ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/SimSetup.cpp
(Generate patch)

Comparing trunk/OOPSE/libmdtools/SimSetup.cpp (file contents):
Revision 407 by mmeineke, Wed Mar 26 20:22:02 2003 UTC vs.
Revision 1187 by chrisfen, Sat May 22 18:16:18 2004 UTC

# Line 1 | Line 1
1 < #include <cstdlib>
1 > #include <algorithm>
2 > #include <stdlib.h>
3   #include <iostream>
4 < #include <cmath>
5 <
4 > #include <math.h>
5 > #include <string>
6 > #include <sprng.h>
7   #include "SimSetup.hpp"
8 + #include "ReadWrite.hpp"
9   #include "parse_me.h"
10   #include "Integrator.hpp"
11   #include "simError.h"
12 + #include "RigidBody.hpp"
13 + //#include "ConjugateMinimizer.hpp"
14 + #include "OOPSEMinimizer.hpp"
15  
16   #ifdef IS_MPI
17   #include "mpiBASS.h"
18   #include "mpiSimulation.hpp"
19   #endif
20  
21 + // some defines for ensemble and Forcefield  cases
22 +
23 + #define NVE_ENS        0
24 + #define NVT_ENS        1
25 + #define NPTi_ENS       2
26 + #define NPTf_ENS       3
27 + #define NPTxyz_ENS     4
28 +
29 +
30 + #define FF_DUFF  0
31 + #define FF_LJ    1
32 + #define FF_EAM   2
33 + #define FF_H2O   3
34 +
35 + using namespace std;
36 +
37 + /**
38 + * Check whether dividend is divisble by divisor or not
39 + */
40 + bool isDivisible(double dividend, double divisor){
41 +  double tolerance = 0.000001;
42 +  double quotient;
43 +  double diff;
44 +  int intQuotient;
45 +  
46 +  quotient = dividend / divisor;
47 +
48 +  if (quotient < 0)
49 +    quotient = -quotient;
50 +
51 +  intQuotient = int (quotient + tolerance);
52 +
53 +  diff = fabs(fabs(dividend) - intQuotient  * fabs(divisor));
54 +
55 +  if (diff <= tolerance)
56 +    return true;
57 +  else
58 +    return false;  
59 + }
60 +
61   SimSetup::SimSetup(){
62 +  
63 +  initSuspend = false;
64 +  isInfoArray = 0;
65 +  nInfo = 1;
66 +
67    stamps = new MakeStamps();
68    globals = new Globals();
69 <  
69 >
70 >
71   #ifdef IS_MPI
72 <  strcpy( checkPointMsg, "SimSetup creation successful" );
72 >  strcpy(checkPointMsg, "SimSetup creation successful");
73    MPIcheckPoint();
74   #endif // IS_MPI
75   }
# Line 27 | Line 79 | SimSetup::~SimSetup(){
79    delete globals;
80   }
81  
82 < void SimSetup::parseFile( char* fileName ){
82 > void SimSetup::setSimInfo(SimInfo* the_info, int theNinfo){
83 >  info = the_info;
84 >  nInfo = theNinfo;
85 >  isInfoArray = 1;
86 >  initSuspend = true;
87 > }
88  
89 +
90 + void SimSetup::parseFile(char* fileName){
91   #ifdef IS_MPI
92 <  if( worldRank == 0 ){
92 >  if (worldRank == 0){
93   #endif // is_mpi
94 <    
94 >
95      inFileName = fileName;
96 <    set_interface_stamps( stamps, globals );
97 <    
96 >    set_interface_stamps(stamps, globals);
97 >
98   #ifdef IS_MPI
99      mpiEventInit();
100   #endif
101  
102 <    yacc_BASS( fileName );
102 >    yacc_BASS(fileName);
103  
104   #ifdef IS_MPI
105      throwMPIEvent(NULL);
106    }
107 <  else receiveParse();
107 >  else{
108 >    receiveParse();
109 >  }
110   #endif
111  
112   }
113  
114   #ifdef IS_MPI
115   void SimSetup::receiveParse(void){
116 <
117 <    set_interface_stamps( stamps, globals );
118 <    mpiEventInit();
119 <    MPIcheckPoint();
59 <    mpiEventLoop();
60 <
116 >  set_interface_stamps(stamps, globals);
117 >  mpiEventInit();
118 >  MPIcheckPoint();
119 >  mpiEventLoop();
120   }
121  
122   #endif // is_mpi
123  
124 < void SimSetup::createSim( void ){
124 > void SimSetup::createSim(void){
125  
126 <  MakeStamps *the_stamps;
68 <  Globals* the_globals;
69 <  int i, j;
126 >  // gather all of the information from the Bass file
127  
128 <  // get the stamps and globals;
72 <  the_stamps = stamps;
73 <  the_globals = globals;
128 >  gatherInfo();
129  
130 <  // set the easy ones first
76 <  simnfo->target_temp = the_globals->getTargetTemp();
77 <  simnfo->dt = the_globals->getDt();
78 <  simnfo->run_time = the_globals->getRunTime();
130 >  // creation of complex system objects
131  
132 <  // get the ones we know are there, yet still may need some work.
81 <  n_components = the_globals->getNComponents();
82 <  strcpy( force_field, the_globals->getForceField() );
83 <  strcpy( ensemble, the_globals->getEnsemble() );
84 <  strcpy( simnfo->ensemble, ensemble );
132 >  sysObjectsCreation();
133  
134 <  strcpy( simnfo->mixingRule, the_globals->getMixingRule() );
87 <  simnfo->usePBC = the_globals->getPBC();
88 <          
134 >  // check on the post processing info
135  
136 +  finalInfoCheck();
137  
138 <  if( !strcmp( force_field, "TraPPE" ) ) the_ff = new TraPPEFF();
92 <  else if( !strcmp( force_field, "DipoleTest" ) ) the_ff = new DipoleTestFF();
93 <  else if( !strcmp( force_field, "TraPPE_Ex" ) ) the_ff = new TraPPE_ExFF();
94 <  else if( !strcmp( force_field, "LJ" ) ) the_ff = new LJ_FF();
95 <  else{
96 <    sprintf( painCave.errMsg,
97 <             "SimSetup Error. Unrecognized force field -> %s\n",
98 <             force_field );
99 <    painCave.isFatal = 1;
100 <    simError();
101 <  }
138 >  // initialize the system coordinates
139  
140 < #ifdef IS_MPI
141 <  strcpy( checkPointMsg, "ForceField creation successful" );
105 <  MPIcheckPoint();
106 < #endif // is_mpi
140 >  if ( !initSuspend ){
141 >    initSystemCoords();
142  
143 +    if( !(globals->getUseInitTime()) )
144 +      info[0].currentTime = 0.0;
145 +  }  
146 +
147 +  // make the output filenames
148 +
149 +  makeOutNames();
150    
151 + #ifdef IS_MPI
152 +  mpiSim->mpiRefresh();
153 + #endif
154  
155 <  // get the components and calculate the tot_nMol and indvidual n_mol
111 <  the_components = the_globals->getComponents();
112 <  components_nmol = new int[n_components];
113 <  comp_stamps = new MoleculeStamp*[n_components];
155 >  // initialize the Fortran
156  
157 <  if( !the_globals->haveNMol() ){
116 <    // we don't have the total number of molecules, so we assume it is
117 <    // given in each component
157 >  initFortran();
158  
159 <    tot_nmol = 0;
160 <    for( i=0; i<n_components; i++ ){
159 >  if (globals->haveMinimizer())
160 >    // make minimizer
161 >    makeMinimizer();
162 >  else
163 >    // make the integrator
164 >    makeIntegrator();
165  
166 <      if( !the_components[i]->haveNMol() ){
123 <        // we have a problem
124 <        sprintf( painCave.errMsg,
125 <                 "SimSetup Error. No global NMol or component NMol"
126 <                 " given. Cannot calculate the number of atoms.\n" );
127 <        painCave.isFatal = 1;
128 <        simError();
129 <      }
166 > }
167  
131      tot_nmol += the_components[i]->getNMol();
132      components_nmol[i] = the_components[i]->getNMol();
133    }
134  }
135  else{
136    sprintf( painCave.errMsg,
137             "SimSetup error.\n"
138             "\tSorry, the ability to specify total"
139             " nMols and then give molfractions in the components\n"
140             "\tis not currently supported."
141             " Please give nMol in the components.\n" );
142    painCave.isFatal = 1;
143    simError();
144    
145    
146    //     tot_nmol = the_globals->getNMol();
147    
148    //   //we have the total number of molecules, now we check for molfractions
149    //     for( i=0; i<n_components; i++ ){
150    
151    //       if( !the_components[i]->haveMolFraction() ){
152    
153    //  if( !the_components[i]->haveNMol() ){
154    //    //we have a problem
155    //    std::cerr << "SimSetup error. Neither molFraction nor "
156    //              << " nMol was given in component
157    
158  }
168  
169 < #ifdef IS_MPI
170 <  strcpy( checkPointMsg, "Have the number of components" );
171 <  MPIcheckPoint();
172 < #endif // is_mpi
169 > void SimSetup::makeMolecules(void){
170 >  int i, j, k;
171 >  int exI, exJ, exK, exL, slI, slJ;
172 >  int tempI, tempJ, tempK, tempL;
173 >  int molI;
174 >  int stampID, atomOffset, rbOffset;
175 >  molInit molInfo;
176 >  DirectionalAtom* dAtom;
177 >  RigidBody* myRB;
178 >  StuntDouble* mySD;
179 >  LinkedAssign* extras;
180 >  LinkedAssign* current_extra;
181 >  AtomStamp* currentAtom;
182 >  BondStamp* currentBond;
183 >  BendStamp* currentBend;
184 >  TorsionStamp* currentTorsion;
185 >  RigidBodyStamp* currentRigidBody;
186 >  CutoffGroupStamp* currentCutoffGroup;
187 >  CutoffGroup* myCutoffGroup;
188 >  int nCutoffGroups;// number of cutoff group of a molecule defined in mdl file
189 >  set<int> cutoffAtomSet; //atoms belong to  cutoffgroup defined at mdl file
190  
191 <  // make an array of molecule stamps that match the components used.
192 <  // also extract the used stamps out into a separate linked list
191 >  bond_pair* theBonds;
192 >  bend_set* theBends;
193 >  torsion_set* theTorsions;
194  
195 <  simnfo->nComponents = n_components;
169 <  simnfo->componentsNmol = components_nmol;
170 <  simnfo->compStamps = comp_stamps;
171 <  simnfo->headStamp = new LinkedMolStamp();
172 <  
173 <  char* id;
174 <  LinkedMolStamp* headStamp = simnfo->headStamp;
175 <  LinkedMolStamp* currentStamp = NULL;
176 <  for( i=0; i<n_components; i++ ){
195 >  set<int> skipList;
196  
197 <    id = the_components[i]->getType();
198 <    comp_stamps[i] = NULL;
199 <    
181 <    // check to make sure the component isn't already in the list
197 >  double phi, theta, psi;
198 >  char* molName;
199 >  char rbName[100];
200  
201 <    comp_stamps[i] = headStamp->match( id );
184 <    if( comp_stamps[i] == NULL ){
185 <      
186 <      // extract the component from the list;
187 <      
188 <      currentStamp = the_stamps->extractMolStamp( id );
189 <      if( currentStamp == NULL ){
190 <        sprintf( painCave.errMsg,
191 <                 "SimSetup error: Component \"%s\" was not found in the "
192 <                 "list of declared molecules\n",
193 <                 id );
194 <        painCave.isFatal = 1;
195 <        simError();
196 <      }
197 <      
198 <      headStamp->add( currentStamp );
199 <      comp_stamps[i] = headStamp->match( id );
200 <    }
201 <  }
201 >  //init the forceField paramters
202  
203 < #ifdef IS_MPI
204 <  strcpy( checkPointMsg, "Component stamps successfully extracted\n" );
205 <  MPIcheckPoint();
206 < #endif // is_mpi
207 <  
203 >  the_ff->readParams();
204  
205 +  // init the atoms
206  
207 +  int nMembers, nNew, rb1, rb2;
208  
209 <  // caclulate the number of atoms, bonds, bends and torsions
209 >  for (k = 0; k < nInfo; k++){
210 >    the_ff->setSimInfo(&(info[k]));
211  
212 <  tot_atoms = 0;
214 <  tot_bonds = 0;
215 <  tot_bends = 0;
216 <  tot_torsions = 0;
217 <  for( i=0; i<n_components; i++ ){
218 <    
219 <    tot_atoms +=    components_nmol[i] * comp_stamps[i]->getNAtoms();
220 <    tot_bonds +=    components_nmol[i] * comp_stamps[i]->getNBonds();
221 <    tot_bends +=    components_nmol[i] * comp_stamps[i]->getNBends();
222 <    tot_torsions += components_nmol[i] * comp_stamps[i]->getNTorsions();
223 <  }
212 >    atomOffset = 0;
213  
214 <  tot_SRI = tot_bonds + tot_bends + tot_torsions;
214 >    for (i = 0; i < info[k].n_mol; i++){
215 >      stampID = info[k].molecules[i].getStampID();
216 >      molName = comp_stamps[stampID]->getID();
217  
218 <  simnfo->n_atoms = tot_atoms;
219 <  simnfo->n_bonds = tot_bonds;
220 <  simnfo->n_bends = tot_bends;
221 <  simnfo->n_torsions = tot_torsions;
222 <  simnfo->n_SRI = tot_SRI;
232 <  simnfo->n_mol = tot_nmol;
218 >      molInfo.nAtoms = comp_stamps[stampID]->getNAtoms();
219 >      molInfo.nBonds = comp_stamps[stampID]->getNBonds();
220 >      molInfo.nBends = comp_stamps[stampID]->getNBends();
221 >      molInfo.nTorsions = comp_stamps[stampID]->getNTorsions();
222 >      molInfo.nRigidBodies = comp_stamps[stampID]->getNRigidBodies();
223  
224 <  
225 < #ifdef IS_MPI
224 >      nCutoffGroups = comp_stamps[stampID]->getNCutoffGroups();
225 >      
226 >      molInfo.myAtoms = &(info[k].atoms[atomOffset]);
227  
228 <  // divide the molecules among processors here.
229 <  
230 <  mpiSim = new mpiSimulation( simnfo );
231 <  
241 <  
228 >      if (molInfo.nBonds > 0)
229 >        molInfo.myBonds = new Bond*[molInfo.nBonds];
230 >      else
231 >        molInfo.myBonds = NULL;
232  
233 <  globalIndex = mpiSim->divideLabor();
233 >      if (molInfo.nBends > 0)
234 >        molInfo.myBends = new Bend*[molInfo.nBends];
235 >      else
236 >        molInfo.myBends = NULL;
237  
238 +      if (molInfo.nTorsions > 0)
239 +        molInfo.myTorsions = new Torsion *[molInfo.nTorsions];
240 +      else
241 +        molInfo.myTorsions = NULL;
242  
243 <
244 <  // set up the local variables
245 <  
249 <  int localMol, allMol;
250 <  int local_atoms, local_bonds, local_bends, local_torsions, local_SRI;
251 <  
252 <  allMol = 0;
253 <  localMol = 0;
254 <  local_atoms = 0;
255 <  local_bonds = 0;
256 <  local_bends = 0;
257 <  local_torsions = 0;
258 <  for( i=0; i<n_components; i++ ){
259 <
260 <    for( j=0; j<components_nmol[i]; j++ ){
243 >      theBonds = new bond_pair[molInfo.nBonds];
244 >      theBends = new bend_set[molInfo.nBends];
245 >      theTorsions = new torsion_set[molInfo.nTorsions];
246        
247 <      if( mpiSim->getMyMolStart() <= allMol &&
263 <          allMol <= mpiSim->getMyMolEnd() ){
264 <        
265 <        local_atoms +=    comp_stamps[i]->getNAtoms();
266 <        local_bonds +=    comp_stamps[i]->getNBonds();
267 <        local_bends +=    comp_stamps[i]->getNBends();
268 <        local_torsions += comp_stamps[i]->getNTorsions();
269 <        localMol++;
270 <      }      
271 <      allMol++;
272 <    }
273 <  }
274 <  local_SRI = local_bonds + local_bends + local_torsions;
275 <  
247 >      // make the Atoms
248  
249 <  simnfo->n_atoms = mpiSim->getMyNlocal();  
250 <  
279 <  if( local_atoms != simnfo->n_atoms ){
280 <    sprintf( painCave.errMsg,
281 <             "SimSetup error: mpiSim's localAtom (%d) and SimSetup's"
282 <             " localAtom (%d) are note equal.\n",
283 <             simnfo->n_atoms,
284 <             local_atoms );
285 <    painCave.isFatal = 1;
286 <    simError();
287 <  }
249 >      for (j = 0; j < molInfo.nAtoms; j++){
250 >        currentAtom = comp_stamps[stampID]->getAtom(j);
251  
252 <  simnfo->n_bonds = local_bonds;
253 <  simnfo->n_bends = local_bends;
254 <  simnfo->n_torsions = local_torsions;
255 <  simnfo->n_SRI = local_SRI;
256 <  simnfo->n_mol = localMol;
252 >        if (currentAtom->haveOrientation()){
253 >          dAtom = new DirectionalAtom((j + atomOffset),
254 >                                      info[k].getConfiguration());
255 >          info[k].n_oriented++;
256 >          molInfo.myAtoms[j] = dAtom;
257  
258 <  strcpy( checkPointMsg, "Passed nlocal consistency check." );
259 <  MPIcheckPoint();
260 <  
298 <  
299 < #endif // is_mpi
300 <  
258 >          // Directional Atoms have standard unit vectors which are oriented
259 >          // in space using the three Euler angles.  We assume the standard
260 >          // unit vector was originally along the z axis below.
261  
262 <  // create the atom and short range interaction arrays
262 >          phi = currentAtom->getEulerPhi() * M_PI / 180.0;
263 >          theta = currentAtom->getEulerTheta() * M_PI / 180.0;
264 >          psi = currentAtom->getEulerPsi()* M_PI / 180.0;
265  
266 <  Atom::createArrays(simnfo->n_atoms);
267 <  the_atoms = new Atom*[simnfo->n_atoms];
268 <  the_molecules = new Molecule[simnfo->n_mol];
266 >          dAtom->setUnitFrameFromEuler(phi, theta, psi);
267 >            
268 >        }
269 >        else{
270  
271 +          molInfo.myAtoms[j] = new Atom((j + atomOffset), info[k].getConfiguration());
272  
273 <  if( simnfo->n_SRI ){
310 <    the_sris = new SRI*[simnfo->n_SRI];
311 <    the_excludes = new int[2 * simnfo->n_SRI];
312 <    simnfo->globalExcludes = new int;
313 <    simnfo->n_exclude = tot_SRI;
314 <  }
315 <  else{
316 <    
317 <    the_excludes = new int[2];
318 <    the_excludes[0] = 0;
319 <    the_excludes[1] = 0;
320 <    simnfo->globalExcludes = new int;
321 <    simnfo->globalExcludes[0] = 0;
273 >        }
274  
275 <    simnfo->n_exclude = 1;
276 <  }
275 >        molInfo.myAtoms[j]->setType(currentAtom->getType());
276 > #ifdef IS_MPI
277  
278 <  // set the arrays into the SimInfo object
278 >        molInfo.myAtoms[j]->setGlobalIndex(globalAtomIndex[j + atomOffset]);
279  
280 <  simnfo->atoms = the_atoms;
281 <  simnfo->sr_interactions = the_sris;
330 <  simnfo->nGlobalExcludes = 0;
331 <  simnfo->excludes = the_excludes;
280 > #endif // is_mpi
281 >      }
282  
283 +      // make the bonds
284 +      for (j = 0; j < molInfo.nBonds; j++){
285 +        currentBond = comp_stamps[stampID]->getBond(j);
286 +        theBonds[j].a = currentBond->getA() + atomOffset;
287 +        theBonds[j].b = currentBond->getB() + atomOffset;
288  
289 <  // get some of the tricky things that may still be in the globals
289 >        tempI = theBonds[j].a;
290 >        tempJ = theBonds[j].b;
291  
336  
337  if( the_globals->haveBox() ){
338    simnfo->box_x = the_globals->getBox();
339    simnfo->box_y = the_globals->getBox();
340    simnfo->box_z = the_globals->getBox();
341  }
342  else if( the_globals->haveDensity() ){
343
344    double vol;
345    vol = (double)tot_nmol / the_globals->getDensity();
346    simnfo->box_x = pow( vol, ( 1.0 / 3.0 ) );
347    simnfo->box_y = simnfo->box_x;
348    simnfo->box_z = simnfo->box_x;
349  }
350  else{
351    if( !the_globals->haveBoxX() ){
352      sprintf( painCave.errMsg,
353               "SimSetup error, no periodic BoxX size given.\n" );
354      painCave.isFatal = 1;
355      simError();
356    }
357    simnfo->box_x = the_globals->getBoxX();
358
359    if( !the_globals->haveBoxY() ){
360      sprintf( painCave.errMsg,
361               "SimSetup error, no periodic BoxY size given.\n" );
362      painCave.isFatal = 1;
363      simError();
364    }
365    simnfo->box_y = the_globals->getBoxY();
366
367    if( !the_globals->haveBoxZ() ){
368      sprintf( painCave.errMsg,
369               "SimSetup error, no periodic BoxZ size given.\n" );
370      painCave.isFatal = 1;
371      simError();
372    }
373    simnfo->box_z = the_globals->getBoxZ();
374  }
375
292   #ifdef IS_MPI
293 <  strcpy( checkPointMsg, "Box size set up" );
294 <  MPIcheckPoint();
295 < #endif // is_mpi
293 >        exI = info[k].atoms[tempI]->getGlobalIndex() + 1;
294 >        exJ = info[k].atoms[tempJ]->getGlobalIndex() + 1;
295 > #else
296 >        exI = tempI + 1;
297 >        exJ = tempJ + 1;
298 > #endif
299  
300 +        info[k].excludes->addPair(exI, exJ);
301 +      }
302  
303 <  // initialize the arrays
303 >      //make the bends
304 >      for (j = 0; j < molInfo.nBends; j++){
305 >        currentBend = comp_stamps[stampID]->getBend(j);
306 >        theBends[j].a = currentBend->getA() + atomOffset;
307 >        theBends[j].b = currentBend->getB() + atomOffset;
308 >        theBends[j].c = currentBend->getC() + atomOffset;
309  
310 <  the_ff->setSimInfo( simnfo );
310 >        if (currentBend->haveExtras()){
311 >          extras = currentBend->getExtras();
312 >          current_extra = extras;
313  
314 <  makeAtoms();
315 <  simnfo->identArray = new int[simnfo->n_atoms];
316 <  for(i=0; i<simnfo->n_atoms; i++){
317 <    simnfo->identArray[i] = the_atoms[i]->getIdent();
318 <  }
319 <  
320 <  if( tot_bonds ){
393 <    makeBonds();
394 <  }
314 >          while (current_extra != NULL){
315 >            if (!strcmp(current_extra->getlhs(), "ghostVectorSource")){
316 >              switch (current_extra->getType()){
317 >                case 0:
318 >                  theBends[j].ghost = current_extra->getInt() + atomOffset;
319 >                  theBends[j].isGhost = 1;
320 >                  break;
321  
322 <  if( tot_bends ){
323 <    makeBends();
324 <  }
322 >                case 1:
323 >                  theBends[j].ghost = (int) current_extra->getDouble() +
324 >                                      atomOffset;
325 >                  theBends[j].isGhost = 1;
326 >                  break;
327  
328 <  if( tot_torsions ){
329 <    makeTorsions();
330 <  }
328 >                default:
329 >                  sprintf(painCave.errMsg,
330 >                          "SimSetup Error: ghostVectorSource was neither a "
331 >                          "double nor an int.\n"
332 >                          "-->Bend[%d] in %s\n",
333 >                          j, comp_stamps[stampID]->getID());
334 >                  painCave.isFatal = 1;
335 >                  simError();
336 >              }
337 >            }
338 >            else{
339 >              sprintf(painCave.errMsg,
340 >                      "SimSetup Error: unhandled bend assignment:\n"
341 >                      "    -->%s in Bend[%d] in %s\n",
342 >                      current_extra->getlhs(), j, comp_stamps[stampID]->getID());
343 >              painCave.isFatal = 1;
344 >              simError();
345 >            }
346  
347 +            current_extra = current_extra->getNext();
348 +          }
349 +        }
350  
351 <  if (the_globals->getUseRF() ) {
352 <    simnfo->useReactionField = 1;
353 <  
354 <    if( !the_globals->haveECR() ){
355 <      sprintf( painCave.errMsg,
356 <               "SimSetup Warning: using default value of 1/2 the smallest "
357 <               "box length for the electrostaticCutoffRadius.\n"
358 <               "I hope you have a very fast processor!\n");
359 <      painCave.isFatal = 0;
360 <      simError();
361 <      double smallest;
362 <      smallest = simnfo->box_x;
363 <      if (simnfo->box_y <= smallest) smallest = simnfo->box_y;
418 <      if (simnfo->box_z <= smallest) smallest = simnfo->box_z;
419 <      simnfo->ecr = 0.5 * smallest;
420 <    } else {
421 <      simnfo->ecr        = the_globals->getECR();
422 <    }
351 >        if (theBends[j].isGhost) {
352 >          
353 >          tempI = theBends[j].a;
354 >          tempJ = theBends[j].b;
355 >          
356 > #ifdef IS_MPI
357 >          exI = info[k].atoms[tempI]->getGlobalIndex() + 1;
358 >          exJ = info[k].atoms[tempJ]->getGlobalIndex() + 1;
359 > #else
360 >          exI = tempI + 1;
361 >          exJ = tempJ + 1;
362 > #endif          
363 >          info[k].excludes->addPair(exI, exJ);
364  
365 <    if( !the_globals->haveEST() ){
425 <      sprintf( painCave.errMsg,
426 <               "SimSetup Warning: using default value of 0.05 * the "
427 <               "electrostaticCutoffRadius for the electrostaticSkinThickness\n"
428 <               );
429 <      painCave.isFatal = 0;
430 <      simError();
431 <      simnfo->est = 0.05 * simnfo->ecr;
432 <    } else {
433 <      simnfo->est        = the_globals->getEST();
434 <    }
435 <    
436 <    if(!the_globals->haveDielectric() ){
437 <      sprintf( painCave.errMsg,
438 <               "SimSetup Error: You are trying to use Reaction Field without"
439 <               "setting a dielectric constant!\n"
440 <               );
441 <      painCave.isFatal = 1;
442 <      simError();
443 <    }
444 <    simnfo->dielectric = the_globals->getDielectric();  
445 <  } else {
446 <    if (simnfo->n_dipoles) {
447 <      
448 <      if( !the_globals->haveECR() ){
449 <        sprintf( painCave.errMsg,
450 <                 "SimSetup Warning: using default value of 1/2 the smallest"
451 <                 "box length for the electrostaticCutoffRadius.\n"
452 <                 "I hope you have a very fast processor!\n");
453 <        painCave.isFatal = 0;
454 <        simError();
455 <        double smallest;
456 <        smallest = simnfo->box_x;
457 <        if (simnfo->box_y <= smallest) smallest = simnfo->box_y;
458 <        if (simnfo->box_z <= smallest) smallest = simnfo->box_z;
459 <        simnfo->ecr = 0.5 * smallest;
460 <      } else {
461 <        simnfo->ecr        = the_globals->getECR();
462 <      }
463 <      
464 <      if( !the_globals->haveEST() ){
465 <        sprintf( painCave.errMsg,
466 <                 "SimSetup Warning: using default value of 5% of the"
467 <                 "electrostaticCutoffRadius for the "
468 <                 "electrostaticSkinThickness\n"
469 <                 );
470 <        painCave.isFatal = 0;
471 <        simError();
472 <        simnfo->est = 0.05 * simnfo->ecr;
473 <      } else {
474 <        simnfo->est        = the_globals->getEST();
475 <      }
476 <    }
477 <  }  
365 >        } else {
366  
367 +          tempI = theBends[j].a;
368 +          tempJ = theBends[j].b;
369 +          tempK = theBends[j].c;
370 +          
371   #ifdef IS_MPI
372 <  strcpy( checkPointMsg, "electrostatic parameters check out" );
373 <  MPIcheckPoint();
374 < #endif // is_mpi
372 >          exI = info[k].atoms[tempI]->getGlobalIndex() + 1;
373 >          exJ = info[k].atoms[tempJ]->getGlobalIndex() + 1;
374 >          exK = info[k].atoms[tempK]->getGlobalIndex() + 1;
375 > #else
376 >          exI = tempI + 1;
377 >          exJ = tempJ + 1;
378 >          exK = tempK + 1;
379 > #endif
380 >          
381 >          info[k].excludes->addPair(exI, exK);
382 >          info[k].excludes->addPair(exI, exJ);
383 >          info[k].excludes->addPair(exJ, exK);
384 >        }
385 >      }
386  
387 < if( the_globals->haveInitialConfig() ){
388 <
389 <     InitializeFromFile* fileInit;
390 < #ifdef IS_MPI // is_mpi
391 <     if( worldRank == 0 ){
392 < #endif //is_mpi
393 <   fileInit = new InitializeFromFile( the_globals->getInitialConfig() );
387 >      for (j = 0; j < molInfo.nTorsions; j++){
388 >        currentTorsion = comp_stamps[stampID]->getTorsion(j);
389 >        theTorsions[j].a = currentTorsion->getA() + atomOffset;
390 >        theTorsions[j].b = currentTorsion->getB() + atomOffset;
391 >        theTorsions[j].c = currentTorsion->getC() + atomOffset;
392 >        theTorsions[j].d = currentTorsion->getD() + atomOffset;
393 >
394 >        tempI = theTorsions[j].a;      
395 >        tempJ = theTorsions[j].b;
396 >        tempK = theTorsions[j].c;
397 >        tempL = theTorsions[j].d;
398 >
399   #ifdef IS_MPI
400 <     }else fileInit = new InitializeFromFile( NULL );
400 >        exI = info[k].atoms[tempI]->getGlobalIndex() + 1;
401 >        exJ = info[k].atoms[tempJ]->getGlobalIndex() + 1;
402 >        exK = info[k].atoms[tempK]->getGlobalIndex() + 1;
403 >        exL = info[k].atoms[tempL]->getGlobalIndex() + 1;
404 > #else
405 >        exI = tempI + 1;
406 >        exJ = tempJ + 1;
407 >        exK = tempK + 1;
408 >        exL = tempL + 1;
409   #endif
494   fileInit->read_xyz( simnfo ); // default velocities on
410  
411 <   delete fileInit;
412 < }
413 < else{
411 >        info[k].excludes->addPair(exI, exJ);
412 >        info[k].excludes->addPair(exI, exK);
413 >        info[k].excludes->addPair(exI, exL);        
414 >        info[k].excludes->addPair(exJ, exK);
415 >        info[k].excludes->addPair(exJ, exL);
416 >        info[k].excludes->addPair(exK, exL);
417 >      }
418  
419 < #ifdef IS_MPI
419 >      
420 >      molInfo.myRigidBodies.clear();
421 >      
422 >      for (j = 0; j < molInfo.nRigidBodies; j++){
423  
424 <  // no init from bass
425 <  
504 <  sprintf( painCave.errMsg,
505 <           "Cannot intialize a parallel simulation without an initial configuration file.\n" );
506 <  painCave.isFatal;
507 <  simError();
508 <  
509 < #else
424 >        currentRigidBody = comp_stamps[stampID]->getRigidBody(j);
425 >        nMembers = currentRigidBody->getNMembers();
426  
427 <  initFromBass();
427 >        // Create the Rigid Body:
428  
429 +        myRB = new RigidBody();
430  
431 < #endif
432 < }
431 >        sprintf(rbName,"%s_RB_%d", molName, j);
432 >        myRB->setType(rbName);
433 >        
434 >        for (rb1 = 0; rb1 < nMembers; rb1++) {
435  
436 < #ifdef IS_MPI
437 <  strcpy( checkPointMsg, "Successfully read in the initial configuration" );
519 <  MPIcheckPoint();
520 < #endif // is_mpi
436 >          // molI is atom numbering inside this molecule
437 >          molI = currentRigidBody->getMember(rb1);    
438  
439 +          // tempI is atom numbering on local processor
440 +          tempI = molI + atomOffset;
441  
442 <  
443 <
444 <  
442 >          // currentAtom is the AtomStamp (which we need for
443 >          // rigid body reference positions)
444 >          currentAtom = comp_stamps[stampID]->getAtom(molI);
445  
446 <  
446 >          // When we add to the rigid body, add the atom itself and
447 >          // the stamp info:
448 >
449 >          myRB->addAtom(info[k].atoms[tempI], currentAtom);
450 >          
451 >          // Add this atom to the Skip List for the integrators
452   #ifdef IS_MPI
453 <  if( worldRank == 0 ){
454 < #endif // is_mpi
455 <    
456 <    if( the_globals->haveFinalConfig() ){
457 <      strcpy( simnfo->finalName, the_globals->getFinalConfig() );
458 <    }
459 <    else{
460 <      strcpy( simnfo->finalName, inFileName );
461 <      char* endTest;
462 <      int nameLength = strlen( simnfo->finalName );
463 <      endTest = &(simnfo->finalName[nameLength - 5]);
464 <      if( !strcmp( endTest, ".bass" ) ){
465 <        strcpy( endTest, ".eor" );
453 >          slI = info[k].atoms[tempI]->getGlobalIndex();
454 > #else
455 >          slI = tempI;
456 > #endif
457 >          skipList.insert(slI);
458 >          
459 >        }
460 >        
461 >        for(rb1 = 0; rb1 < nMembers - 1; rb1++) {
462 >          for(rb2 = rb1+1; rb2 < nMembers; rb2++) {
463 >            
464 >            tempI = currentRigidBody->getMember(rb1);
465 >            tempJ = currentRigidBody->getMember(rb2);
466 >            
467 >            // Some explanation is required here.
468 >            // Fortran indexing starts at 1, while c indexing starts at 0
469 >            // Also, in parallel computations, the GlobalIndex is
470 >            // used for the exclude list:
471 >            
472 > #ifdef IS_MPI
473 >            exI = molInfo.myAtoms[tempI]->getGlobalIndex() + 1;
474 >            exJ = molInfo.myAtoms[tempJ]->getGlobalIndex() + 1;
475 > #else
476 >            exI = molInfo.myAtoms[tempI]->getIndex() + 1;
477 >            exJ = molInfo.myAtoms[tempJ]->getIndex() + 1;
478 > #endif
479 >            
480 >            info[k].excludes->addPair(exI, exJ);
481 >            
482 >          }
483 >        }
484 >
485 >        molInfo.myRigidBodies.push_back(myRB);
486 >        info[k].rigidBodies.push_back(myRB);
487        }
488 <      else if( !strcmp( endTest, ".BASS" ) ){
489 <        strcpy( endTest, ".eor" );
490 <      }
491 <      else{
492 <        endTest = &(simnfo->finalName[nameLength - 4]);
493 <        if( !strcmp( endTest, ".bss" ) ){
494 <          strcpy( endTest, ".eor" );
495 <        }
496 <        else if( !strcmp( endTest, ".mdl" ) ){
497 <          strcpy( endTest, ".eor" );
498 <        }
554 <        else{
555 <          strcat( simnfo->finalName, ".eor" );
556 <        }
557 <      }
558 <    }
559 <    
560 <    // make the sample and status out names
561 <    
562 <    strcpy( simnfo->sampleName, inFileName );
563 <    char* endTest;
564 <    int nameLength = strlen( simnfo->sampleName );
565 <    endTest = &(simnfo->sampleName[nameLength - 5]);
566 <    if( !strcmp( endTest, ".bass" ) ){
567 <      strcpy( endTest, ".dump" );
568 <    }
569 <    else if( !strcmp( endTest, ".BASS" ) ){
570 <      strcpy( endTest, ".dump" );
571 <    }
572 <    else{
573 <      endTest = &(simnfo->sampleName[nameLength - 4]);
574 <      if( !strcmp( endTest, ".bss" ) ){
575 <        strcpy( endTest, ".dump" );
576 <      }
577 <      else if( !strcmp( endTest, ".mdl" ) ){
578 <        strcpy( endTest, ".dump" );
579 <      }
580 <      else{
581 <        strcat( simnfo->sampleName, ".dump" );
582 <      }
583 <    }
584 <    
585 <    strcpy( simnfo->statusName, inFileName );
586 <    nameLength = strlen( simnfo->statusName );
587 <    endTest = &(simnfo->statusName[nameLength - 5]);
588 <    if( !strcmp( endTest, ".bass" ) ){
589 <      strcpy( endTest, ".stat" );
590 <    }
591 <    else if( !strcmp( endTest, ".BASS" ) ){
592 <      strcpy( endTest, ".stat" );
593 <    }
594 <    else{
595 <      endTest = &(simnfo->statusName[nameLength - 4]);
596 <      if( !strcmp( endTest, ".bss" ) ){
597 <        strcpy( endTest, ".stat" );
598 <      }
599 <      else if( !strcmp( endTest, ".mdl" ) ){
600 <        strcpy( endTest, ".stat" );
601 <      }
602 <      else{
603 <        strcat( simnfo->statusName, ".stat" );
604 <      }
605 <    }
606 <    
607 < #ifdef IS_MPI
608 <  }
609 < #endif // is_mpi
610 <  
611 <  // set the status, sample, and themal kick times
612 <  
613 <  if( the_globals->haveSampleTime() ){
614 <    simnfo->sampleTime = the_globals->getSampleTime();
615 <    simnfo->statusTime = simnfo->sampleTime;
616 <    simnfo->thermalTime = simnfo->sampleTime;
617 <  }
618 <  else{
619 <    simnfo->sampleTime = the_globals->getRunTime();
620 <    simnfo->statusTime = simnfo->sampleTime;
621 <    simnfo->thermalTime = simnfo->sampleTime;
622 <  }
488 >      
489 >
490 >      //create cutoff group for molecule
491 >
492 >      cutoffAtomSet.clear();
493 >      molInfo.myCutoffGroups.clear();
494 >      
495 >      for (j = 0; j < nCutoffGroups; j++){
496 >
497 >        currentCutoffGroup = comp_stamps[stampID]->getCutoffGroup(j);
498 >        nMembers = currentCutoffGroup->getNMembers();
499  
500 <  if( the_globals->haveStatusTime() ){
501 <    simnfo->statusTime = the_globals->getStatusTime();
502 <  }
500 >        myCutoffGroup = new CutoffGroup();
501 >        
502 >        for (int cg = 0; cg < nMembers; cg++) {
503  
504 <  if( the_globals->haveThermalTime() ){
505 <    simnfo->thermalTime = the_globals->getThermalTime();
630 <  }
504 >          // molI is atom numbering inside this molecule
505 >          molI = currentCutoffGroup->getMember(cg);    
506  
507 <  // check for the temperature set flag
507 >          // tempI is atom numbering on local processor
508 >          tempI = molI + atomOffset;
509 >          
510 >          myCutoffGroup->addAtom(info[k].atoms[tempI]);          
511  
512 <  if( the_globals->haveTempSet() ) simnfo->setTemp = the_globals->getTempSet();
512 >          cutoffAtomSet.insert(tempI);
513 >        }
514  
515 +        molInfo.myCutoffGroups.push_back(myCutoffGroup);
516 +      }//end for (j = 0; j < molInfo.nCutoffGroups; j++)
517  
518 < //   // make the longe range forces and the integrator
518 >      //creat a cutoff group for every atom  in current molecule which does not belong to cutoffgroup defined at mdl file
519  
520 < //   new AllLong( simnfo );
520 >      for(j = 0; j < molInfo.nAtoms; j++){
521  
522 <  if( !strcmp( force_field, "TraPPE" ) ) new Verlet( *simnfo, the_ff );
523 <  if( !strcmp( force_field, "DipoleTest" ) ) new Symplectic( simnfo, the_ff );
524 <  if( !strcmp( force_field, "TraPPE_Ex" ) ) new Symplectic( simnfo, the_ff );
525 <  if( !strcmp( force_field, "LJ" ) ) new Verlet( *simnfo, the_ff );
522 >        if(cutoffAtomSet.find(molInfo.myAtoms[j]->getIndex()) == cutoffAtomSet.end()){
523 >          myCutoffGroup = new CutoffGroup();
524 >          myCutoffGroup->addAtom(molInfo.myAtoms[j]);
525 >          molInfo.myCutoffGroups.push_back(myCutoffGroup);
526 >        }
527 >          
528 >      }
529  
530 +              
531  
532  
533 <  // initialize the Fortran
534 <  
650 <  simnfo->refreshSim();
651 <  
652 <  if( !strcmp( simnfo->mixingRule, "standard") ){
653 <    the_ff->initForceField( LB_MIXING_RULE );
654 <  }
655 <  else if( !strcmp( simnfo->mixingRule, "explicit") ){
656 <    the_ff->initForceField( EXPLICIT_MIXING_RULE );
657 <  }
658 <  else{
659 <    sprintf( painCave.errMsg,
660 <             "SimSetup Error: unknown mixing rule -> \"%s\"\n",
661 <             simnfo->mixingRule );
662 <    painCave.isFatal = 1;
663 <    simError();
664 <  }
533 >      // After this is all set up, scan through the atoms to
534 >      // see if they can be added to the integrableObjects:
535  
536 +      molInfo.myIntegrableObjects.clear();
537 +      
538  
539 +      for (j = 0; j < molInfo.nAtoms; j++){
540 +
541   #ifdef IS_MPI
542 <  strcpy( checkPointMsg,
543 <          "Successfully intialized the mixingRule for Fortran." );
544 <  MPIcheckPoint();
545 < #endif // is_mpi
672 < }
542 >        slJ = molInfo.myAtoms[j]->getGlobalIndex();
543 > #else
544 >        slJ = j+atomOffset;
545 > #endif
546  
547 +        // if they aren't on the skip list, then they can be integrated
548  
549 < void SimSetup::makeMolecules( void ){
549 >        if (skipList.find(slJ) == skipList.end()) {
550 >          mySD = (StuntDouble *) molInfo.myAtoms[j];
551 >          info[k].integrableObjects.push_back(mySD);
552 >          molInfo.myIntegrableObjects.push_back(mySD);
553 >        }
554 >      }
555  
556 <  int i, j, exI, exJ, tempEx, stampID, atomOffset;
678 <  molInit info;
679 <  DirectionalAtom* dAtom;
680 <  AtomStamp* currentAtom;
681 <  BondStamp* currentBond;
682 <  BendStamp* currentBend;
683 <  TorsionStamp* currentTorsion;
684 <  
685 <  //init the forceField paramters
556 >      // all rigid bodies are integrated:
557  
558 <  the_ff->readParams();
559 <
560 <  
561 <  // init the molecules
691 <
692 <  atomOffset = 0;
693 <  for(i=0; i<simnfo->n_mol; i++){
694 <    
695 <    stampID = the_molecules[i].getStampID();
696 <
697 <    info.nAtoms    = comp_stamps[stampID]->getNAtoms();
698 <    info.nBonds    = comp_stamps[stampID]->getNBonds();
699 <    info.nBends    = comp_stamps[stampID]->getNBends();
700 <    info.nTorsions = comp_stamps[stampID]->getNTorsions();
701 <    
702 <    info.myAtoms = &the_atoms[atomOffset];
703 <    info.myBonds = new Bond*[info.nBonds];
704 <    info.myBends = new Bend*[info.nBends];
705 <    info.myTorsions = new Torsions*[info.nTorsions];
706 <
707 <    theBonds = new bond_pair[info.nBonds];
708 <    theBends = new bend_set[info.nBends];
709 <    theTorsions = new torsion_set[info.nTorsions];
710 <    
711 <    // make the Atoms
712 <    
713 <    for(j=0; j<info.nAtoms; j++){
714 <      
715 <      currentAtom = theComponents[stampID]->getAtom( j );
716 <      if( currentAtom->haveOrientation() ){
717 <        
718 <        dAtom = new DirectionalAtom(j + atomOffset);
719 <        simnfo->n_oriented++;
720 <        info.myAtoms[j] = dAtom;
721 <        
722 <        ux = currentAtom->getOrntX();
723 <        uy = currentAtom->getOrntY();
724 <        uz = currentAtom->getOrntZ();
725 <        
726 <        uSqr = (ux * ux) + (uy * uy) + (uz * uz);
727 <        
728 <        u = sqrt( uSqr );
729 <        ux = ux / u;
730 <        uy = uy / u;
731 <        uz = uz / u;
732 <        
733 <        dAtom->setSUx( ux );
734 <        dAtom->setSUy( uy );
735 <        dAtom->setSUz( uz );
558 >      for (j = 0; j < molInfo.nRigidBodies; j++) {
559 >        mySD = (StuntDouble *) molInfo.myRigidBodies[j];
560 >        info[k].integrableObjects.push_back(mySD);      
561 >        molInfo.myIntegrableObjects.push_back(mySD);
562        }
737      else{
738        info.myAtoms[j] = new GeneralAtom(j + atomOffset);
739      }
740      info.myAtoms[j]->setType( currentAtom->getType() );
563      
742 #ifdef IS_MPI
564        
565 <      info.myAtoms[j]->setGlobalIndex( globalIndex[j+atomOffset] );
565 >      // send the arrays off to the forceField for init.
566        
567 < #endif // is_mpi
568 <    }
569 <    
570 <    // make the bonds
571 <    for(j=0; j<nBonds; j++){
751 <      
752 <      currentBond = comp_stamps[stampID]->getBond( j );
753 <      theBonds[j].a = currentBond->getA() + atomOffset;
754 <      theBonds[j].b = currentBond->getB() + atomOffset;
567 >      the_ff->initializeAtoms(molInfo.nAtoms, molInfo.myAtoms);
568 >      the_ff->initializeBonds(molInfo.nBonds, molInfo.myBonds, theBonds);
569 >      the_ff->initializeBends(molInfo.nBends, molInfo.myBends, theBends);
570 >      the_ff->initializeTorsions(molInfo.nTorsions, molInfo.myTorsions,
571 >                                 theTorsions);
572  
573 <      exI = theBonds[i].a;
757 <      exJ = theBonds[i].b;
573 >      info[k].molecules[i].initialize(molInfo);
574  
759      // exclude_I must always be the smaller of the pair
760      if( exI > exJ ){
761        tempEx = exI;
762        exI = exJ;
763        exJ = tempEx;
764      }
765 #ifdef IS_MPI
766      
767      the_excludes[index*2] =    
768        the_atoms[exI]->getGlobalIndex() + 1;
769      the_excludes[index*2 + 1] =
770        the_atoms[exJ]->getGlobalIndex() + 1;
771      
772 #else  // isn't MPI
773      
774      the_excludes[index*2] =     exI + 1;
775      the_excludes[index*2 + 1] = exJ + 1;
776      // fortran index from 1 (hence the +1 in the indexing)
575  
576 < #endif  //is_mpi
577 <    
576 >      atomOffset += molInfo.nAtoms;
577 >      delete[] theBonds;
578 >      delete[] theBends;
579 >      delete[] theTorsions;
580 >    }    
581    }
582  
583 + #ifdef IS_MPI
584 +  sprintf(checkPointMsg, "all molecules initialized succesfully");
585 +  MPIcheckPoint();
586 + #endif // is_mpi
587  
588 + }
589  
590 + void SimSetup::initFromBass(void){
591 +  int i, j, k;
592 +  int n_cells;
593 +  double cellx, celly, cellz;
594 +  double temp1, temp2, temp3;
595 +  int n_per_extra;
596 +  int n_extra;
597 +  int have_extra, done;
598  
599 +  double vel[3];
600 +  vel[0] = 0.0;
601 +  vel[1] = 0.0;
602 +  vel[2] = 0.0;
603  
604 +  temp1 = (double) tot_nmol / 4.0;
605 +  temp2 = pow(temp1, (1.0 / 3.0));
606 +  temp3 = ceil(temp2);
607  
608 +  have_extra = 0;
609 +  if (temp2 < temp3){
610 +    // we have a non-complete lattice
611 +    have_extra = 1;
612  
613 +    n_cells = (int) temp3 - 1;
614 +    cellx = info[0].boxL[0] / temp3;
615 +    celly = info[0].boxL[1] / temp3;
616 +    cellz = info[0].boxL[2] / temp3;
617 +    n_extra = tot_nmol - (4 * n_cells * n_cells * n_cells);
618 +    temp1 = ((double) n_extra) / (pow(temp3, 3.0) - pow(n_cells, 3.0));
619 +    n_per_extra = (int) ceil(temp1);
620  
621 +    if (n_per_extra > 4){
622 +      sprintf(painCave.errMsg,
623 +              "SimSetup error. There has been an error in constructing"
624 +              " the non-complete lattice.\n");
625 +      painCave.isFatal = 1;
626 +      simError();
627 +    }
628 +  }
629 +  else{
630 +    n_cells = (int) temp3;
631 +    cellx = info[0].boxL[0] / temp3;
632 +    celly = info[0].boxL[1] / temp3;
633 +    cellz = info[0].boxL[2] / temp3;
634 +  }
635  
636 +  current_mol = 0;
637 +  current_comp_mol = 0;
638 +  current_comp = 0;
639 +  current_atom_ndx = 0;
640  
641 +  for (i = 0; i < n_cells ; i++){
642 +    for (j = 0; j < n_cells; j++){
643 +      for (k = 0; k < n_cells; k++){
644 +        makeElement(i * cellx, j * celly, k * cellz);
645  
646 +        makeElement(i * cellx + 0.5 * cellx, j * celly + 0.5 * celly, k * cellz);
647  
648 +        makeElement(i * cellx, j * celly + 0.5 * celly, k * cellz + 0.5 * cellz);
649  
650 +        makeElement(i * cellx + 0.5 * cellx, j * celly, k * cellz + 0.5 * cellz);
651 +      }
652 +    }
653 +  }
654  
655 +  if (have_extra){
656 +    done = 0;
657  
658 < void SimSetup::makeAtoms( void ){
658 >    int start_ndx;
659 >    for (i = 0; i < (n_cells + 1) && !done; i++){
660 >      for (j = 0; j < (n_cells + 1) && !done; j++){
661 >        if (i < n_cells){
662 >          if (j < n_cells){
663 >            start_ndx = n_cells;
664 >          }
665 >          else
666 >            start_ndx = 0;
667 >        }
668 >        else
669 >          start_ndx = 0;
670  
671 <  int i, j, k, index;
672 <  double ux, uy, uz, uSqr, u;
673 <  AtomStamp* current_atom;
671 >        for (k = start_ndx; k < (n_cells + 1) && !done; k++){
672 >          makeElement(i * cellx, j * celly, k * cellz);
673 >          done = (current_mol >= tot_nmol);
674  
675 <  DirectionalAtom* dAtom;
676 <  int molIndex, molStart, molEnd, nMemb, lMolIndex;
675 >          if (!done && n_per_extra > 1){
676 >            makeElement(i * cellx + 0.5 * cellx, j * celly + 0.5 * celly,
677 >                        k * cellz);
678 >            done = (current_mol >= tot_nmol);
679 >          }
680  
681 <  lMolIndex = 0;
682 <  molIndex = 0;
683 <  index = 0;
684 <  for( i=0; i<n_components; i++ ){
681 >          if (!done && n_per_extra > 2){
682 >            makeElement(i * cellx, j * celly + 0.5 * celly,
683 >                        k * cellz + 0.5 * cellz);
684 >            done = (current_mol >= tot_nmol);
685 >          }
686  
687 <    for( j=0; j<components_nmol[i]; j++ ){
688 <
689 < #ifdef IS_MPI
690 <      if( mpiSim->getMyMolStart() <= molIndex &&
691 <          molIndex <= mpiSim->getMyMolEnd() ){
692 < #endif // is_mpi        
816 <
817 <        molStart = index;
818 <        nMemb = comp_stamps[i]->getNAtoms();
819 <        for( k=0; k<comp_stamps[i]->getNAtoms(); k++ ){
820 <          
821 <          current_atom = comp_stamps[i]->getAtom( k );
822 <          if( current_atom->haveOrientation() ){
823 <            
824 <            dAtom = new DirectionalAtom(index);
825 <            simnfo->n_oriented++;
826 <            the_atoms[index] = dAtom;
827 <            
828 <            ux = current_atom->getOrntX();
829 <            uy = current_atom->getOrntY();
830 <            uz = current_atom->getOrntZ();
831 <            
832 <            uSqr = (ux * ux) + (uy * uy) + (uz * uz);
833 <            
834 <            u = sqrt( uSqr );
835 <            ux = ux / u;
836 <            uy = uy / u;
837 <            uz = uz / u;
838 <            
839 <            dAtom->setSUx( ux );
840 <            dAtom->setSUy( uy );
841 <            dAtom->setSUz( uz );
842 <          }
843 <          else{
844 <            the_atoms[index] = new GeneralAtom(index);
845 <          }
846 <          the_atoms[index]->setType( current_atom->getType() );
847 <          the_atoms[index]->setIndex( index );
848 <          
849 <          // increment the index and repeat;
850 <          index++;
851 <        }
852 <        
853 <        molEnd = index -1;
854 <        the_molecules[lMolIndex].setNMembers( nMemb );
855 <        the_molecules[lMolIndex].setStartAtom( molStart );
856 <        the_molecules[lMolIndex].setEndAtom( molEnd );
857 <        the_molecules[lMolIndex].setStampID( i );
858 <        lMolIndex++;
859 <
860 < #ifdef IS_MPI
687 >          if (!done && n_per_extra > 3){
688 >            makeElement(i * cellx + 0.5 * cellx, j * celly,
689 >                        k * cellz + 0.5 * cellz);
690 >            done = (current_mol >= tot_nmol);
691 >          }
692 >        }
693        }
862 #endif //is_mpi
863      
864      molIndex++;
694      }
695    }
696  
697 < #ifdef IS_MPI
698 <    for( i=0; i<mpiSim->getMyNlocal(); i++ ) the_atoms[i]->setGlobalIndex( globalIndex[i] );
699 <    
871 <    delete[] globalIndex;
872 <
873 <    mpiSim->mpiRefresh();
874 < #endif //IS_MPI
875 <          
876 <  the_ff->initializeAtoms();
697 >  for (i = 0; i < info[0].n_atoms; i++){
698 >    info[0].atoms[i]->setVel(vel);
699 >  }
700   }
701  
702 < void SimSetup::makeBonds( void ){
702 > void SimSetup::makeElement(double x, double y, double z){
703 >  int k;
704 >  AtomStamp* current_atom;
705 >  DirectionalAtom* dAtom;
706 >  double rotMat[3][3];
707 >  double pos[3];
708  
709 <  int i, j, k, index, offset, molIndex, exI, exJ, tempEx;
710 <  bond_pair* the_bonds;
711 <  BondStamp* current_bond;
709 >  for (k = 0; k < comp_stamps[current_comp]->getNAtoms(); k++){
710 >    current_atom = comp_stamps[current_comp]->getAtom(k);
711 >    if (!current_atom->havePosition()){
712 >      sprintf(painCave.errMsg,
713 >              "SimSetup:initFromBass error.\n"
714 >              "\tComponent %s, atom %s does not have a position specified.\n"
715 >              "\tThe initialization routine is unable to give a start"
716 >              " position.\n",
717 >              comp_stamps[current_comp]->getID(), current_atom->getType());
718 >      painCave.isFatal = 1;
719 >      simError();
720 >    }
721  
722 <  the_bonds = new bond_pair[tot_bonds];
723 <  index = 0;
724 <  offset = 0;
888 <  molIndex = 0;
722 >    pos[0] = x + current_atom->getPosX();
723 >    pos[1] = y + current_atom->getPosY();
724 >    pos[2] = z + current_atom->getPosZ();
725  
726 <  for( i=0; i<n_components; i++ ){
726 >    info[0].atoms[current_atom_ndx]->setPos(pos);
727  
728 <    for( j=0; j<components_nmol[i]; j++ ){
728 >    if (info[0].atoms[current_atom_ndx]->isDirectional()){
729 >      dAtom = (DirectionalAtom *) info[0].atoms[current_atom_ndx];
730  
731 < #ifdef IS_MPI
732 <      if( mpiSim->getMyMolStart() <= molIndex &&
733 <          molIndex <= mpiSim->getMyMolEnd() ){
897 < #endif // is_mpi        
898 <        
899 <        for( k=0; k<comp_stamps[i]->getNBonds(); k++ ){
900 <          
901 <          current_bond = comp_stamps[i]->getBond( k );
902 <          the_bonds[index].a = current_bond->getA() + offset;
903 <          the_bonds[index].b = current_bond->getB() + offset;
731 >      rotMat[0][0] = 1.0;
732 >      rotMat[0][1] = 0.0;
733 >      rotMat[0][2] = 0.0;
734  
735 <          exI = the_bonds[index].a;
736 <          exJ = the_bonds[index].b;
735 >      rotMat[1][0] = 0.0;
736 >      rotMat[1][1] = 1.0;
737 >      rotMat[1][2] = 0.0;
738  
739 <          // exclude_I must always be the smaller of the pair
740 <          if( exI > exJ ){
741 <            tempEx = exI;
911 <            exI = exJ;
912 <            exJ = tempEx;
913 <          }
739 >      rotMat[2][0] = 0.0;
740 >      rotMat[2][1] = 0.0;
741 >      rotMat[2][2] = 1.0;
742  
743 <          
744 < #ifdef IS_MPI
743 >      dAtom->setA(rotMat);
744 >    }
745  
746 <          the_excludes[index*2] =    
919 <            the_atoms[exI]->getGlobalIndex() + 1;
920 <          the_excludes[index*2 + 1] =
921 <            the_atoms[exJ]->getGlobalIndex() + 1;
922 <
923 < #else  // isn't MPI
924 <          
925 <          the_excludes[index*2] =     exI + 1;
926 <          the_excludes[index*2 + 1] = exJ + 1;
927 <          // fortran index from 1 (hence the +1 in the indexing)
928 < #endif  //is_mpi
929 <          
930 <          // increment the index and repeat;
931 <          index++;
932 <        }
933 <        offset += comp_stamps[i]->getNAtoms();
934 <        
935 < #ifdef IS_MPI
936 <      }
937 < #endif //is_mpi
938 <      
939 <      molIndex++;
940 <    }      
746 >    current_atom_ndx++;
747    }
748  
749 <  the_ff->initializeBonds( the_bonds );
749 >  current_mol++;
750 >  current_comp_mol++;
751 >
752 >  if (current_comp_mol >= components_nmol[current_comp]){
753 >    current_comp_mol = 0;
754 >    current_comp++;
755 >  }
756   }
757  
946 void SimSetup::makeBends( void ){
758  
759 <  int i, j, k, index, offset, molIndex, exI, exJ, tempEx;
760 <  bend_set* the_bends;
950 <  BendStamp* current_bend;
951 <  LinkedAssign* extras;
952 <  LinkedAssign* current_extra;
953 <  
759 > void SimSetup::gatherInfo(void){
760 >  int i;
761  
762 <  the_bends = new bend_set[tot_bends];
763 <  index = 0;
957 <  offset = 0;
958 <  molIndex = 0;
959 <  for( i=0; i<n_components; i++ ){
762 >  ensembleCase = -1;
763 >  ffCase = -1;
764  
765 <    for( j=0; j<components_nmol[i]; j++ ){
765 >  // set the easy ones first
766  
767 < #ifdef IS_MPI
768 <      if( mpiSim->getMyMolStart() <= molIndex &&
769 <          molIndex <= mpiSim->getMyMolEnd() ){
770 < #endif // is_mpi        
767 >  for (i = 0; i < nInfo; i++){
768 >    info[i].target_temp = globals->getTargetTemp();
769 >    info[i].dt = globals->getDt();
770 >    info[i].run_time = globals->getRunTime();
771 >  }
772 >  n_components = globals->getNComponents();
773  
774 <        for( k=0; k<comp_stamps[i]->getNBends(); k++ ){
775 <          
776 <          current_bend = comp_stamps[i]->getBend( k );
777 <          the_bends[index].a = current_bend->getA() + offset;
778 <          the_bends[index].b = current_bend->getB() + offset;
779 <          the_bends[index].c = current_bend->getC() + offset;
780 <          
781 <          if( current_bend->haveExtras() ){
782 <            
783 <            extras = current_bend->getExtras();
784 <            current_extra = extras;
785 <            
786 <            while( current_extra != NULL ){
787 <              if( !strcmp( current_extra->getlhs(), "ghostVectorSource" )){
788 <                
789 <                switch( current_extra->getType() ){
790 <                  
791 <                case 0:
792 <                  the_bends[index].ghost =
793 <                    current_extra->getInt() + offset;
794 <                  the_bends[index].isGhost = 1;
795 <                  break;
796 <                  
797 <                case 1:
798 <                  the_bends[index].ghost =
799 <                    (int)current_extra->getDouble() + offset;
800 <                  the_bends[index].isGhost = 1;
801 <                  break;
802 <                  
803 <                default:
804 <                  sprintf( painCave.errMsg,
805 <                           "SimSetup Error: ghostVectorSource was neiter a "
806 <                           "double nor an int.\n"
807 <                           "-->Bend[%d] in %s\n",
808 <                           k, comp_stamps[i]->getID() );
809 <                  painCave.isFatal = 1;
810 <                  simError();
811 <                }
812 <              }
813 <              
814 <              else{
815 <                
816 <                sprintf( painCave.errMsg,
817 <                         "SimSetup Error: unhandled bend assignment:\n"
818 <                         "    -->%s in Bend[%d] in %s\n",
819 <                         current_extra->getlhs(),
820 <                         k, comp_stamps[i]->getID() );
821 <                painCave.isFatal = 1;
822 <                simError();
823 <              }
824 <              
825 <              current_extra = current_extra->getNext();
826 <            }
827 <          }
828 <          
829 <          if( !the_bends[index].isGhost ){
830 <            
831 <            exI = the_bends[index].a;
832 <            exJ = the_bends[index].c;
833 <          }
834 <          else{
835 <            
836 <            exI = the_bends[index].a;
837 <            exJ = the_bends[index].b;
838 <          }
839 <          
840 <          // exclude_I must always be the smaller of the pair
841 <          if( exI > exJ ){
842 <            tempEx = exI;
843 <            exI = exJ;
844 <            exJ = tempEx;
845 <          }
774 >
775 >  // get the forceField
776 >
777 >  strcpy(force_field, globals->getForceField());
778 >
779 >  if (!strcasecmp(force_field, "DUFF")){
780 >    ffCase = FF_DUFF;
781 >  }
782 >  else if (!strcasecmp(force_field, "LJ")){
783 >    ffCase = FF_LJ;
784 >  }
785 >  else if (!strcasecmp(force_field, "EAM")){
786 >    ffCase = FF_EAM;
787 >  }
788 >  else if (!strcasecmp(force_field, "WATER")){
789 >    ffCase = FF_H2O;
790 >  }
791 >  else{
792 >    sprintf(painCave.errMsg, "SimSetup Error. Unrecognized force field -> %s\n",
793 >            force_field);
794 >         painCave.isFatal = 1;
795 >         simError();
796 >  }
797 >
798 >    // get the ensemble
799 >
800 >  strcpy(ensemble, globals->getEnsemble());
801 >
802 >  if (!strcasecmp(ensemble, "NVE")){
803 >    ensembleCase = NVE_ENS;
804 >  }
805 >  else if (!strcasecmp(ensemble, "NVT")){
806 >    ensembleCase = NVT_ENS;
807 >  }
808 >  else if (!strcasecmp(ensemble, "NPTi") || !strcasecmp(ensemble, "NPT")){
809 >    ensembleCase = NPTi_ENS;
810 >  }
811 >  else if (!strcasecmp(ensemble, "NPTf")){
812 >    ensembleCase = NPTf_ENS;
813 >  }
814 >  else if (!strcasecmp(ensemble, "NPTxyz")){
815 >    ensembleCase = NPTxyz_ENS;
816 >  }
817 >  else{
818 >    sprintf(painCave.errMsg,
819 >            "SimSetup Warning. Unrecognized Ensemble -> %s \n"
820 >            "\treverting to NVE for this simulation.\n",
821 >            ensemble);
822 >         painCave.isFatal = 0;
823 >         simError();
824 >         strcpy(ensemble, "NVE");
825 >         ensembleCase = NVE_ENS;
826 >  }  
827 >
828 >  for (i = 0; i < nInfo; i++){
829 >    strcpy(info[i].ensemble, ensemble);
830 >
831 >    // get the mixing rule
832 >
833 >    strcpy(info[i].mixingRule, globals->getMixingRule());
834 >    info[i].usePBC = globals->getPBC();
835 >  }
836 >
837 >  // get the components and calculate the tot_nMol and indvidual n_mol
838 >
839 >  the_components = globals->getComponents();
840 >  components_nmol = new int[n_components];
841 >
842 >
843 >  if (!globals->haveNMol()){
844 >    // we don't have the total number of molecules, so we assume it is
845 >    // given in each component
846 >
847 >    tot_nmol = 0;
848 >    for (i = 0; i < n_components; i++){
849 >      if (!the_components[i]->haveNMol()){
850 >        // we have a problem
851 >        sprintf(painCave.errMsg,
852 >                "SimSetup Error. No global NMol or component NMol given.\n"
853 >                "\tCannot calculate the number of atoms.\n");
854 >        painCave.isFatal = 1;
855 >        simError();
856 >      }
857 >
858 >      tot_nmol += the_components[i]->getNMol();
859 >      components_nmol[i] = the_components[i]->getNMol();
860 >    }
861 >  }
862 >  else{
863 >    sprintf(painCave.errMsg,
864 >            "SimSetup error.\n"
865 >            "\tSorry, the ability to specify total"
866 >            " nMols and then give molfractions in the components\n"
867 >            "\tis not currently supported."
868 >            " Please give nMol in the components.\n");
869 >    painCave.isFatal = 1;
870 >    simError();
871 >  }
872  
873 +  //check whether sample time, status time, thermal time and reset time are divisble by dt
874 +  if (globals->haveSampleTime() && !isDivisible(globals->getSampleTime(), globals->getDt())){
875 +    sprintf(painCave.errMsg,
876 +            "Sample time is not divisible by dt.\n"
877 +            "\tThis will result in samples that are not uniformly\n"
878 +            "\tdistributed in time.  If this is a problem, change\n"
879 +            "\tyour sampleTime variable.\n");
880 +    painCave.isFatal = 0;
881 +    simError();    
882 +  }
883  
884 < #ifdef IS_MPI
884 >  if (globals->haveStatusTime() && !isDivisible(globals->getStatusTime(), globals->getDt())){
885 >    sprintf(painCave.errMsg,
886 >            "Status time is not divisible by dt.\n"
887 >            "\tThis will result in status reports that are not uniformly\n"
888 >            "\tdistributed in time.  If this is a problem, change \n"
889 >            "\tyour statusTime variable.\n");
890 >    painCave.isFatal = 0;
891 >    simError();    
892 >  }
893  
894 <          the_excludes[(index + tot_bonds)*2] =    
895 <            the_atoms[exI]->getGlobalIndex() + 1;
896 <          the_excludes[(index + tot_bonds)*2 + 1] =
897 <            the_atoms[exJ]->getGlobalIndex() + 1;
898 <          
899 < #else  // isn't MPI
900 <          
901 <          the_excludes[(index + tot_bonds)*2] =     exI + 1;
902 <          the_excludes[(index + tot_bonds)*2 + 1] = exJ + 1;
903 <          // fortran index from 1 (hence the +1 in the indexing)
904 < #endif  //is_mpi
905 <          
906 <          
907 <          // increment the index and repeat;
908 <          index++;
909 <        }
910 <        offset += comp_stamps[i]->getNAtoms();
894 >  if (globals->haveThermalTime() && !isDivisible(globals->getThermalTime(), globals->getDt())){
895 >    sprintf(painCave.errMsg,
896 >            "Thermal time is not divisible by dt.\n"
897 >            "\tThis will result in thermalizations that are not uniformly\n"
898 >            "\tdistributed in time.  If this is a problem, change \n"
899 >            "\tyour thermalTime variable.\n");
900 >    painCave.isFatal = 0;
901 >    simError();    
902 >  }  
903 >
904 >  if (globals->haveResetTime() && !isDivisible(globals->getResetTime(), globals->getDt())){
905 >    sprintf(painCave.errMsg,
906 >            "Reset time is not divisible by dt.\n"
907 >            "\tThis will result in integrator resets that are not uniformly\n"
908 >            "\tdistributed in time.  If this is a problem, change\n"
909 >            "\tyour resetTime variable.\n");
910 >    painCave.isFatal = 0;
911 >    simError();    
912 >  }
913 >
914 >  // set the status, sample, and thermal kick times
915 >
916 >  for (i = 0; i < nInfo; i++){
917 >    if (globals->haveSampleTime()){
918 >      info[i].sampleTime = globals->getSampleTime();
919 >      info[i].statusTime = info[i].sampleTime;
920 >    }
921 >    else{
922 >      info[i].sampleTime = globals->getRunTime();
923 >      info[i].statusTime = info[i].sampleTime;
924 >    }
925 >
926 >    if (globals->haveStatusTime()){
927 >      info[i].statusTime = globals->getStatusTime();
928 >    }
929 >
930 >    if (globals->haveThermalTime()){
931 >      info[i].thermalTime = globals->getThermalTime();
932 >    } else {
933 >      info[i].thermalTime = globals->getRunTime();
934 >    }
935 >
936 >    info[i].resetIntegrator = 0;
937 >    if( globals->haveResetTime() ){
938 >      info[i].resetTime = globals->getResetTime();
939 >      info[i].resetIntegrator = 1;
940 >    }
941 >
942 >    // check for the temperature set flag
943 >    
944 >    if (globals->haveTempSet())
945 >      info[i].setTemp = globals->getTempSet();
946 >
947 >    // check for the extended State init
948 >
949 >    info[i].useInitXSstate = globals->getUseInitXSstate();
950 >    info[i].orthoTolerance = globals->getOrthoBoxTolerance();
951 >
952 >    // check for thermodynamic integration
953 >    if (globals->getUseThermInt()) {
954 >      if (globals->haveThermIntLambda() && globals->haveThermIntK()) {
955 >        info[i].useThermInt = globals->getUseThermInt();
956 >        info[i].thermIntLambda = globals->getThermIntLambda();
957 >        info[i].thermIntK = globals->getThermIntK();
958          
959 < #ifdef IS_MPI
959 >        Restraints *myRestraint = new Restraints(tot_nmol, info[i].thermIntLambda, info[i].thermIntK);
960 >        info[i].restraint = myRestraint;
961        }
962 < #endif //is_mpi
963 <
964 <      molIndex++;
962 >      else {
963 >        sprintf(painCave.errMsg,
964 >                "SimSetup Error:\n"
965 >                "\tKeyword useThermInt was set to 'true' but\n"
966 >                "\tthermodynamicIntegrationLambda (and/or\n"
967 >                "\tthermodynamicIntegrationK) was not specified.\n"
968 >                "\tPlease provide a lambda value and k value in your .bass file.\n");
969 >        painCave.isFatal = 1;
970 >        simError();    
971 >      }
972      }
973 +    else if(globals->haveThermIntLambda() || globals->haveThermIntK()){
974 +        sprintf(painCave.errMsg,
975 +                "SimSetup Warning: If you want to use Thermodynamic\n"
976 +                "\tIntegration, set useThermInt to 'true' in your .bass file.\n"
977 +                "\tThe useThermInt keyword is 'false' by default, so your\n"
978 +                "\tlambda and/or k values are being ignored.\n");
979 +        painCave.isFatal = 0;
980 +        simError();  
981 +    }
982    }
983 +  
984 +  //setup seed for random number generator
985 +  int seedValue;
986  
987 +  if (globals->haveSeed()){
988 +    seedValue = globals->getSeed();
989 +
990 +    if(seedValue / 1E9 == 0){
991 +      sprintf(painCave.errMsg,
992 +              "Seed for sprng library should contain at least 9 digits\n"
993 +              "OOPSE will generate a seed for user\n");
994 +      painCave.isFatal = 0;
995 +      simError();
996 +
997 +      //using seed generated by system instead of invalid seed set by user
998 + #ifndef IS_MPI
999 +      seedValue = make_sprng_seed();
1000 + #else
1001 +      if (worldRank == 0){
1002 +        seedValue = make_sprng_seed();
1003 +      }
1004 +      MPI_Bcast(&seedValue, 1, MPI_INT, 0, MPI_COMM_WORLD);  
1005 + #endif      
1006 +    }
1007 +  }//end of if branch of globals->haveSeed()
1008 +  else{
1009 +    
1010 + #ifndef IS_MPI
1011 +    seedValue = make_sprng_seed();
1012 + #else
1013 +    if (worldRank == 0){
1014 +      seedValue = make_sprng_seed();
1015 +    }
1016 +    MPI_Bcast(&seedValue, 1, MPI_INT, 0, MPI_COMM_WORLD);  
1017 + #endif
1018 +  }//end of globals->haveSeed()
1019 +
1020 +  for (int i = 0; i < nInfo; i++){
1021 +    info[i].setSeed(seedValue);
1022 +  }
1023 +  
1024   #ifdef IS_MPI
1025 <  sprintf( checkPointMsg,
1072 <           "Successfully created the bends list.\n" );
1025 >  strcpy(checkPointMsg, "Successfully gathered all information from Bass\n");
1026    MPIcheckPoint();
1027   #endif // is_mpi
1075  
1076
1077  the_ff->initializeBends( the_bends );
1028   }
1029  
1080 void SimSetup::makeTorsions( void ){
1030  
1031 <  int i, j, k, index, offset, molIndex, exI, exJ, tempEx;
1032 <  torsion_set* the_torsions;
1033 <  TorsionStamp* current_torsion;
1031 > void SimSetup::finalInfoCheck(void){
1032 >  int index;
1033 >  int usesDipoles;
1034 >  int usesCharges;
1035 >  int i;
1036  
1037 <  the_torsions = new torsion_set[tot_torsions];
1038 <  index = 0;
1088 <  offset = 0;
1089 <  molIndex = 0;
1090 <  for( i=0; i<n_components; i++ ){
1037 >  for (i = 0; i < nInfo; i++){
1038 >    // check electrostatic parameters
1039  
1040 <    for( j=0; j<components_nmol[i]; j++ ){
1041 <
1040 >    index = 0;
1041 >    usesDipoles = 0;
1042 >    while ((index < info[i].n_atoms) && !usesDipoles){
1043 >      usesDipoles = (info[i].atoms[index])->hasDipole();
1044 >      index++;
1045 >    }
1046 >    index = 0;
1047 >    usesCharges = 0;
1048 >    while ((index < info[i].n_atoms) && !usesCharges){
1049 >      usesCharges= (info[i].atoms[index])->hasCharge();
1050 >      index++;
1051 >    }
1052   #ifdef IS_MPI
1053 <      if( mpiSim->getMyMolStart() <= molIndex &&
1054 <          molIndex <= mpiSim->getMyMolEnd() ){
1055 < #endif // is_mpi        
1053 >    int myUse = usesDipoles;
1054 >    MPI_Allreduce(&myUse, &usesDipoles, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
1055 > #endif //is_mpi
1056  
1057 <      for( k=0; k<comp_stamps[i]->getNTorsions(); k++ ){
1057 >    double theRcut, theRsw;
1058  
1059 <        current_torsion = comp_stamps[i]->getTorsion( k );
1060 <        the_torsions[index].a = current_torsion->getA() + offset;
1103 <        the_torsions[index].b = current_torsion->getB() + offset;
1104 <        the_torsions[index].c = current_torsion->getC() + offset;
1105 <        the_torsions[index].d = current_torsion->getD() + offset;
1059 >    if (globals->haveRcut()) {
1060 >      theRcut = globals->getRcut();
1061  
1062 <        exI = the_torsions[index].a;
1063 <        exJ = the_torsions[index].d;
1062 >      if (globals->haveRsw())
1063 >        theRsw = globals->getRsw();
1064 >      else
1065 >        theRsw = theRcut;
1066 >      
1067 >      info[i].setDefaultRcut(theRcut, theRsw);
1068  
1069 <        
1070 <        // exclude_I must always be the smaller of the pair
1071 <        if( exI > exJ ){
1072 <          tempEx = exI;
1114 <          exI = exJ;
1115 <          exJ = tempEx;
1116 <        }
1069 >    } else {
1070 >      
1071 >      the_ff->calcRcut();
1072 >      theRcut = info[i].getRcut();
1073  
1074 +      if (globals->haveRsw())
1075 +        theRsw = globals->getRsw();
1076 +      else
1077 +        theRsw = theRcut;
1078 +      
1079 +      info[i].setDefaultRcut(theRcut, theRsw);
1080 +    }
1081  
1082 < #ifdef IS_MPI
1083 <        
1084 <        the_excludes[(index + tot_bonds + tot_bends)*2] =    
1085 <          the_atoms[exI]->getGlobalIndex() + 1;
1086 <        the_excludes[(index + tot_bonds + tot_bends)*2 + 1] =
1087 <          the_atoms[exJ]->getGlobalIndex() + 1;
1088 <        
1089 < #else  // isn't MPI
1090 <        
1091 <        the_excludes[(index + tot_bonds + tot_bends)*2] =     exI + 1;
1092 <        the_excludes[(index + tot_bonds + tot_bends)*2 + 1] = exJ + 1;
1093 <        // fortran indexes from 1 (hence the +1 in the indexing)
1094 < #endif  //is_mpi
1095 <        
1082 >    if (globals->getUseRF()){
1083 >      info[i].useReactionField = 1;
1084 >      
1085 >      if (!globals->haveRcut()){
1086 >        sprintf(painCave.errMsg,
1087 >                "SimSetup Warning: No value was set for the cutoffRadius.\n"
1088 >                "\tOOPSE will use a default value of 15.0 angstroms"
1089 >                "\tfor the cutoffRadius.\n");
1090 >        painCave.isFatal = 0;
1091 >        simError();
1092 >        theRcut = 15.0;
1093 >      }
1094 >      else{
1095 >        theRcut = globals->getRcut();
1096 >      }
1097  
1098 <        // increment the index and repeat;
1099 <        index++;
1098 >      if (!globals->haveRsw()){
1099 >        sprintf(painCave.errMsg,
1100 >                "SimSetup Warning: No value was set for switchingRadius.\n"
1101 >                "\tOOPSE will use a default value of\n"
1102 >                "\t0.95 * cutoffRadius for the switchingRadius\n");
1103 >        painCave.isFatal = 0;
1104 >        simError();
1105 >        theRsw = 0.95 * theRcut;
1106        }
1107 <      offset += comp_stamps[i]->getNAtoms();
1107 >      else{
1108 >        theRsw = globals->getRsw();
1109 >      }
1110  
1111 < #ifdef IS_MPI
1111 >      info[i].setDefaultRcut(theRcut, theRsw);
1112 >
1113 >      if (!globals->haveDielectric()){
1114 >        sprintf(painCave.errMsg,
1115 >                "SimSetup Error: No Dielectric constant was set.\n"
1116 >                "\tYou are trying to use Reaction Field without"
1117 >                "\tsetting a dielectric constant!\n");
1118 >        painCave.isFatal = 1;
1119 >        simError();
1120        }
1121 < #endif //is_mpi      
1121 >      info[i].dielectric = globals->getDielectric();
1122 >    }
1123 >    else{
1124 >      if (usesDipoles || usesCharges){
1125  
1126 <      molIndex++;
1126 >        if (!globals->haveRcut()){
1127 >          sprintf(painCave.errMsg,
1128 >                  "SimSetup Warning: No value was set for the cutoffRadius.\n"
1129 >                  "\tOOPSE will use a default value of 15.0 angstroms"
1130 >                  "\tfor the cutoffRadius.\n");
1131 >          painCave.isFatal = 0;
1132 >          simError();
1133 >          theRcut = 15.0;
1134 >      }
1135 >        else{
1136 >          theRcut = globals->getRcut();
1137 >        }
1138 >        
1139 >        if (!globals->haveRsw()){
1140 >          sprintf(painCave.errMsg,
1141 >                  "SimSetup Warning: No value was set for switchingRadius.\n"
1142 >                  "\tOOPSE will use a default value of\n"
1143 >                  "\t0.95 * cutoffRadius for the switchingRadius\n");
1144 >          painCave.isFatal = 0;
1145 >          simError();
1146 >          theRsw = 0.95 * theRcut;
1147 >        }
1148 >        else{
1149 >          theRsw = globals->getRsw();
1150 >        }
1151 >        
1152 >        info[i].setDefaultRcut(theRcut, theRsw);
1153 >        
1154 >      }
1155      }
1156    }
1157 + #ifdef IS_MPI
1158 +  strcpy(checkPointMsg, "post processing checks out");
1159 +  MPIcheckPoint();
1160 + #endif // is_mpi
1161  
1162 <  the_ff->initializeTorsions( the_torsions );
1162 >  // clean up the forcefield
1163 >  the_ff->cleanMe();
1164   }
1165 +  
1166 + void SimSetup::initSystemCoords(void){
1167 +  int i;
1168  
1169 < void SimSetup::initFromBass( void ){
1169 >  char* inName;
1170  
1171 <  int i, j, k;
1153 <  int n_cells;
1154 <  double cellx, celly, cellz;
1155 <  double temp1, temp2, temp3;
1156 <  int n_per_extra;
1157 <  int n_extra;
1158 <  int have_extra, done;
1171 >  (info[0].getConfiguration())->createArrays(info[0].n_atoms);
1172  
1173 <  temp1 = (double)tot_nmol / 4.0;
1174 <  temp2 = pow( temp1, ( 1.0 / 3.0 ) );
1162 <  temp3 = ceil( temp2 );
1173 >  for (i = 0; i < info[0].n_atoms; i++)
1174 >    info[0].atoms[i]->setCoords();
1175  
1176 <  have_extra =0;
1177 <  if( temp2 < temp3 ){ // we have a non-complete lattice
1178 <    have_extra =1;
1179 <
1180 <    n_cells = (int)temp3 - 1;
1181 <    cellx = simnfo->box_x / temp3;
1182 <    celly = simnfo->box_y / temp3;
1183 <    cellz = simnfo->box_z / temp3;
1172 <    n_extra = tot_nmol - ( 4 * n_cells * n_cells * n_cells );
1173 <    temp1 = ((double)n_extra) / ( pow( temp3, 3.0 ) - pow( n_cells, 3.0 ) );
1174 <    n_per_extra = (int)ceil( temp1 );
1175 <
1176 <    if( n_per_extra > 4){
1177 <      sprintf( painCave.errMsg,
1178 <               "SimSetup error. There has been an error in constructing"
1179 <               " the non-complete lattice.\n" );
1180 <      painCave.isFatal = 1;
1181 <      simError();
1176 >  if (globals->haveInitialConfig()){
1177 >    InitializeFromFile* fileInit;
1178 > #ifdef IS_MPI // is_mpi
1179 >    if (worldRank == 0){
1180 > #endif //is_mpi
1181 >      inName = globals->getInitialConfig();
1182 >      fileInit = new InitializeFromFile(inName);
1183 > #ifdef IS_MPI
1184      }
1185 +    else
1186 +      fileInit = new InitializeFromFile(NULL);
1187 + #endif
1188 +    fileInit->readInit(info); // default velocities on
1189 +
1190 +    delete fileInit;
1191    }
1192    else{
1193 <    n_cells = (int)temp3;
1194 <    cellx = simnfo->box_x / temp3;
1195 <    celly = simnfo->box_y / temp3;
1196 <    cellz = simnfo->box_z / temp3;
1193 >    
1194 >    // no init from bass
1195 >    
1196 >    sprintf(painCave.errMsg,
1197 >            "Cannot intialize a simulation without an initial configuration file.\n");
1198 >    painCave.isFatal = 1;;
1199 >    simError();
1200 >    
1201    }
1202  
1203 <  current_mol = 0;
1204 <  current_comp_mol = 0;
1205 <  current_comp = 0;
1206 <  current_atom_ndx = 0;
1203 > #ifdef IS_MPI
1204 >  strcpy(checkPointMsg, "Successfully read in the initial configuration");
1205 >  MPIcheckPoint();
1206 > #endif // is_mpi
1207 > }
1208  
1196  for( i=0; i < n_cells ; i++ ){
1197    for( j=0; j < n_cells; j++ ){
1198      for( k=0; k < n_cells; k++ ){
1209  
1210 <        makeElement( i * cellx,
1211 <                     j * celly,
1202 <                     k * cellz );
1210 > void SimSetup::makeOutNames(void){
1211 >  int k;
1212  
1204        makeElement( i * cellx + 0.5 * cellx,
1205                     j * celly + 0.5 * celly,
1206                     k * cellz );
1213  
1214 <        makeElement( i * cellx,
1215 <                     j * celly + 0.5 * celly,
1216 <                     k * cellz + 0.5 * cellz );
1214 >  for (k = 0; k < nInfo; k++){
1215 > #ifdef IS_MPI
1216 >    if (worldRank == 0){
1217 > #endif // is_mpi
1218 >
1219 >      if (globals->haveFinalConfig()){
1220 >        strcpy(info[k].finalName, globals->getFinalConfig());
1221 >      }
1222 >      else{
1223 >        strcpy(info[k].finalName, inFileName);
1224 >        char* endTest;
1225 >        int nameLength = strlen(info[k].finalName);
1226 >        endTest = &(info[k].finalName[nameLength - 5]);
1227 >        if (!strcmp(endTest, ".bass")){
1228 >          strcpy(endTest, ".eor");
1229 >        }
1230 >        else if (!strcmp(endTest, ".BASS")){
1231 >          strcpy(endTest, ".eor");
1232 >        }
1233 >        else{
1234 >          endTest = &(info[k].finalName[nameLength - 4]);
1235 >          if (!strcmp(endTest, ".bss")){
1236 >            strcpy(endTest, ".eor");
1237 >          }
1238 >          else if (!strcmp(endTest, ".mdl")){
1239 >            strcpy(endTest, ".eor");
1240 >          }
1241 >          else{
1242 >            strcat(info[k].finalName, ".eor");
1243 >          }
1244 >        }
1245 >      }
1246  
1247 <        makeElement( i * cellx + 0.5 * cellx,
1248 <                     j * celly,
1249 <                     k * cellz + 0.5 * cellz );
1247 >      // make the sample and status out names
1248 >
1249 >      strcpy(info[k].sampleName, inFileName);
1250 >      char* endTest;
1251 >      int nameLength = strlen(info[k].sampleName);
1252 >      endTest = &(info[k].sampleName[nameLength - 5]);
1253 >      if (!strcmp(endTest, ".bass")){
1254 >        strcpy(endTest, ".dump");
1255        }
1256 +      else if (!strcmp(endTest, ".BASS")){
1257 +        strcpy(endTest, ".dump");
1258 +      }
1259 +      else{
1260 +        endTest = &(info[k].sampleName[nameLength - 4]);
1261 +        if (!strcmp(endTest, ".bss")){
1262 +          strcpy(endTest, ".dump");
1263 +        }
1264 +        else if (!strcmp(endTest, ".mdl")){
1265 +          strcpy(endTest, ".dump");
1266 +        }
1267 +        else{
1268 +          strcat(info[k].sampleName, ".dump");
1269 +        }
1270 +      }
1271 +
1272 +      strcpy(info[k].statusName, inFileName);
1273 +      nameLength = strlen(info[k].statusName);
1274 +      endTest = &(info[k].statusName[nameLength - 5]);
1275 +      if (!strcmp(endTest, ".bass")){
1276 +        strcpy(endTest, ".stat");
1277 +      }
1278 +      else if (!strcmp(endTest, ".BASS")){
1279 +        strcpy(endTest, ".stat");
1280 +      }
1281 +      else{
1282 +        endTest = &(info[k].statusName[nameLength - 4]);
1283 +        if (!strcmp(endTest, ".bss")){
1284 +          strcpy(endTest, ".stat");
1285 +        }
1286 +        else if (!strcmp(endTest, ".mdl")){
1287 +          strcpy(endTest, ".stat");
1288 +        }
1289 +        else{
1290 +          strcat(info[k].statusName, ".stat");
1291 +        }
1292 +      }
1293 +
1294 +      strcpy(info[k].rawPotName, inFileName);
1295 +      nameLength = strlen(info[k].rawPotName);
1296 +      endTest = &(info[k].rawPotName[nameLength - 5]);
1297 +      if (!strcmp(endTest, ".bass")){
1298 +        strcpy(endTest, ".raw");
1299 +      }
1300 +      else if (!strcmp(endTest, ".BASS")){
1301 +        strcpy(endTest, ".raw");
1302 +      }
1303 +      else{
1304 +        endTest = &(info[k].rawPotName[nameLength - 4]);
1305 +        if (!strcmp(endTest, ".bss")){
1306 +          strcpy(endTest, ".raw");
1307 +        }
1308 +        else if (!strcmp(endTest, ".mdl")){
1309 +          strcpy(endTest, ".raw");
1310 +        }
1311 +        else{
1312 +          strcat(info[k].rawPotName, ".raw");
1313 +        }
1314 +      }
1315 +
1316 + #ifdef IS_MPI
1317 +
1318      }
1319 + #endif // is_mpi
1320    }
1321 + }
1322  
1219  if( have_extra ){
1220    done = 0;
1323  
1324 <    int start_ndx;
1325 <    for( i=0; i < (n_cells+1) && !done; i++ ){
1224 <      for( j=0; j < (n_cells+1) && !done; j++ ){
1324 > void SimSetup::sysObjectsCreation(void){
1325 >  int i, k;
1326  
1327 <        if( i < n_cells ){
1327 >  // create the forceField
1328  
1329 <          if( j < n_cells ){
1229 <            start_ndx = n_cells;
1230 <          }
1231 <          else start_ndx = 0;
1232 <        }
1233 <        else start_ndx = 0;
1329 >  createFF();
1330  
1331 <        for( k=start_ndx; k < (n_cells+1) && !done; k++ ){
1331 >  // extract componentList
1332  
1333 <          makeElement( i * cellx,
1238 <                       j * celly,
1239 <                       k * cellz );
1240 <          done = ( current_mol >= tot_nmol );
1333 >  compList();
1334  
1335 <          if( !done && n_per_extra > 1 ){
1243 <            makeElement( i * cellx + 0.5 * cellx,
1244 <                         j * celly + 0.5 * celly,
1245 <                         k * cellz );
1246 <            done = ( current_mol >= tot_nmol );
1247 <          }
1335 >  // calc the number of atoms, bond, bends, and torsions
1336  
1337 <          if( !done && n_per_extra > 2){
1250 <            makeElement( i * cellx,
1251 <                         j * celly + 0.5 * celly,
1252 <                         k * cellz + 0.5 * cellz );
1253 <            done = ( current_mol >= tot_nmol );
1254 <          }
1337 >  calcSysValues();
1338  
1339 <          if( !done && n_per_extra > 3){
1340 <            makeElement( i * cellx + 0.5 * cellx,
1258 <                         j * celly,
1259 <                         k * cellz + 0.5 * cellz );
1260 <            done = ( current_mol >= tot_nmol );
1261 <          }
1262 <        }
1263 <      }
1264 <    }
1265 <  }
1339 > #ifdef IS_MPI
1340 >  // divide the molecules among the processors
1341  
1342 +  mpiMolDivide();
1343 + #endif //is_mpi
1344  
1345 <  for( i=0; i<simnfo->n_atoms; i++ ){
1346 <    simnfo->atoms[i]->set_vx( 0.0 );
1347 <    simnfo->atoms[i]->set_vy( 0.0 );
1348 <    simnfo->atoms[i]->set_vz( 0.0 );
1345 >  // create the atom and SRI arrays. Also initialize Molecule Stamp ID's
1346 >
1347 >  makeSysArrays();
1348 >
1349 >  // make and initialize the molecules (all but atomic coordinates)
1350 >
1351 >  makeMolecules();
1352 >
1353 >  for (k = 0; k < nInfo; k++){
1354 >    info[k].identArray = new int[info[k].n_atoms];
1355 >    for (i = 0; i < info[k].n_atoms; i++){
1356 >      info[k].identArray[i] = info[k].atoms[i]->getIdent();
1357 >    }
1358    }
1359   }
1360  
1275 void SimSetup::makeElement( double x, double y, double z ){
1361  
1362 <  int k;
1363 <  AtomStamp* current_atom;
1364 <  DirectionalAtom* dAtom;
1365 <  double rotMat[3][3];
1362 > void SimSetup::createFF(void){
1363 >  switch (ffCase){
1364 >    case FF_DUFF:
1365 >      the_ff = new DUFF();
1366 >      break;
1367  
1368 <  for( k=0; k<comp_stamps[current_comp]->getNAtoms(); k++ ){
1368 >    case FF_LJ:
1369 >      the_ff = new LJFF();
1370 >      break;
1371  
1372 <    current_atom = comp_stamps[current_comp]->getAtom( k );
1373 <    if( !current_atom->havePosition() ){
1374 <      sprintf( painCave.errMsg,
1375 <               "SimSetup:initFromBass error.\n"
1376 <               "\tComponent %s, atom %s does not have a position specified.\n"
1377 <               "\tThe initialization routine is unable to give a start"
1378 <               " position.\n",
1379 <               comp_stamps[current_comp]->getID(),
1380 <               current_atom->getType() );
1372 >    case FF_EAM:
1373 >      the_ff = new EAM_FF();
1374 >      break;
1375 >
1376 >    case FF_H2O:
1377 >      the_ff = new WATER();
1378 >      break;
1379 >
1380 >    default:
1381 >      sprintf(painCave.errMsg,
1382 >              "SimSetup Error. Unrecognized force field in case statement.\n");
1383        painCave.isFatal = 1;
1384        simError();
1385 +  }
1386 +
1387 + #ifdef IS_MPI
1388 +  strcpy(checkPointMsg, "ForceField creation successful");
1389 +  MPIcheckPoint();
1390 + #endif // is_mpi
1391 + }
1392 +
1393 +
1394 + void SimSetup::compList(void){
1395 +  int i;
1396 +  char* id;
1397 +  LinkedMolStamp* headStamp = new LinkedMolStamp();
1398 +  LinkedMolStamp* currentStamp = NULL;
1399 +  comp_stamps = new MoleculeStamp * [n_components];
1400 +  bool haveCutoffGroups;
1401 +
1402 +  haveCutoffGroups = false;
1403 +  
1404 +  // make an array of molecule stamps that match the components used.
1405 +  // also extract the used stamps out into a separate linked list
1406 +
1407 +  for (i = 0; i < nInfo; i++){
1408 +    info[i].nComponents = n_components;
1409 +    info[i].componentsNmol = components_nmol;
1410 +    info[i].compStamps = comp_stamps;
1411 +    info[i].headStamp = headStamp;
1412 +  }
1413 +
1414 +
1415 +  for (i = 0; i < n_components; i++){
1416 +    id = the_components[i]->getType();
1417 +    comp_stamps[i] = NULL;
1418 +
1419 +    // check to make sure the component isn't already in the list
1420 +
1421 +    comp_stamps[i] = headStamp->match(id);
1422 +    if (comp_stamps[i] == NULL){
1423 +      // extract the component from the list;
1424 +
1425 +      currentStamp = stamps->extractMolStamp(id);
1426 +      if (currentStamp == NULL){
1427 +        sprintf(painCave.errMsg,
1428 +                "SimSetup error: Component \"%s\" was not found in the "
1429 +                "list of declared molecules\n",
1430 +                id);
1431 +        painCave.isFatal = 1;
1432 +        simError();
1433 +      }
1434 +
1435 +      headStamp->add(currentStamp);
1436 +      comp_stamps[i] = headStamp->match(id);
1437      }
1438  
1439 <    the_atoms[current_atom_ndx]->setX( x + current_atom->getPosX() );
1440 <    the_atoms[current_atom_ndx]->setY( y + current_atom->getPosY() );
1441 <    the_atoms[current_atom_ndx]->setZ( z + current_atom->getPosZ() );
1439 >    if(comp_stamps[i]->getNCutoffGroups() > 0)
1440 >      haveCutoffGroups = true;    
1441 >  }
1442 >    
1443 >  for (i = 0; i < nInfo; i++)
1444 >    info[i].haveCutoffGroups = haveCutoffGroups;
1445  
1446 <    if( the_atoms[current_atom_ndx]->isDirectional() ){
1446 > #ifdef IS_MPI
1447 >  strcpy(checkPointMsg, "Component stamps successfully extracted\n");
1448 >  MPIcheckPoint();
1449 > #endif // is_mpi
1450 > }
1451  
1452 <      dAtom = (DirectionalAtom *)the_atoms[current_atom_ndx];
1452 > void SimSetup::calcSysValues(void){
1453 >  int i;
1454  
1455 <      rotMat[0][0] = 1.0;
1306 <      rotMat[0][1] = 0.0;
1307 <      rotMat[0][2] = 0.0;
1455 >  int* molMembershipArray;
1456  
1457 <      rotMat[1][0] = 0.0;
1458 <      rotMat[1][1] = 1.0;
1459 <      rotMat[1][2] = 0.0;
1457 >  tot_atoms = 0;
1458 >  tot_bonds = 0;
1459 >  tot_bends = 0;
1460 >  tot_torsions = 0;
1461 >  tot_rigid = 0;
1462 >  for (i = 0; i < n_components; i++){
1463 >    tot_atoms += components_nmol[i] * comp_stamps[i]->getNAtoms();
1464 >    tot_bonds += components_nmol[i] * comp_stamps[i]->getNBonds();
1465 >    tot_bends += components_nmol[i] * comp_stamps[i]->getNBends();
1466 >    tot_torsions += components_nmol[i] * comp_stamps[i]->getNTorsions();
1467 >    tot_rigid += components_nmol[i] * comp_stamps[i]->getNRigidBodies();
1468 >  }
1469 >  
1470 >  tot_SRI = tot_bonds + tot_bends + tot_torsions;
1471 >  molMembershipArray = new int[tot_atoms];
1472  
1473 <      rotMat[2][0] = 0.0;
1474 <      rotMat[2][1] = 0.0;
1475 <      rotMat[2][2] = 1.0;
1473 >  for (i = 0; i < nInfo; i++){
1474 >    info[i].n_atoms = tot_atoms;
1475 >    info[i].n_bonds = tot_bonds;
1476 >    info[i].n_bends = tot_bends;
1477 >    info[i].n_torsions = tot_torsions;
1478 >    info[i].n_SRI = tot_SRI;
1479 >    info[i].n_mol = tot_nmol;
1480  
1481 <      dAtom->setA( rotMat );
1481 >    info[i].molMembershipArray = molMembershipArray;
1482 >  }
1483 > }
1484 >
1485 > #ifdef IS_MPI
1486 >
1487 > void SimSetup::mpiMolDivide(void){
1488 >  int i, j, k;
1489 >  int localMol, allMol;
1490 >  int local_atoms, local_bonds, local_bends, local_torsions, local_SRI;
1491 >  int local_rigid;
1492 >  vector<int> globalMolIndex;
1493 >
1494 >  mpiSim = new mpiSimulation(info);
1495 >
1496 >  mpiSim->divideLabor();
1497 >  globalAtomIndex = mpiSim->getGlobalAtomIndex();
1498 >  //globalMolIndex = mpiSim->getGlobalMolIndex();
1499 >
1500 >  // set up the local variables
1501 >
1502 >  mol2proc = mpiSim->getMolToProcMap();
1503 >  molCompType = mpiSim->getMolComponentType();
1504 >
1505 >  allMol = 0;
1506 >  localMol = 0;
1507 >  local_atoms = 0;
1508 >  local_bonds = 0;
1509 >  local_bends = 0;
1510 >  local_torsions = 0;
1511 >  local_rigid = 0;
1512 >  globalAtomCounter = 0;
1513 >
1514 >  for (i = 0; i < n_components; i++){
1515 >    for (j = 0; j < components_nmol[i]; j++){
1516 >      if (mol2proc[allMol] == worldRank){
1517 >        local_atoms += comp_stamps[i]->getNAtoms();
1518 >        local_bonds += comp_stamps[i]->getNBonds();
1519 >        local_bends += comp_stamps[i]->getNBends();
1520 >        local_torsions += comp_stamps[i]->getNTorsions();
1521 >        local_rigid += comp_stamps[i]->getNRigidBodies();
1522 >        localMol++;
1523 >      }      
1524 >      for (k = 0; k < comp_stamps[i]->getNAtoms(); k++){
1525 >        info[0].molMembershipArray[globalAtomCounter] = allMol;
1526 >        globalAtomCounter++;
1527 >      }
1528 >
1529 >      allMol++;
1530      }
1531 +  }
1532 +  local_SRI = local_bonds + local_bends + local_torsions;
1533  
1534 <    current_atom_ndx++;
1534 >  info[0].n_atoms = mpiSim->getMyNlocal();  
1535 >  
1536 >
1537 >  if (local_atoms != info[0].n_atoms){
1538 >    sprintf(painCave.errMsg,
1539 >            "SimSetup error: mpiSim's localAtom (%d) and SimSetup's\n"
1540 >            "\tlocalAtom (%d) are not equal.\n",
1541 >            info[0].n_atoms, local_atoms);
1542 >    painCave.isFatal = 1;
1543 >    simError();
1544    }
1545  
1546 <  current_mol++;
1547 <  current_comp_mol++;
1546 >  info[0].n_bonds = local_bonds;
1547 >  info[0].n_bends = local_bends;
1548 >  info[0].n_torsions = local_torsions;
1549 >  info[0].n_SRI = local_SRI;
1550 >  info[0].n_mol = localMol;
1551  
1552 <  if( current_comp_mol >= components_nmol[current_comp] ){
1552 >  strcpy(checkPointMsg, "Passed nlocal consistency check.");
1553 >  MPIcheckPoint();
1554 > }
1555  
1556 <    current_comp_mol = 0;
1557 <    current_comp++;
1556 > #endif // is_mpi
1557 >
1558 >
1559 > void SimSetup::makeSysArrays(void){
1560 >
1561 > #ifndef IS_MPI
1562 >  int k, j;
1563 > #endif // is_mpi
1564 >  int i, l;
1565 >
1566 >  Atom** the_atoms;
1567 >  Molecule* the_molecules;
1568 >
1569 >  for (l = 0; l < nInfo; l++){
1570 >    // create the atom and short range interaction arrays
1571 >
1572 >    the_atoms = new Atom * [info[l].n_atoms];
1573 >    the_molecules = new Molecule[info[l].n_mol];
1574 >    int molIndex;
1575 >
1576 >    // initialize the molecule's stampID's
1577 >
1578 > #ifdef IS_MPI
1579 >
1580 >
1581 >    molIndex = 0;
1582 >    for (i = 0; i < mpiSim->getTotNmol(); i++){
1583 >      if (mol2proc[i] == worldRank){
1584 >        the_molecules[molIndex].setStampID(molCompType[i]);
1585 >        the_molecules[molIndex].setMyIndex(molIndex);
1586 >        the_molecules[molIndex].setGlobalIndex(i);
1587 >        molIndex++;
1588 >      }
1589 >    }
1590 >
1591 > #else // is_mpi
1592 >
1593 >    molIndex = 0;
1594 >    globalAtomCounter = 0;
1595 >    for (i = 0; i < n_components; i++){
1596 >      for (j = 0; j < components_nmol[i]; j++){
1597 >        the_molecules[molIndex].setStampID(i);
1598 >        the_molecules[molIndex].setMyIndex(molIndex);
1599 >        the_molecules[molIndex].setGlobalIndex(molIndex);
1600 >        for (k = 0; k < comp_stamps[i]->getNAtoms(); k++){
1601 >          info[l].molMembershipArray[globalAtomCounter] = molIndex;
1602 >          globalAtomCounter++;
1603 >        }
1604 >        molIndex++;
1605 >      }
1606 >    }
1607 >
1608 >
1609 > #endif // is_mpi
1610 >
1611 >    info[l].globalExcludes = new int;
1612 >    info[l].globalExcludes[0] = 0;
1613 >    
1614 >    // set the arrays into the SimInfo object
1615 >
1616 >    info[l].atoms = the_atoms;
1617 >    info[l].molecules = the_molecules;
1618 >    info[l].nGlobalExcludes = 0;
1619 >    
1620 >    the_ff->setSimInfo(info);
1621    }
1622   }
1623 +
1624 + void SimSetup::makeIntegrator(void){
1625 +  int k;
1626 +
1627 +  NVE<RealIntegrator>* myNVE = NULL;
1628 +  NVT<RealIntegrator>* myNVT = NULL;
1629 +  NPTi<NPT<RealIntegrator> >* myNPTi = NULL;
1630 +  NPTf<NPT<RealIntegrator> >* myNPTf = NULL;
1631 +  NPTxyz<NPT<RealIntegrator> >* myNPTxyz = NULL;
1632 +  
1633 +  for (k = 0; k < nInfo; k++){
1634 +    switch (ensembleCase){
1635 +      case NVE_ENS:
1636 +        if (globals->haveZconstraints()){
1637 +          setupZConstraint(info[k]);
1638 +          myNVE = new ZConstraint<NVE<RealIntegrator> >(&(info[k]), the_ff);
1639 +        }
1640 +        else{
1641 +          myNVE = new NVE<RealIntegrator>(&(info[k]), the_ff);
1642 +        }
1643 +        
1644 +        info->the_integrator = myNVE;
1645 +        break;
1646 +
1647 +      case NVT_ENS:
1648 +        if (globals->haveZconstraints()){
1649 +          setupZConstraint(info[k]);
1650 +          myNVT = new ZConstraint<NVT<RealIntegrator> >(&(info[k]), the_ff);
1651 +        }
1652 +        else
1653 +          myNVT = new NVT<RealIntegrator>(&(info[k]), the_ff);
1654 +
1655 +        myNVT->setTargetTemp(globals->getTargetTemp());
1656 +
1657 +        if (globals->haveTauThermostat())
1658 +          myNVT->setTauThermostat(globals->getTauThermostat());
1659 +        else{
1660 +          sprintf(painCave.errMsg,
1661 +                  "SimSetup error: If you use the NVT\n"
1662 +                  "\tensemble, you must set tauThermostat.\n");
1663 +          painCave.isFatal = 1;
1664 +          simError();
1665 +        }
1666 +
1667 +        info->the_integrator = myNVT;
1668 +        break;
1669 +
1670 +      case NPTi_ENS:
1671 +        if (globals->haveZconstraints()){
1672 +          setupZConstraint(info[k]);
1673 +          myNPTi = new ZConstraint<NPTi<NPT <RealIntegrator> > >(&(info[k]), the_ff);
1674 +        }
1675 +        else
1676 +          myNPTi = new NPTi<NPT<RealIntegrator> >(&(info[k]), the_ff);
1677 +
1678 +        myNPTi->setTargetTemp(globals->getTargetTemp());
1679 +
1680 +        if (globals->haveTargetPressure())
1681 +          myNPTi->setTargetPressure(globals->getTargetPressure());
1682 +        else{
1683 +          sprintf(painCave.errMsg,
1684 +                  "SimSetup error: If you use a constant pressure\n"
1685 +                  "\tensemble, you must set targetPressure in the BASS file.\n");
1686 +          painCave.isFatal = 1;
1687 +          simError();
1688 +        }
1689 +
1690 +        if (globals->haveTauThermostat())
1691 +          myNPTi->setTauThermostat(globals->getTauThermostat());
1692 +        else{
1693 +          sprintf(painCave.errMsg,
1694 +                  "SimSetup error: If you use an NPT\n"
1695 +                  "\tensemble, you must set tauThermostat.\n");
1696 +          painCave.isFatal = 1;
1697 +          simError();
1698 +        }
1699 +
1700 +        if (globals->haveTauBarostat())
1701 +          myNPTi->setTauBarostat(globals->getTauBarostat());
1702 +        else{
1703 +          sprintf(painCave.errMsg,
1704 +                  "SimSetup error: If you use an NPT\n"
1705 +                  "\tensemble, you must set tauBarostat.\n");
1706 +          painCave.isFatal = 1;
1707 +          simError();
1708 +        }
1709 +
1710 +        info->the_integrator = myNPTi;
1711 +        break;
1712 +
1713 +      case NPTf_ENS:
1714 +        if (globals->haveZconstraints()){
1715 +          setupZConstraint(info[k]);
1716 +          myNPTf = new ZConstraint<NPTf<NPT <RealIntegrator> > >(&(info[k]), the_ff);
1717 +        }
1718 +        else
1719 +          myNPTf = new NPTf<NPT <RealIntegrator> >(&(info[k]), the_ff);
1720 +
1721 +        myNPTf->setTargetTemp(globals->getTargetTemp());
1722 +
1723 +        if (globals->haveTargetPressure())
1724 +          myNPTf->setTargetPressure(globals->getTargetPressure());
1725 +        else{
1726 +          sprintf(painCave.errMsg,
1727 +                  "SimSetup error: If you use a constant pressure\n"
1728 +                  "\tensemble, you must set targetPressure in the BASS file.\n");
1729 +          painCave.isFatal = 1;
1730 +          simError();
1731 +        }    
1732 +
1733 +        if (globals->haveTauThermostat())
1734 +          myNPTf->setTauThermostat(globals->getTauThermostat());
1735 +
1736 +        else{
1737 +          sprintf(painCave.errMsg,
1738 +                  "SimSetup error: If you use an NPT\n"
1739 +                  "\tensemble, you must set tauThermostat.\n");
1740 +          painCave.isFatal = 1;
1741 +          simError();
1742 +        }
1743 +
1744 +        if (globals->haveTauBarostat())
1745 +          myNPTf->setTauBarostat(globals->getTauBarostat());
1746 +
1747 +        else{
1748 +          sprintf(painCave.errMsg,
1749 +                  "SimSetup error: If you use an NPT\n"
1750 +                  "\tensemble, you must set tauBarostat.\n");
1751 +          painCave.isFatal = 1;
1752 +          simError();
1753 +        }
1754 +
1755 +        info->the_integrator = myNPTf;
1756 +        break;
1757 +
1758 +      case NPTxyz_ENS:
1759 +        if (globals->haveZconstraints()){
1760 +          setupZConstraint(info[k]);
1761 +          myNPTxyz = new ZConstraint<NPTxyz<NPT <RealIntegrator> > >(&(info[k]), the_ff);
1762 +        }
1763 +        else
1764 +          myNPTxyz = new NPTxyz<NPT <RealIntegrator> >(&(info[k]), the_ff);
1765 +
1766 +        myNPTxyz->setTargetTemp(globals->getTargetTemp());
1767 +
1768 +        if (globals->haveTargetPressure())
1769 +          myNPTxyz->setTargetPressure(globals->getTargetPressure());
1770 +        else{
1771 +          sprintf(painCave.errMsg,
1772 +                  "SimSetup error: If you use a constant pressure\n"
1773 +                  "\tensemble, you must set targetPressure in the BASS file.\n");
1774 +          painCave.isFatal = 1;
1775 +          simError();
1776 +        }    
1777 +
1778 +        if (globals->haveTauThermostat())
1779 +          myNPTxyz->setTauThermostat(globals->getTauThermostat());
1780 +        else{
1781 +          sprintf(painCave.errMsg,
1782 +                  "SimSetup error: If you use an NPT\n"
1783 +                  "\tensemble, you must set tauThermostat.\n");
1784 +          painCave.isFatal = 1;
1785 +          simError();
1786 +        }
1787 +
1788 +        if (globals->haveTauBarostat())
1789 +          myNPTxyz->setTauBarostat(globals->getTauBarostat());
1790 +        else{
1791 +          sprintf(painCave.errMsg,
1792 +                  "SimSetup error: If you use an NPT\n"
1793 +                  "\tensemble, you must set tauBarostat.\n");
1794 +          painCave.isFatal = 1;
1795 +          simError();
1796 +        }
1797 +
1798 +        info->the_integrator = myNPTxyz;
1799 +        break;
1800 +
1801 +      default:
1802 +        sprintf(painCave.errMsg,
1803 +                "SimSetup Error. Unrecognized ensemble in case statement.\n");
1804 +        painCave.isFatal = 1;
1805 +        simError();
1806 +    }
1807 +  }
1808 + }
1809 +
1810 + void SimSetup::initFortran(void){
1811 +  info[0].refreshSim();
1812 +
1813 +  if (!strcmp(info[0].mixingRule, "standard")){
1814 +    the_ff->initForceField(LB_MIXING_RULE);
1815 +  }
1816 +  else if (!strcmp(info[0].mixingRule, "explicit")){
1817 +    the_ff->initForceField(EXPLICIT_MIXING_RULE);
1818 +  }
1819 +  else{
1820 +    sprintf(painCave.errMsg, "SimSetup Error: unknown mixing rule -> \"%s\"\n",
1821 +            info[0].mixingRule);
1822 +    painCave.isFatal = 1;
1823 +    simError();
1824 +  }
1825 +
1826 +
1827 + #ifdef IS_MPI
1828 +  strcpy(checkPointMsg, "Successfully intialized the mixingRule for Fortran.");
1829 +  MPIcheckPoint();
1830 + #endif // is_mpi
1831 + }
1832 +
1833 + void SimSetup::setupZConstraint(SimInfo& theInfo){
1834 +  int nZConstraints;
1835 +  ZconStamp** zconStamp;
1836 +
1837 +  if (globals->haveZconstraintTime()){
1838 +    //add sample time of z-constraint  into SimInfo's property list                    
1839 +    DoubleData* zconsTimeProp = new DoubleData();
1840 +    zconsTimeProp->setID(ZCONSTIME_ID);
1841 +    zconsTimeProp->setData(globals->getZconsTime());
1842 +    theInfo.addProperty(zconsTimeProp);
1843 +  }
1844 +  else{
1845 +    sprintf(painCave.errMsg,
1846 +            "ZConstraint error: If you use a ZConstraint,\n"
1847 +            "\tyou must set zconsTime.\n");
1848 +    painCave.isFatal = 1;
1849 +    simError();
1850 +  }
1851 +
1852 +  //push zconsTol into siminfo, if user does not specify
1853 +  //value for zconsTol, a default value will be used
1854 +  DoubleData* zconsTol = new DoubleData();
1855 +  zconsTol->setID(ZCONSTOL_ID);
1856 +  if (globals->haveZconsTol()){
1857 +    zconsTol->setData(globals->getZconsTol());
1858 +  }
1859 +  else{
1860 +    double defaultZConsTol = 0.01;
1861 +    sprintf(painCave.errMsg,
1862 +            "ZConstraint Warning: Tolerance for z-constraint method is not specified.\n"
1863 +            "\tOOPSE will use a default value of %f.\n"
1864 +            "\tTo set the tolerance, use the zconsTol variable.\n",
1865 +            defaultZConsTol);
1866 +    painCave.isFatal = 0;
1867 +    simError();      
1868 +
1869 +    zconsTol->setData(defaultZConsTol);
1870 +  }
1871 +  theInfo.addProperty(zconsTol);
1872 +
1873 +  //set Force Subtraction Policy
1874 +  StringData* zconsForcePolicy = new StringData();
1875 +  zconsForcePolicy->setID(ZCONSFORCEPOLICY_ID);
1876 +
1877 +  if (globals->haveZconsForcePolicy()){
1878 +    zconsForcePolicy->setData(globals->getZconsForcePolicy());
1879 +  }
1880 +  else{
1881 +    sprintf(painCave.errMsg,
1882 +            "ZConstraint Warning: No force subtraction policy was set.\n"
1883 +            "\tOOPSE will use PolicyByMass.\n"
1884 +            "\tTo set the policy, use the zconsForcePolicy variable.\n");
1885 +    painCave.isFatal = 0;
1886 +    simError();
1887 +    zconsForcePolicy->setData("BYMASS");
1888 +  }
1889 +
1890 +  theInfo.addProperty(zconsForcePolicy);
1891 +
1892 +  //set zcons gap
1893 +  DoubleData* zconsGap = new DoubleData();
1894 +  zconsGap->setID(ZCONSGAP_ID);
1895 +
1896 +  if (globals->haveZConsGap()){
1897 +    zconsGap->setData(globals->getZconsGap());
1898 +    theInfo.addProperty(zconsGap);  
1899 +  }
1900 +
1901 +  //set zcons fixtime
1902 +  DoubleData* zconsFixtime = new DoubleData();
1903 +  zconsFixtime->setID(ZCONSFIXTIME_ID);
1904 +
1905 +  if (globals->haveZConsFixTime()){
1906 +    zconsFixtime->setData(globals->getZconsFixtime());
1907 +    theInfo.addProperty(zconsFixtime);  
1908 +  }
1909 +
1910 +  //set zconsUsingSMD
1911 +  IntData* zconsUsingSMD = new IntData();
1912 +  zconsUsingSMD->setID(ZCONSUSINGSMD_ID);
1913 +
1914 +  if (globals->haveZConsUsingSMD()){
1915 +    zconsUsingSMD->setData(globals->getZconsUsingSMD());
1916 +    theInfo.addProperty(zconsUsingSMD);  
1917 +  }
1918 +
1919 +  //Determine the name of ouput file and add it into SimInfo's property list
1920 +  //Be careful, do not use inFileName, since it is a pointer which
1921 +  //point to a string at master node, and slave nodes do not contain that string
1922 +
1923 +  string zconsOutput(theInfo.finalName);
1924 +
1925 +  zconsOutput = zconsOutput.substr(0, zconsOutput.rfind(".")) + ".fz";
1926 +
1927 +  StringData* zconsFilename = new StringData();
1928 +  zconsFilename->setID(ZCONSFILENAME_ID);
1929 +  zconsFilename->setData(zconsOutput);
1930 +
1931 +  theInfo.addProperty(zconsFilename);
1932 +
1933 +  //setup index, pos and other parameters of z-constraint molecules
1934 +  nZConstraints = globals->getNzConstraints();
1935 +  theInfo.nZconstraints = nZConstraints;
1936 +
1937 +  zconStamp = globals->getZconStamp();
1938 +  ZConsParaItem tempParaItem;
1939 +
1940 +  ZConsParaData* zconsParaData = new ZConsParaData();
1941 +  zconsParaData->setID(ZCONSPARADATA_ID);
1942 +
1943 +  for (int i = 0; i < nZConstraints; i++){
1944 +    tempParaItem.havingZPos = zconStamp[i]->haveZpos();
1945 +    tempParaItem.zPos = zconStamp[i]->getZpos();
1946 +    tempParaItem.zconsIndex = zconStamp[i]->getMolIndex();
1947 +    tempParaItem.kRatio = zconStamp[i]->getKratio();
1948 +    tempParaItem.havingCantVel = zconStamp[i]->haveCantVel();
1949 +    tempParaItem.cantVel = zconStamp[i]->getCantVel();    
1950 +    zconsParaData->addItem(tempParaItem);
1951 +  }
1952 +
1953 +  //check the uniqueness of index  
1954 +  if(!zconsParaData->isIndexUnique()){
1955 +    sprintf(painCave.errMsg,
1956 +            "ZConstraint Error: molIndex is not unique!\n");
1957 +    painCave.isFatal = 1;
1958 +    simError();
1959 +  }
1960 +
1961 +  //sort the parameters by index of molecules
1962 +  zconsParaData->sortByIndex();
1963 +  
1964 +  //push data into siminfo, therefore, we can retrieve later
1965 +  theInfo.addProperty(zconsParaData);
1966 + }
1967 +
1968 + void SimSetup::makeMinimizer(){
1969 +
1970 +  OOPSEMinimizer* myOOPSEMinimizer;
1971 +  MinimizerParameterSet* param;
1972 +  char minimizerName[100];
1973 +  
1974 +  for (int i = 0; i < nInfo; i++){
1975 +    
1976 +    //prepare parameter set for minimizer
1977 +    param = new MinimizerParameterSet();
1978 +    param->setDefaultParameter();
1979 +
1980 +    if (globals->haveMinimizer()){
1981 +      param->setFTol(globals->getMinFTol());
1982 +    }
1983 +
1984 +    if (globals->haveMinGTol()){
1985 +      param->setGTol(globals->getMinGTol());
1986 +    }
1987 +
1988 +    if (globals->haveMinMaxIter()){
1989 +      param->setMaxIteration(globals->getMinMaxIter());
1990 +    }
1991 +
1992 +    if (globals->haveMinWriteFrq()){
1993 +      param->setMaxIteration(globals->getMinMaxIter());
1994 +    }
1995 +
1996 +    if (globals->haveMinWriteFrq()){
1997 +      param->setWriteFrq(globals->getMinWriteFrq());
1998 +    }
1999 +    
2000 +    if (globals->haveMinStepSize()){
2001 +      param->setStepSize(globals->getMinStepSize());
2002 +    }
2003 +
2004 +    if (globals->haveMinLSMaxIter()){
2005 +      param->setLineSearchMaxIteration(globals->getMinLSMaxIter());
2006 +    }    
2007 +
2008 +    if (globals->haveMinLSTol()){
2009 +      param->setLineSearchTol(globals->getMinLSTol());
2010 +    }    
2011 +
2012 +    strcpy(minimizerName, globals->getMinimizer());
2013 +
2014 +    if (!strcasecmp(minimizerName, "CG")){
2015 +      myOOPSEMinimizer = new PRCGMinimizer(&(info[i]), the_ff, param);
2016 +    }
2017 +    else if (!strcasecmp(minimizerName, "SD")){
2018 +    //myOOPSEMinimizer = MinimizerFactory.creatMinimizer("", &(info[i]), the_ff, param);
2019 +      myOOPSEMinimizer = new SDMinimizer(&(info[i]), the_ff, param);
2020 +    }
2021 +    else{
2022 +          sprintf(painCave.errMsg,
2023 +                  "SimSetup error: Unrecognized Minimizer, use Conjugate Gradient \n");
2024 +          painCave.isFatal = 0;
2025 +          simError();
2026 +
2027 +      myOOPSEMinimizer = new PRCGMinimizer(&(info[i]), the_ff, param);          
2028 +    }
2029 +     info[i].the_integrator = myOOPSEMinimizer;
2030 +
2031 +     //store the minimizer into simInfo
2032 +     info[i].the_minimizer = myOOPSEMinimizer;
2033 +     info[i].has_minimizer = true;
2034 +  }
2035 +
2036 + }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines