
1314 |
strcpy(checkPointMsg, "post processing checks out"); |
1315 |
MPIcheckPoint(); |
1316 |
#endif // is_mpi |
1317 |
|
1318 |
// clean up the forcefield |
1319 |
the_ff->cleanMe(); |
1320 |
} |
1321 |
|
1322 |
void SimSetup::initSystemCoords(void){ |
1323 |
int i; |
1324 |
|
1325 |
char* inName; |
1326 |
|
1327 |
(info[0].getConfiguration())->createArrays(info[0].n_atoms); |
1328 |
|
1329 |
for (i = 0; i < info[0].n_atoms; i++) |
1330 |
info[0].atoms[i]->setCoords(); |
1331 |
|
1332 |
if (globals->haveInitialConfig()){ |
1333 |
InitializeFromFile* fileInit; |
1334 |
#ifdef IS_MPI // is_mpi |
1335 |
if (worldRank == 0){ |
1336 |
#endif //is_mpi |
1337 |
inName = globals->getInitialConfig(); |
1338 |
fileInit = new InitializeFromFile(inName); |
1339 |
#ifdef IS_MPI |
1340 |
} |
1341 |
else |
1342 |
fileInit = new InitializeFromFile(NULL); |
1343 |
#endif |
1344 |
fileInit->readInit(info); // default velocities on |
1345 |
|
1346 |
delete fileInit; |
1347 |
} |
1348 |
else{ |
1349 |
|
1350 |
// no init from bass |
1351 |
|
1352 |
sprintf(painCave.errMsg, |
1353 |
"Cannot intialize a simulation without an initial configuration file.\n"); |
1354 |
painCave.isFatal = 1;; |
1355 |
simError(); |
1356 |
|
1357 |
} |
1358 |
|
1359 |
#ifdef IS_MPI |
1360 |
strcpy(checkPointMsg, "Successfully read in the initial configuration"); |
1361 |
MPIcheckPoint(); |
1362 |
#endif // is_mpi |
1363 |
} |
1364 |
|
1365 |
|
1366 |
void SimSetup::makeOutNames(void){ |
1367 |
int k; |
1368 |
|
1369 |
|
1370 |
for (k = 0; k < nInfo; k++){ |
1371 |
#ifdef IS_MPI |
1372 |
if (worldRank == 0){ |
1373 |
#endif // is_mpi |
1374 |
|
1375 |
if (globals->haveFinalConfig()){ |
1376 |
strcpy(info[k].finalName, globals->getFinalConfig()); |
1377 |
} |
1378 |
else{ |
1379 |
strcpy(info[k].finalName, inFileName); |
1380 |
char* endTest; |
1381 |
int nameLength = strlen(info[k].finalName); |
1382 |
endTest = &(info[k].finalName[nameLength - 5]); |
1383 |
if (!strcmp(endTest, ".bass")){ |
1384 |
strcpy(endTest, ".eor"); |
1385 |
} |
1386 |
else if (!strcmp(endTest, ".BASS")){ |
1387 |
strcpy(endTest, ".eor"); |
1388 |
} |
1389 |
else{ |
1390 |
endTest = &(info[k].finalName[nameLength - 4]); |
1391 |
if (!strcmp(endTest, ".bss")){ |
1392 |
strcpy(endTest, ".eor"); |
1393 |
} |
1394 |
else if (!strcmp(endTest, ".mdl")){ |
1395 |
strcpy(endTest, ".eor"); |
1396 |
} |
1397 |
else{ |
1398 |
strcat(info[k].finalName, ".eor"); |
1399 |
} |
1400 |
} |
1401 |
} |
1402 |
|
1403 |
// make the sample and status out names |
1404 |
|
1405 |
strcpy(info[k].sampleName, inFileName); |
1406 |
char* endTest; |
1407 |
int nameLength = strlen(info[k].sampleName); |
1408 |
endTest = &(info[k].sampleName[nameLength - 5]); |
1409 |
if (!strcmp(endTest, ".bass")){ |
1410 |
strcpy(endTest, ".dump"); |
1411 |
} |
1412 |
else if (!strcmp(endTest, ".BASS")){ |
1413 |
strcpy(endTest, ".dump"); |
1414 |
} |
1415 |
else{ |
1416 |
endTest = &(info[k].sampleName[nameLength - 4]); |
1417 |
if (!strcmp(endTest, ".bss")){ |
1418 |
strcpy(endTest, ".dump"); |
1419 |
} |
1420 |
else if (!strcmp(endTest, ".mdl")){ |
1421 |
strcpy(endTest, ".dump"); |
1422 |
} |
1423 |
else{ |
1424 |
strcat(info[k].sampleName, ".dump"); |
1425 |
} |
1426 |
} |
1427 |
|
1428 |
strcpy(info[k].statusName, inFileName); |
1429 |
nameLength = strlen(info[k].statusName); |
1430 |
endTest = &(info[k].statusName[nameLength - 5]); |
1431 |
if (!strcmp(endTest, ".bass")){ |
1432 |
strcpy(endTest, ".stat"); |
1433 |
} |
1434 |
else if (!strcmp(endTest, ".BASS")){ |
1435 |
strcpy(endTest, ".stat"); |
1436 |
} |
1437 |
else{ |
1438 |
endTest = &(info[k].statusName[nameLength - 4]); |
1439 |
if (!strcmp(endTest, ".bss")){ |
1440 |
strcpy(endTest, ".stat"); |
1441 |
} |
1442 |
else if (!strcmp(endTest, ".mdl")){ |
1443 |
strcpy(endTest, ".stat"); |
1444 |
} |
1445 |
else{ |
1446 |
strcat(info[k].statusName, ".stat"); |
1447 |
} |
1448 |
} |
1449 |
|
1450 |
strcpy(info[k].rawPotName, inFileName); |
1451 |
nameLength = strlen(info[k].rawPotName); |
1452 |
endTest = &(info[k].rawPotName[nameLength - 5]); |
1453 |
if (!strcmp(endTest, ".bass")){ |
1454 |
strcpy(endTest, ".raw"); |
1455 |
} |
1456 |
else if (!strcmp(endTest, ".BASS")){ |
1457 |
strcpy(endTest, ".raw"); |
1458 |
} |
1459 |
else{ |
1460 |
endTest = &(info[k].rawPotName[nameLength - 4]); |
1461 |
if (!strcmp(endTest, ".bss")){ |
1462 |
strcpy(endTest, ".raw"); |
1463 |
} |
1464 |
else if (!strcmp(endTest, ".mdl")){ |
1465 |
strcpy(endTest, ".raw"); |
1466 |
} |
1467 |
else{ |
1468 |
strcat(info[k].rawPotName, ".raw"); |
1469 |
} |
1470 |
} |
1471 |
|
1472 |
#ifdef IS_MPI |
1473 |
|
1474 |
} |
1475 |
#endif // is_mpi |
1476 |
} |
1477 |
} |
1478 |
|
1479 |
|
1480 |
void SimSetup::sysObjectsCreation(void){ |
1481 |
int i, k; |
1482 |
|
1483 |
// create the forceField |
1484 |
|
1485 |
createFF(); |
1486 |
|
1487 |
// extract componentList |
1488 |
|
1489 |
compList(); |
1490 |
|
1491 |
// calc the number of atoms, bond, bends, and torsions |
1492 |
|
1493 |
calcSysValues(); |
1494 |
|
1495 |
#ifdef IS_MPI |
1496 |
// divide the molecules among the processors |
1497 |
|
1498 |
mpiMolDivide(); |
1499 |
#endif //is_mpi |
1500 |
|
1501 |
// create the atom and SRI arrays. Also initialize Molecule Stamp ID's |
1502 |
|
1503 |
makeSysArrays(); |
1504 |
|
1505 |
// make and initialize the molecules (all but atomic coordinates) |
1506 |
|
1507 |
makeMolecules(); |
1508 |
|
1509 |
for (k = 0; k < nInfo; k++){ |
1510 |
info[k].identArray = new int[info[k].n_atoms]; |
1511 |
for (i = 0; i < info[k].n_atoms; i++){ |
1512 |
info[k].identArray[i] = info[k].atoms[i]->getIdent(); |
1513 |
} |
1514 |
} |
1515 |
} |
1516 |
|
1517 |
|
1518 |
void SimSetup::createFF(void){ |
1519 |
switch (ffCase){ |
1520 |
case FF_DUFF: |
1521 |
the_ff = new DUFF(); |
1522 |
break; |
1523 |
|
1524 |
case FF_LJ: |
1525 |
the_ff = new LJFF(); |
1526 |
break; |
1527 |
|
1528 |
case FF_EAM: |
1529 |
if (has_forcefield_variant) |
1530 |
the_ff = new EAM_FF(forcefield_variant); |
1531 |
else |
1532 |
the_ff = new EAM_FF(); |
1533 |
break; |
1534 |
|
1535 |
case FF_H2O: |
1536 |
the_ff = new WATER(); |
1537 |
break; |
1538 |
|
1539 |
default: |
1540 |
sprintf(painCave.errMsg, |
1541 |
"SimSetup Error. Unrecognized force field in case statement.\n"); |
1542 |
painCave.isFatal = 1; |
1543 |
simError(); |
1544 |
} |
1545 |
|
1546 |
|
1547 |
#ifdef IS_MPI |
1548 |
strcpy(checkPointMsg, "ForceField creation successful"); |
1549 |
MPIcheckPoint(); |
1550 |
#endif // is_mpi |
1551 |
} |
1552 |
|
1553 |
|
1554 |
void SimSetup::compList(void){ |
1555 |
int i; |
1556 |
char* id; |
1557 |
LinkedMolStamp* headStamp = new LinkedMolStamp(); |
1558 |
LinkedMolStamp* currentStamp = NULL; |
1559 |
comp_stamps = new MoleculeStamp * [n_components]; |
1560 |
bool haveCutoffGroups; |
1561 |
|
1562 |
haveCutoffGroups = false; |
1563 |
|
1564 |
// make an array of molecule stamps that match the components used. |
1565 |
// also extract the used stamps out into a separate linked list |
1566 |
|
1567 |
for (i = 0; i < nInfo; i++){ |
1568 |
info[i].nComponents = n_components; |
1569 |
info[i].componentsNmol = components_nmol; |
1570 |
info[i].compStamps = comp_stamps; |
1571 |
info[i].headStamp = headStamp; |
1572 |
} |
1573 |
|
1574 |
|
1575 |
for (i = 0; i < n_components; i++){ |
1576 |
id = the_components[i]->getType(); |
1577 |
comp_stamps[i] = NULL; |
1578 |
|
1579 |
// check to make sure the component isn't already in the list |
1580 |
|
1581 |
comp_stamps[i] = headStamp->match(id); |
1582 |
if (comp_stamps[i] == NULL){ |
1583 |
// extract the component from the list; |
1584 |
|
1585 |
currentStamp = stamps->extractMolStamp(id); |
1586 |
if (currentStamp == NULL){ |
1587 |
sprintf(painCave.errMsg, |
1588 |
"SimSetup error: Component \"%s\" was not found in the " |
1589 |
"list of declared molecules\n", |
1590 |
id); |
1591 |
painCave.isFatal = 1; |
1592 |
simError(); |
1593 |
} |
1594 |
|
1595 |
headStamp->add(currentStamp); |
1596 |
comp_stamps[i] = headStamp->match(id); |
1597 |
} |
1598 |
|
1599 |
if(comp_stamps[i]->getNCutoffGroups() > 0) |
1600 |
haveCutoffGroups = true; |
1601 |
} |
1602 |
|
1603 |
for (i = 0; i < nInfo; i++) |
1604 |
info[i].haveCutoffGroups = haveCutoffGroups; |
1605 |
|
1606 |
#ifdef IS_MPI |
1607 |
strcpy(checkPointMsg, "Component stamps successfully extracted\n"); |
1608 |
MPIcheckPoint(); |
1609 |
#endif // is_mpi |
1610 |
} |
1611 |
|
1612 |
void SimSetup::calcSysValues(void){ |
1613 |
int i, j; |
1614 |
int ncutgroups, atomsingroups, ngroupsinstamp; |
1615 |
|
1616 |
int* molMembershipArray; |
1617 |
CutoffGroupStamp* cg; |
1618 |
|
1619 |
tot_atoms = 0; |
1620 |
tot_bonds = 0; |
1621 |
tot_bends = 0; |
1622 |
tot_torsions = 0; |
1623 |
tot_rigid = 0; |
1624 |
tot_groups = 0; |
1625 |
for (i = 0; i < n_components; i++){ |
1626 |
tot_atoms += components_nmol[i] * comp_stamps[i]->getNAtoms(); |
1627 |
tot_bonds += components_nmol[i] * comp_stamps[i]->getNBonds(); |
1628 |
tot_bends += components_nmol[i] * comp_stamps[i]->getNBends(); |
1629 |
tot_torsions += components_nmol[i] * comp_stamps[i]->getNTorsions(); |
1630 |
tot_rigid += components_nmol[i] * comp_stamps[i]->getNRigidBodies(); |
1631 |
|
1632 |
ncutgroups = comp_stamps[i]->getNCutoffGroups(); |
1633 |
atomsingroups = 0; |
1634 |
for (j=0; j < ncutgroups; j++) { |
1635 |
cg = comp_stamps[i]->getCutoffGroup(j); |
1636 |
atomsingroups += cg->getNMembers(); |
1637 |
} |
1638 |
ngroupsinstamp = comp_stamps[i]->getNAtoms() - atomsingroups + ncutgroups; |
1639 |
tot_groups += components_nmol[i] * ngroupsinstamp; |
1640 |
} |
1641 |
|
1642 |
tot_SRI = tot_bonds + tot_bends + tot_torsions; |
1643 |
molMembershipArray = new int[tot_atoms]; |
1644 |
|
1645 |
for (i = 0; i < nInfo; i++){ |
1646 |
info[i].n_atoms = tot_atoms; |
1647 |
info[i].n_bonds = tot_bonds; |
1648 |
info[i].n_bends = tot_bends; |
1649 |
info[i].n_torsions = tot_torsions; |
1650 |
info[i].n_SRI = tot_SRI; |
1651 |
info[i].n_mol = tot_nmol; |
1652 |
info[i].ngroup = tot_groups; |
1653 |
info[i].molMembershipArray = molMembershipArray; |
1654 |
} |
1655 |
} |
1656 |
|
1657 |
#ifdef IS_MPI |
1658 |
|
1659 |
void SimSetup::mpiMolDivide(void){ |
1660 |
int i, j, k; |
1661 |
int localMol, allMol; |
1662 |
int local_atoms, local_bonds, local_bends, local_torsions, local_SRI; |
1663 |
int local_rigid, local_groups; |
1664 |
vector<int> globalMolIndex; |
1665 |
int ncutgroups, atomsingroups, ngroupsinstamp; |
1666 |
CutoffGroupStamp* cg; |
1667 |
|
1668 |
mpiSim = new mpiSimulation(info); |
1669 |
|
1670 |
mpiSim->divideLabor(); |
1671 |
globalAtomIndex = mpiSim->getGlobalAtomIndex(); |
1672 |
globalGroupIndex = mpiSim->getGlobalGroupIndex(); |
1673 |
//globalMolIndex = mpiSim->getGlobalMolIndex(); |
1674 |
|
1675 |
// set up the local variables |
1676 |
|
1677 |
mol2proc = mpiSim->getMolToProcMap(); |
1678 |
molCompType = mpiSim->getMolComponentType(); |
1679 |
|
1680 |
allMol = 0; |
1681 |
localMol = 0; |
1682 |
local_atoms = 0; |
1683 |
local_bonds = 0; |
1684 |
local_bends = 0; |
1685 |
local_torsions = 0; |
1686 |
local_rigid = 0; |
1687 |
local_groups = 0; |
1688 |
globalAtomCounter = 0; |
1689 |
|
1690 |
for (i = 0; i < n_components; i++){ |
1691 |
for (j = 0; j < components_nmol[i]; j++){ |
1692 |
if (mol2proc[allMol] == worldRank){ |
1693 |
local_atoms += comp_stamps[i]->getNAtoms(); |
1694 |
local_bonds += comp_stamps[i]->getNBonds(); |
1695 |
local_bends += comp_stamps[i]->getNBends(); |
1696 |
local_torsions += comp_stamps[i]->getNTorsions(); |
1697 |
local_rigid += comp_stamps[i]->getNRigidBodies(); |
1698 |
|
1699 |
ncutgroups = comp_stamps[i]->getNCutoffGroups(); |
1700 |
atomsingroups = 0; |
1701 |
for (k=0; k < ncutgroups; k++) { |
1702 |
cg = comp_stamps[i]->getCutoffGroup(k); |
1703 |
atomsingroups += cg->getNMembers(); |
1704 |
} |
1705 |
ngroupsinstamp = comp_stamps[i]->getNAtoms() - atomsingroups + |
1706 |
ncutgroups; |
1707 |
local_groups += ngroupsinstamp; |
1708 |
|
1709 |
localMol++; |
1710 |
} |
1711 |
for (k = 0; k < comp_stamps[i]->getNAtoms(); k++){ |
1712 |
info[0].molMembershipArray[globalAtomCounter] = allMol; |
1713 |
globalAtomCounter++; |
1714 |
} |
1715 |
|
1716 |
allMol++; |
1717 |
} |
1718 |
} |
1719 |
local_SRI = local_bonds + local_bends + local_torsions; |
1720 |
|
1721 |
info[0].n_atoms = mpiSim->getNAtomsLocal(); |
1722 |
|
1723 |
if (local_atoms != info[0].n_atoms){ |
1724 |
sprintf(painCave.errMsg, |
1725 |
"SimSetup error: mpiSim's localAtom (%d) and SimSetup's\n" |
1726 |
"\tlocalAtom (%d) are not equal.\n", |
1727 |
info[0].n_atoms, local_atoms); |
1728 |
painCave.isFatal = 1; |
1729 |
simError(); |
1730 |
} |
1731 |
|
1732 |
info[0].ngroup = mpiSim->getNGroupsLocal(); |
1733 |
if (local_groups != info[0].ngroup){ |
1734 |
sprintf(painCave.errMsg, |
1735 |
"SimSetup error: mpiSim's localGroups (%d) and SimSetup's\n" |
1736 |
"\tlocalGroups (%d) are not equal.\n", |
1737 |
info[0].ngroup, local_groups); |
1738 |
painCave.isFatal = 1; |
1739 |
simError(); |
1740 |
} |
1741 |
|
1742 |
info[0].n_bonds = local_bonds; |
1743 |
info[0].n_bends = local_bends; |
1744 |
info[0].n_torsions = local_torsions; |
1745 |
info[0].n_SRI = local_SRI; |
1746 |
info[0].n_mol = localMol; |
1747 |
|
1748 |
strcpy(checkPointMsg, "Passed nlocal consistency check."); |
1749 |
MPIcheckPoint(); |
1750 |
} |
1751 |
|
1752 |
#endif // is_mpi |
1753 |
|
1754 |
|
1755 |
void SimSetup::makeSysArrays(void){ |
1756 |
|
1757 |
#ifndef IS_MPI |
1758 |
int k, j; |
1759 |
#endif // is_mpi |
1760 |
int i, l; |
1761 |
|
1762 |
Atom** the_atoms; |
1763 |
Molecule* the_molecules; |
1764 |
|
1765 |
for (l = 0; l < nInfo; l++){ |
1766 |
// create the atom and short range interaction arrays |
1767 |
|
1768 |
the_atoms = new Atom * [info[l].n_atoms]; |
1769 |
the_molecules = new Molecule[info[l].n_mol]; |
1770 |
int molIndex; |
1771 |
|
1772 |
// initialize the molecule's stampID's |
1773 |
|
1774 |
#ifdef IS_MPI |
1775 |
|
1776 |
|
1777 |
molIndex = 0; |
1778 |
for (i = 0; i < mpiSim->getNMolGlobal(); i++){ |
1779 |
if (mol2proc[i] == worldRank){ |
1780 |
the_molecules[molIndex].setStampID(molCompType[i]); |
1781 |
the_molecules[molIndex].setMyIndex(molIndex); |
1782 |
the_molecules[molIndex].setGlobalIndex(i); |
1783 |
molIndex++; |
1784 |
} |
1785 |
} |
1786 |
|
1787 |
#else // is_mpi |
1788 |
|
1789 |
molIndex = 0; |
1790 |
globalAtomCounter = 0; |
1791 |
for (i = 0; i < n_components; i++){ |
1792 |
for (j = 0; j < components_nmol[i]; j++){ |
1793 |
the_molecules[molIndex].setStampID(i); |
1794 |
the_molecules[molIndex].setMyIndex(molIndex); |
1795 |
the_molecules[molIndex].setGlobalIndex(molIndex); |
1796 |
for (k = 0; k < comp_stamps[i]->getNAtoms(); k++){ |
1797 |
info[l].molMembershipArray[globalAtomCounter] = molIndex; |
1798 |
globalAtomCounter++; |
1799 |
} |
1800 |
molIndex++; |
1801 |
} |
1802 |
} |
1803 |
|
1804 |
|
1805 |
#endif // is_mpi |
1806 |
|
1807 |
info[l].globalExcludes = new int; |
1808 |
info[l].globalExcludes[0] = 0; |
1809 |
|
1810 |
// set the arrays into the SimInfo object |
1811 |
|
1812 |
info[l].atoms = the_atoms; |
1813 |
info[l].molecules = the_molecules; |
1814 |
info[l].nGlobalExcludes = 0; |
1815 |
|
1816 |
the_ff->setSimInfo(info); |
1817 |
} |
1818 |
} |
1819 |
|
1820 |
void SimSetup::makeIntegrator(void){ |
1821 |
int k; |
1822 |
|
1823 |
NVE<Integrator<BaseIntegrator> >* myNVE = NULL; |
1824 |
NVT<Integrator<BaseIntegrator> >* myNVT = NULL; |
1825 |
NPTi<NPT<Integrator<BaseIntegrator> > >* myNPTi = NULL; |
1826 |
NPTf<NPT<Integrator<BaseIntegrator> > >* myNPTf = NULL; |
1827 |
NPTxyz<NPT<Integrator<BaseIntegrator> > >* myNPTxyz = NULL; |
1828 |
|
1829 |
for (k = 0; k < nInfo; k++){ |
1830 |
switch (ensembleCase){ |
1831 |
case NVE_ENS: |
1832 |
if (globals->haveZconstraints()){ |
1833 |
setupZConstraint(info[k]); |
1834 |
myNVE = new ZConstraint<NVE<RealIntegrator> >(&(info[k]), the_ff); |
1835 |
} |
1836 |
else{ |
1837 |
myNVE = new NVE<RealIntegrator>(&(info[k]), the_ff); |
1838 |
} |
1839 |
|
1840 |
info->the_integrator = myNVE; |
1841 |
break; |
1842 |
|
1843 |
case NVT_ENS: |
1844 |
if (globals->haveZconstraints()){ |
1845 |
setupZConstraint(info[k]); |
1846 |
myNVT = new ZConstraint<NVT<RealIntegrator> >(&(info[k]), the_ff); |
1847 |
} |
1848 |
else |
1849 |
myNVT = new NVT<RealIntegrator>(&(info[k]), the_ff); |
1850 |
|
1851 |
myNVT->setTargetTemp(globals->getTargetTemp()); |
1852 |
|
1853 |
if (globals->haveTauThermostat()) |
1854 |
myNVT->setTauThermostat(globals->getTauThermostat()); |
1855 |
else{ |
1856 |
sprintf(painCave.errMsg, |
1857 |
"SimSetup error: If you use the NVT\n" |
1858 |
"\tensemble, you must set tauThermostat.\n"); |
1859 |
painCave.isFatal = 1; |
1860 |
simError(); |
1861 |
} |
1862 |
|
1863 |
info->the_integrator = myNVT; |
1864 |
break; |
1865 |
|
1866 |
case NPTi_ENS: |
1867 |
if (globals->haveZconstraints()){ |
1868 |
setupZConstraint(info[k]); |
1869 |
myNPTi = new ZConstraint<NPTi<NPT <RealIntegrator> > >(&(info[k]), the_ff); |
1870 |
} |
1871 |
else |
1872 |
myNPTi = new NPTi<NPT<RealIntegrator> >(&(info[k]), the_ff); |
1873 |
|
1874 |
myNPTi->setTargetTemp(globals->getTargetTemp()); |
1875 |
|
1876 |
if (globals->haveTargetPressure()) |
1877 |
myNPTi->setTargetPressure(globals->getTargetPressure()); |
1878 |
else{ |
1879 |
sprintf(painCave.errMsg, |
1880 |
"SimSetup error: If you use a constant pressure\n" |
1881 |
"\tensemble, you must set targetPressure in the BASS file.\n"); |
1882 |
painCave.isFatal = 1; |
1883 |
simError(); |
1884 |
} |
1885 |
|
1886 |
if (globals->haveTauThermostat()) |
1887 |
myNPTi->setTauThermostat(globals->getTauThermostat()); |
1888 |
else{ |
1889 |
sprintf(painCave.errMsg, |
1890 |
"SimSetup error: If you use an NPT\n" |
1891 |
"\tensemble, you must set tauThermostat.\n"); |
1892 |
painCave.isFatal = 1; |
1893 |
simError(); |
1894 |
} |
1895 |
|
1896 |
if (globals->haveTauBarostat()) |
1897 |
myNPTi->setTauBarostat(globals->getTauBarostat()); |
1898 |
else{ |
1899 |
sprintf(painCave.errMsg, |
1900 |
"SimSetup error: If you use an NPT\n" |
1901 |
"\tensemble, you must set tauBarostat.\n"); |
1902 |
painCave.isFatal = 1; |
1903 |
simError(); |
1904 |
} |
1905 |
|
1906 |
info->the_integrator = myNPTi; |
1907 |
break; |
1908 |
|
1909 |
case NPTf_ENS: |
1910 |
if (globals->haveZconstraints()){ |
1911 |
setupZConstraint(info[k]); |
1912 |
myNPTf = new ZConstraint<NPTf<NPT <RealIntegrator> > >(&(info[k]), the_ff); |
1913 |
} |
1914 |
else |
1915 |
myNPTf = new NPTf<NPT <RealIntegrator> >(&(info[k]), the_ff); |
1916 |
|
1917 |
myNPTf->setTargetTemp(globals->getTargetTemp()); |
1918 |
|
1919 |
if (globals->haveTargetPressure()) |
1920 |
myNPTf->setTargetPressure(globals->getTargetPressure()); |
1921 |
else{ |
1922 |
sprintf(painCave.errMsg, |
1923 |
"SimSetup error: If you use a constant pressure\n" |
1924 |
"\tensemble, you must set targetPressure in the BASS file.\n"); |
1925 |
painCave.isFatal = 1; |
1926 |
simError(); |
1927 |
} |
1928 |
|
1929 |
if (globals->haveTauThermostat()) |
1930 |
myNPTf->setTauThermostat(globals->getTauThermostat()); |
1931 |
|
1932 |
else{ |
1933 |
sprintf(painCave.errMsg, |
1934 |
"SimSetup error: If you use an NPT\n" |
1935 |
"\tensemble, you must set tauThermostat.\n"); |
1936 |
painCave.isFatal = 1; |
1937 |
simError(); |
1938 |
} |
1939 |
|
1940 |
if (globals->haveTauBarostat()) |
1941 |
myNPTf->setTauBarostat(globals->getTauBarostat()); |
1942 |
|
1943 |
else{ |
1944 |
sprintf(painCave.errMsg, |
1945 |
"SimSetup error: If you use an NPT\n" |
1946 |
"\tensemble, you must set tauBarostat.\n"); |
1947 |
painCave.isFatal = 1; |
1948 |
simError(); |
1949 |
} |
1950 |
|
1951 |
info->the_integrator = myNPTf; |
1952 |
break; |
1953 |
|
1954 |
case NPTxyz_ENS: |
1955 |
if (globals->haveZconstraints()){ |
1956 |
setupZConstraint(info[k]); |
1957 |
myNPTxyz = new ZConstraint<NPTxyz<NPT <RealIntegrator> > >(&(info[k]), the_ff); |
1958 |
} |
1959 |
else |
1960 |
myNPTxyz = new NPTxyz<NPT <RealIntegrator> >(&(info[k]), the_ff); |
1961 |
|
1962 |
myNPTxyz->setTargetTemp(globals->getTargetTemp()); |
1963 |
|
1964 |
if (globals->haveTargetPressure()) |
1965 |
myNPTxyz->setTargetPressure(globals->getTargetPressure()); |
1966 |
else{ |
1967 |
sprintf(painCave.errMsg, |
1968 |
"SimSetup error: If you use a constant pressure\n" |
1969 |
"\tensemble, you must set targetPressure in the BASS file.\n"); |
1970 |
painCave.isFatal = 1; |
1971 |
simError(); |
1972 |
} |
1973 |
|
1974 |
if (globals->haveTauThermostat()) |
1975 |
myNPTxyz->setTauThermostat(globals->getTauThermostat()); |
1976 |
else{ |
1977 |
sprintf(painCave.errMsg, |
1978 |
"SimSetup error: If you use an NPT\n" |
1979 |
"\tensemble, you must set tauThermostat.\n"); |
1980 |
painCave.isFatal = 1; |
1981 |
simError(); |
1982 |
} |
1983 |
|
1984 |
if (globals->haveTauBarostat()) |
1985 |
myNPTxyz->setTauBarostat(globals->getTauBarostat()); |
1986 |
else{ |
1987 |
sprintf(painCave.errMsg, |
1988 |
"SimSetup error: If you use an NPT\n" |
1989 |
"\tensemble, you must set tauBarostat.\n"); |
1990 |
painCave.isFatal = 1; |
1991 |
simError(); |
1992 |
} |
1993 |
|
1994 |
info->the_integrator = myNPTxyz; |
1995 |
break; |
1996 |
|
1997 |
default: |
1998 |
sprintf(painCave.errMsg, |
1999 |
"SimSetup Error. Unrecognized ensemble in case statement.\n"); |
2000 |
painCave.isFatal = 1; |
2001 |
simError(); |
2002 |
} |
2003 |
} |
2004 |
} |
2005 |
|
2006 |
void SimSetup::initFortran(void){ |
2007 |
info[0].refreshSim(); |
2008 |
|
2009 |
if (!strcmp(info[0].mixingRule, "standard")){ |
2010 |
the_ff->initForceField(LB_MIXING_RULE); |
2011 |
} |
2012 |
else if (!strcmp(info[0].mixingRule, "explicit")){ |
2013 |
the_ff->initForceField(EXPLICIT_MIXING_RULE); |
2014 |
} |
2015 |
else{ |
2016 |
sprintf(painCave.errMsg, "SimSetup Error: unknown mixing rule -> \"%s\"\n", |
2017 |
info[0].mixingRule); |
2018 |
painCave.isFatal = 1; |
2019 |
simError(); |
2020 |
} |
2021 |
|
2022 |
|
2023 |
#ifdef IS_MPI |
2024 |
strcpy(checkPointMsg, "Successfully intialized the mixingRule for Fortran."); |
2025 |
MPIcheckPoint(); |
2026 |
#endif // is_mpi |
2027 |
} |
2028 |
|
2029 |
void SimSetup::setupZConstraint(SimInfo& theInfo){ |
2030 |
int nZConstraints; |
2031 |
ZconStamp** zconStamp; |
2032 |
|
2033 |
if (globals->haveZconstraintTime()){ |
2034 |
//add sample time of z-constraint into SimInfo's property list |
2035 |
DoubleData* zconsTimeProp = new DoubleData(); |
2036 |
zconsTimeProp->setID(ZCONSTIME_ID); |
2037 |
zconsTimeProp->setData(globals->getZconsTime()); |
2038 |
theInfo.addProperty(zconsTimeProp); |
2039 |
} |
2040 |
else{ |
2041 |
sprintf(painCave.errMsg, |
2042 |
"ZConstraint error: If you use a ZConstraint,\n" |
2043 |
"\tyou must set zconsTime.\n"); |
2044 |
painCave.isFatal = 1; |
2045 |
simError(); |
2046 |
} |
2047 |
|
2048 |
//push zconsTol into siminfo, if user does not specify |
2049 |
//value for zconsTol, a default value will be used |
2050 |
DoubleData* zconsTol = new DoubleData(); |
2051 |
zconsTol->setID(ZCONSTOL_ID); |
2052 |
if (globals->haveZconsTol()){ |
2053 |
zconsTol->setData(globals->getZconsTol()); |
2054 |
} |
2055 |
else{ |
2056 |
double defaultZConsTol = 0.01; |
2057 |
sprintf(painCave.errMsg, |
2058 |
"ZConstraint Warning: Tolerance for z-constraint method is not specified.\n" |
2059 |
"\tOOPSE will use a default value of %f.\n" |
2060 |
"\tTo set the tolerance, use the zconsTol variable.\n", |
2061 |
defaultZConsTol); |
2062 |
painCave.isFatal = 0; |
2063 |
simError(); |
2064 |
|
2065 |
zconsTol->setData(defaultZConsTol); |
2066 |
} |
2067 |
theInfo.addProperty(zconsTol); |
2068 |
|
2069 |
//set Force Subtraction Policy |
2070 |
StringData* zconsForcePolicy = new StringData(); |
2071 |
zconsForcePolicy->setID(ZCONSFORCEPOLICY_ID); |
2072 |
|
2073 |
if (globals->haveZconsForcePolicy()){ |
2074 |
zconsForcePolicy->setData(globals->getZconsForcePolicy()); |
2075 |
} |
2076 |
else{ |
2077 |
sprintf(painCave.errMsg, |
2078 |
"ZConstraint Warning: No force subtraction policy was set.\n" |
2079 |
"\tOOPSE will use PolicyByMass.\n" |
2080 |
"\tTo set the policy, use the zconsForcePolicy variable.\n"); |
2081 |
painCave.isFatal = 0; |
2082 |
simError(); |
2083 |
zconsForcePolicy->setData("BYMASS"); |
2084 |
} |
2085 |
|
2086 |
theInfo.addProperty(zconsForcePolicy); |
2087 |
|
2088 |
//set zcons gap |
2089 |
DoubleData* zconsGap = new DoubleData(); |
2090 |
zconsGap->setID(ZCONSGAP_ID); |
2091 |
|
2092 |
if (globals->haveZConsGap()){ |
2093 |
zconsGap->setData(globals->getZconsGap()); |
2094 |
theInfo.addProperty(zconsGap); |
2095 |
} |
2096 |
|
2097 |
//set zcons fixtime |
2098 |
DoubleData* zconsFixtime = new DoubleData(); |
2099 |
zconsFixtime->setID(ZCONSFIXTIME_ID); |
2100 |
|
2101 |
if (globals->haveZConsFixTime()){ |
2102 |
zconsFixtime->setData(globals->getZconsFixtime()); |
2103 |
theInfo.addProperty(zconsFixtime); |
2104 |
} |
2105 |
|
2106 |
//set zconsUsingSMD |
2107 |
IntData* zconsUsingSMD = new IntData(); |
2108 |
zconsUsingSMD->setID(ZCONSUSINGSMD_ID); |
2109 |
|
2110 |
if (globals->haveZConsUsingSMD()){ |
2111 |
zconsUsingSMD->setData(globals->getZconsUsingSMD()); |
2112 |
theInfo.addProperty(zconsUsingSMD); |
2113 |
} |
2114 |
|
2115 |
//Determine the name of ouput file and add it into SimInfo's property list |
2116 |
//Be careful, do not use inFileName, since it is a pointer which |
2117 |
//point to a string at master node, and slave nodes do not contain that string |
2118 |
|
2119 |
string zconsOutput(theInfo.finalName); |
2120 |
|
2121 |
zconsOutput = zconsOutput.substr(0, zconsOutput.rfind(".")) + ".fz"; |
2122 |
|
2123 |
StringData* zconsFilename = new StringData(); |
2124 |
zconsFilename->setID(ZCONSFILENAME_ID); |
2125 |
zconsFilename->setData(zconsOutput); |
2126 |
|
2127 |
theInfo.addProperty(zconsFilename); |
2128 |
|
2129 |
//setup index, pos and other parameters of z-constraint molecules |
2130 |
nZConstraints = globals->getNzConstraints(); |
2131 |
theInfo.nZconstraints = nZConstraints; |
2132 |
|
2133 |
zconStamp = globals->getZconStamp(); |
2134 |
ZConsParaItem tempParaItem; |
2135 |
|
2136 |
ZConsParaData* zconsParaData = new ZConsParaData(); |
2137 |
zconsParaData->setID(ZCONSPARADATA_ID); |
2138 |
|
2139 |
for (int i = 0; i < nZConstraints; i++){ |
2140 |
tempParaItem.havingZPos = zconStamp[i]->haveZpos(); |
2141 |
tempParaItem.zPos = zconStamp[i]->getZpos(); |
2142 |
tempParaItem.zconsIndex = zconStamp[i]->getMolIndex(); |
2143 |
tempParaItem.kRatio = zconStamp[i]->getKratio(); |
2144 |
tempParaItem.havingCantVel = zconStamp[i]->haveCantVel(); |
2145 |
tempParaItem.cantVel = zconStamp[i]->getCantVel(); |
2146 |
zconsParaData->addItem(tempParaItem); |
2147 |
} |
2148 |
|
2149 |
//check the uniqueness of index |
2150 |
if(!zconsParaData->isIndexUnique()){ |
2151 |
sprintf(painCave.errMsg, |
2152 |
"ZConstraint Error: molIndex is not unique!\n"); |
2153 |
painCave.isFatal = 1; |
2154 |
simError(); |
2155 |
} |
2156 |
|
2157 |
//sort the parameters by index of molecules |
2158 |
zconsParaData->sortByIndex(); |
2159 |
|
2160 |
//push data into siminfo, therefore, we can retrieve later |
2161 |
theInfo.addProperty(zconsParaData); |
2162 |
} |
2163 |
|
2164 |
void SimSetup::makeMinimizer(){ |
2165 |
|
2166 |
OOPSEMinimizer* myOOPSEMinimizer; |
2167 |
MinimizerParameterSet* param; |
2168 |
char minimizerName[100]; |
2169 |
|
2170 |
for (int i = 0; i < nInfo; i++){ |
2171 |
|
2172 |
//prepare parameter set for minimizer |
2173 |
param = new MinimizerParameterSet(); |
2174 |
param->setDefaultParameter(); |
2175 |
|
2176 |
if (globals->haveMinimizer()){ |
2177 |
param->setFTol(globals->getMinFTol()); |
2178 |
} |
2179 |
|
2180 |
if (globals->haveMinGTol()){ |
2181 |
param->setGTol(globals->getMinGTol()); |
2182 |
} |
2183 |
|
2184 |
if (globals->haveMinMaxIter()){ |
2185 |
param->setMaxIteration(globals->getMinMaxIter()); |
2186 |
} |
2187 |
|
2188 |
if (globals->haveMinWriteFrq()){ |
2189 |
param->setMaxIteration(globals->getMinMaxIter()); |
2190 |
} |
2191 |
|
2192 |
if (globals->haveMinWriteFrq()){ |
2193 |
param->setWriteFrq(globals->getMinWriteFrq()); |
2194 |
} |
2195 |
|
2196 |
if (globals->haveMinStepSize()){ |
2197 |
param->setStepSize(globals->getMinStepSize()); |
2198 |
} |
2199 |
|
2200 |
if (globals->haveMinLSMaxIter()){ |
2201 |
param->setLineSearchMaxIteration(globals->getMinLSMaxIter()); |
2202 |
} |
2203 |
|
2204 |
if (globals->haveMinLSTol()){ |
2205 |
param->setLineSearchTol(globals->getMinLSTol()); |
2206 |
} |
2207 |
|
2208 |
strcpy(minimizerName, globals->getMinimizer()); |
2209 |
|
2210 |
if (!strcasecmp(minimizerName, "CG")){ |
2211 |
myOOPSEMinimizer = new PRCGMinimizer(&(info[i]), the_ff, param); |
2212 |
} |
2213 |
else if (!strcasecmp(minimizerName, "SD")){ |
2214 |
//myOOPSEMinimizer = MinimizerFactory.creatMinimizer("", &(info[i]), the_ff, param); |
2215 |
myOOPSEMinimizer = new SDMinimizer(&(info[i]), the_ff, param); |
2216 |
} |
2217 |
else{ |
2218 |
sprintf(painCave.errMsg, |
2219 |
"SimSetup error: Unrecognized Minimizer, use Conjugate Gradient \n"); |
2220 |
painCave.isFatal = 0; |
2221 |
simError(); |
2222 |
|
2223 |
myOOPSEMinimizer = new PRCGMinimizer(&(info[i]), the_ff, param); |
2224 |
} |
2225 |
info[i].the_integrator = myOOPSEMinimizer; |
2226 |
|
2227 |
//store the minimizer into simInfo |
2228 |
info[i].the_minimizer = myOOPSEMinimizer; |
2229 |
info[i].has_minimizer = true; |
2230 |
} |
2231 |
|
2232 |
} |