ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/SimSetup.cpp
(Generate patch)

Comparing trunk/OOPSE/libmdtools/SimSetup.cpp (file contents):
Revision 604 by gezelter, Tue Jul 15 03:08:00 2003 UTC vs.
Revision 1212 by chrisfen, Tue Jun 1 17:15:43 2004 UTC

# Line 1 | Line 1
1 < #include <cstdlib>
1 > #include <algorithm>
2 > #include <stdlib.h>
3   #include <iostream>
4 < #include <cmath>
5 <
4 > #include <math.h>
5 > #include <string>
6 > #include <sprng.h>
7   #include "SimSetup.hpp"
8 + #include "ReadWrite.hpp"
9   #include "parse_me.h"
10   #include "Integrator.hpp"
11   #include "simError.h"
12 + #include "RigidBody.hpp"
13 + #include "OOPSEMinimizer.hpp"
14 + //#include "ConstraintElement.hpp"
15 + //#include "ConstraintPair.hpp"
16  
17   #ifdef IS_MPI
18   #include "mpiBASS.h"
# Line 14 | Line 21
21  
22   // some defines for ensemble and Forcefield  cases
23  
24 < #define NVE_ENS   0
25 < #define NVT_ENS   1
26 < #define NPTi_ENS  2
27 < #define NPTf_ENS  3
28 < #define NPTim_ENS 4
22 < #define NPTfm_ENS 5
24 > #define NVE_ENS        0
25 > #define NVT_ENS        1
26 > #define NPTi_ENS       2
27 > #define NPTf_ENS       3
28 > #define NPTxyz_ENS     4
29  
30  
31 < #define FF_DUFF 0
32 < #define FF_LJ   1
31 > #define FF_DUFF  0
32 > #define FF_LJ    1
33 > #define FF_EAM   2
34 > #define FF_H2O   3
35  
36 + using namespace std;
37  
38 + /**
39 + * Check whether dividend is divisble by divisor or not
40 + */
41 + bool isDivisible(double dividend, double divisor){
42 +  double tolerance = 0.000001;
43 +  double quotient;
44 +  double diff;
45 +  int intQuotient;
46 +  
47 +  quotient = dividend / divisor;
48 +
49 +  if (quotient < 0)
50 +    quotient = -quotient;
51 +
52 +  intQuotient = int (quotient + tolerance);
53 +
54 +  diff = fabs(fabs(dividend) - intQuotient  * fabs(divisor));
55 +
56 +  if (diff <= tolerance)
57 +    return true;
58 +  else
59 +    return false;  
60 + }
61 +
62   SimSetup::SimSetup(){
63 +  
64 +  initSuspend = false;
65 +  isInfoArray = 0;
66 +  nInfo = 1;
67 +
68    stamps = new MakeStamps();
69    globals = new Globals();
70 <  
70 >
71 >
72   #ifdef IS_MPI
73 <  strcpy( checkPointMsg, "SimSetup creation successful" );
73 >  strcpy(checkPointMsg, "SimSetup creation successful");
74    MPIcheckPoint();
75   #endif // IS_MPI
76   }
# Line 41 | Line 80 | SimSetup::~SimSetup(){
80    delete globals;
81   }
82  
83 < void SimSetup::parseFile( char* fileName ){
83 > void SimSetup::setSimInfo(SimInfo* the_info, int theNinfo){
84 >  info = the_info;
85 >  nInfo = theNinfo;
86 >  isInfoArray = 1;
87 >  initSuspend = true;
88 > }
89  
90 +
91 + void SimSetup::parseFile(char* fileName){
92   #ifdef IS_MPI
93 <  if( worldRank == 0 ){
93 >  if (worldRank == 0){
94   #endif // is_mpi
95 <    
95 >
96      inFileName = fileName;
97 <    set_interface_stamps( stamps, globals );
98 <    
97 >    set_interface_stamps(stamps, globals);
98 >
99   #ifdef IS_MPI
100      mpiEventInit();
101   #endif
102  
103 <    yacc_BASS( fileName );
103 >    yacc_BASS(fileName);
104  
105   #ifdef IS_MPI
106      throwMPIEvent(NULL);
107    }
108 <  else receiveParse();
108 >  else{
109 >    receiveParse();
110 >  }
111   #endif
112  
113   }
114  
115   #ifdef IS_MPI
116   void SimSetup::receiveParse(void){
117 <
118 <    set_interface_stamps( stamps, globals );
119 <    mpiEventInit();
120 <    MPIcheckPoint();
73 <    mpiEventLoop();
74 <
117 >  set_interface_stamps(stamps, globals);
118 >  mpiEventInit();
119 >  MPIcheckPoint();
120 >  mpiEventLoop();
121   }
122  
123   #endif // is_mpi
124  
125 < void SimSetup::createSim( void ){
125 > void SimSetup::createSim(void){
126  
127 <  MakeStamps *the_stamps;
82 <  Globals* the_globals;
83 <  int i, j, k, globalAtomIndex;
84 <  
85 <  int ensembleCase;
86 <  int ffCase;
87 <  
88 <  ensembleCase = -1;
89 <  ffCase = -1;
127 >  // gather all of the information from the Bass file
128  
129 <  // get the stamps and globals;
92 <  the_stamps = stamps;
93 <  the_globals = globals;
129 >  gatherInfo();
130  
131 <  // set the easy ones first
96 <  simnfo->target_temp = the_globals->getTargetTemp();
97 <  simnfo->dt = the_globals->getDt();
98 <  simnfo->run_time = the_globals->getRunTime();
131 >  // creation of complex system objects
132  
133 <  // get the ones we know are there, yet still may need some work.
101 <  n_components = the_globals->getNComponents();
102 <  strcpy( force_field, the_globals->getForceField() );
133 >  sysObjectsCreation();
134  
135 <  if( !strcasecmp( force_field, "DUFF" )) ffCase = FF_DUFF;
105 <  else if( !strcasecmp( force_field, "LJ" )) ffCase = FF_LJ;
106 <  else{
107 <    sprintf( painCave.errMsg,
108 <             "SimSetup Error. Unrecognized force field -> %s\n",
109 <             force_field );
110 <    painCave.isFatal = 1;
111 <    simError();
112 <  }
135 >  // check on the post processing info
136  
137 <  // get the ensemble:
115 <  strcpy( ensemble, the_globals->getEnsemble() );
137 >  finalInfoCheck();
138  
139 <  if( !strcasecmp( ensemble, "NVE" ))      ensembleCase = NVE_ENS;
140 <  else if( !strcasecmp( ensemble, "NVT" )) ensembleCase = NVT_ENS;
141 <  else if( !strcasecmp( ensemble, "NPTi" ) || !strcasecmp( ensemble, "NPT") )
142 <    ensembleCase = NPTi_ENS;
143 <  else if( !strcasecmp( ensemble, "NPTf" )) ensembleCase = NPTf_ENS;
144 <  else if( !strcasecmp( ensemble, "NPTim" )) ensembleCase = NPTim_ENS;
145 <  else if( !strcasecmp( ensemble, "NPTfm" )) ensembleCase = NPTfm_ENS;
124 <  else{
125 <    sprintf( painCave.errMsg,
126 <             "SimSetup Warning. Unrecognized Ensemble -> %s, "
127 <             "reverting to NVE for this simulation.\n",
128 <             ensemble );
129 <    painCave.isFatal = 0;
130 <    simError();
131 <    strcpy( ensemble, "NVE" );
132 <    ensembleCase = NVE_ENS;
139 >  // initialize the system coordinates
140 >
141 >  if ( !initSuspend ){
142 >    initSystemCoords();
143 >
144 >    if( !(globals->getUseInitTime()) )
145 >      info[0].currentTime = 0.0;
146    }  
134  strcpy( simnfo->ensemble, ensemble );
147  
148 +  // make the output filenames
149  
150 < //   if( !strcasecmp( ensemble, "NPT" ) ) {
151 < //     the_extendedsystem = new ExtendedSystem( simnfo );
152 < //     the_extendedsystem->setTargetTemp(the_globals->getTargetTemp());
153 < //     if (the_globals->haveTargetPressure())
154 < //       the_extendedsystem->setTargetPressure(the_globals->getTargetPressure());
142 < //     else {
143 < //       sprintf( painCave.errMsg,
144 < //                "SimSetup error: If you use the constant pressure\n"
145 < //                "    ensemble, you must set targetPressure.\n"
146 < //                "    This was found in the BASS file.\n");
147 < //       painCave.isFatal = 1;
148 < //       simError();
149 < //     }
150 >  makeOutNames();
151 >  
152 > #ifdef IS_MPI
153 >  mpiSim->mpiRefresh();
154 > #endif
155  
156 < //     if (the_globals->haveTauThermostat())
152 < //       the_extendedsystem->setTauThermostat(the_globals->getTauThermostat());
153 < //     else if (the_globals->haveQmass())
154 < //       the_extendedsystem->setQmass(the_globals->getQmass());
155 < //     else {
156 < //       sprintf( painCave.errMsg,
157 < //                "SimSetup error: If you use one of the constant temperature\n"
158 < //                "    ensembles, you must set either tauThermostat or qMass.\n"
159 < //                "    Neither of these was found in the BASS file.\n");
160 < //       painCave.isFatal = 1;
161 < //       simError();
162 < //     }
156 >  // initialize the Fortran
157  
158 < //     if (the_globals->haveTauBarostat())
165 < //       the_extendedsystem->setTauBarostat(the_globals->getTauBarostat());
166 < //     else {
167 < //       sprintf( painCave.errMsg,
168 < //                "SimSetup error: If you use the constant pressure\n"
169 < //                "    ensemble, you must set tauBarostat.\n"
170 < //                "    This was found in the BASS file.\n");
171 < //       painCave.isFatal = 1;
172 < //       simError();
173 < //     }
158 >  initFortran();
159  
160 < //   } else if ( !strcasecmp( ensemble, "NVT") ) {
161 < //     the_extendedsystem = new ExtendedSystem( simnfo );
162 < //     the_extendedsystem->setTargetTemp(the_globals->getTargetTemp());
160 >  if (globals->haveMinimizer())
161 >    // make minimizer
162 >    makeMinimizer();
163 >  else
164 >    // make the integrator
165 >    makeIntegrator();
166  
167 < //     if (the_globals->haveTauThermostat())
180 < //       the_extendedsystem->setTauThermostat(the_globals->getTauThermostat());
181 < //     else if (the_globals->haveQmass())
182 < //       the_extendedsystem->setQmass(the_globals->getQmass());
183 < //     else {
184 < //       sprintf( painCave.errMsg,
185 < //                "SimSetup error: If you use one of the constant temperature\n"
186 < //                "    ensembles, you must set either tauThermostat or qMass.\n"
187 < //                "    Neither of these was found in the BASS file.\n");
188 < //       painCave.isFatal = 1;
189 < //       simError();
190 < //     }
167 > }
168  
192  strcpy( simnfo->mixingRule, the_globals->getMixingRule() );
193  simnfo->usePBC = the_globals->getPBC();
194          
195  int usesDipoles = 0;
196  switch( ffCase ){
169  
170 <  case FF_DUFF:
171 <    the_ff = new DUFF();
172 <    usesDipoles = 1;
173 <    break;
170 > void SimSetup::makeMolecules(void){
171 >  int i, j, k;
172 >  int exI, exJ, exK, exL, slI, slJ;
173 >  int tempI, tempJ, tempK, tempL;
174 >  int molI;
175 >  int stampID, atomOffset, rbOffset;
176 >  molInit molInfo;
177 >  DirectionalAtom* dAtom;
178 >  RigidBody* myRB;
179 >  StuntDouble* mySD;
180 >  LinkedAssign* extras;
181 >  LinkedAssign* current_extra;
182 >  AtomStamp* currentAtom;
183 >  BondStamp* currentBond;
184 >  BendStamp* currentBend;
185 >  TorsionStamp* currentTorsion;
186 >  RigidBodyStamp* currentRigidBody;
187 >  CutoffGroupStamp* currentCutoffGroup;
188 >  CutoffGroup* myCutoffGroup;
189 >  int nCutoffGroups;// number of cutoff group of a molecule defined in mdl file
190 >  set<int> cutoffAtomSet; //atoms belong to  cutoffgroup defined at mdl file
191  
192 <  case FF_LJ:
193 <    the_ff = new LJFF();
194 <    break;
192 >  bond_pair* theBonds;
193 >  bend_set* theBends;
194 >  torsion_set* theTorsions;
195  
196 <  default:
208 <    sprintf( painCave.errMsg,
209 <             "SimSetup Error. Unrecognized force field in case statement.\n");
210 <    painCave.isFatal = 1;
211 <    simError();
212 <  }
196 >  set<int> skipList;
197  
198 < #ifdef IS_MPI
199 <  strcpy( checkPointMsg, "ForceField creation successful" );
200 <  MPIcheckPoint();
217 < #endif // is_mpi
198 >  double phi, theta, psi;
199 >  char* molName;
200 >  char rbName[100];
201  
202 <  // get the components and calculate the tot_nMol and indvidual n_mol
203 <  the_components = the_globals->getComponents();
204 <  components_nmol = new int[n_components];
205 <  comp_stamps = new MoleculeStamp*[n_components];
202 >  //ConstraintPair* consPair; //constraint pair
203 >  //ConstraintElement* consElement1;  //first element of constraint pair
204 >  //ConstraintElement* consElement2;  //second element of constraint pair
205 >  //int whichRigidBody;
206 >  //int consAtomIndex;  //index of constraint atom in rigid body's atom array
207 >  //vector<pair<int, int> > jointAtoms;
208 >  //init the forceField paramters
209  
210 <  if( !the_globals->haveNMol() ){
225 <    // we don't have the total number of molecules, so we assume it is
226 <    // given in each component
210 >  the_ff->readParams();
211  
212 <    tot_nmol = 0;
229 <    for( i=0; i<n_components; i++ ){
212 >  // init the atoms
213  
214 <      if( !the_components[i]->haveNMol() ){
215 <        // we have a problem
216 <        sprintf( painCave.errMsg,
217 <                 "SimSetup Error. No global NMol or component NMol"
235 <                 " given. Cannot calculate the number of atoms.\n" );
236 <        painCave.isFatal = 1;
237 <        simError();
238 <      }
214 >  int nMembers, nNew, rb1, rb2;
215 >
216 >  for (k = 0; k < nInfo; k++){
217 >    the_ff->setSimInfo(&(info[k]));
218  
219 <      tot_nmol += the_components[i]->getNMol();
220 <      components_nmol[i] = the_components[i]->getNMol();
242 <    }
243 <  }
244 <  else{
245 <    sprintf( painCave.errMsg,
246 <             "SimSetup error.\n"
247 <             "\tSorry, the ability to specify total"
248 <             " nMols and then give molfractions in the components\n"
249 <             "\tis not currently supported."
250 <             " Please give nMol in the components.\n" );
251 <    painCave.isFatal = 1;
252 <    simError();
253 <    
254 <    
255 <    //     tot_nmol = the_globals->getNMol();
256 <    
257 <    //   //we have the total number of molecules, now we check for molfractions
258 <    //     for( i=0; i<n_components; i++ ){
259 <    
260 <    //       if( !the_components[i]->haveMolFraction() ){
261 <    
262 <    //  if( !the_components[i]->haveNMol() ){
263 <    //    //we have a problem
264 <    //    std::cerr << "SimSetup error. Neither molFraction nor "
265 <    //              << " nMol was given in component
266 <    
267 <  }
219 >    atomOffset = 0;
220 >    groupOffset = 0;
221  
222 < #ifdef IS_MPI
223 <  strcpy( checkPointMsg, "Have the number of components" );
224 <  MPIcheckPoint();
272 < #endif // is_mpi
222 >    for (i = 0; i < info[k].n_mol; i++){
223 >      stampID = info[k].molecules[i].getStampID();
224 >      molName = comp_stamps[stampID]->getID();
225  
226 <  // make an array of molecule stamps that match the components used.
227 <  // also extract the used stamps out into a separate linked list
226 >      molInfo.nAtoms = comp_stamps[stampID]->getNAtoms();
227 >      molInfo.nBonds = comp_stamps[stampID]->getNBonds();
228 >      molInfo.nBends = comp_stamps[stampID]->getNBends();
229 >      molInfo.nTorsions = comp_stamps[stampID]->getNTorsions();
230 >      molInfo.nRigidBodies = comp_stamps[stampID]->getNRigidBodies();
231  
232 <  simnfo->nComponents = n_components;
233 <  simnfo->componentsNmol = components_nmol;
234 <  simnfo->compStamps = comp_stamps;
280 <  simnfo->headStamp = new LinkedMolStamp();
281 <  
282 <  char* id;
283 <  LinkedMolStamp* headStamp = simnfo->headStamp;
284 <  LinkedMolStamp* currentStamp = NULL;
285 <  for( i=0; i<n_components; i++ ){
232 >      nCutoffGroups = comp_stamps[stampID]->getNCutoffGroups();
233 >      
234 >      molInfo.myAtoms = &(info[k].atoms[atomOffset]);
235  
236 <    id = the_components[i]->getType();
237 <    comp_stamps[i] = NULL;
238 <    
239 <    // check to make sure the component isn't already in the list
236 >      if (molInfo.nBonds > 0)
237 >        molInfo.myBonds = new Bond*[molInfo.nBonds];
238 >      else
239 >        molInfo.myBonds = NULL;
240  
241 <    comp_stamps[i] = headStamp->match( id );
242 <    if( comp_stamps[i] == NULL ){
241 >      if (molInfo.nBends > 0)
242 >        molInfo.myBends = new Bend*[molInfo.nBends];
243 >      else
244 >        molInfo.myBends = NULL;
245 >
246 >      if (molInfo.nTorsions > 0)
247 >        molInfo.myTorsions = new Torsion *[molInfo.nTorsions];
248 >      else
249 >        molInfo.myTorsions = NULL;
250 >
251 >      theBonds = new bond_pair[molInfo.nBonds];
252 >      theBends = new bend_set[molInfo.nBends];
253 >      theTorsions = new torsion_set[molInfo.nTorsions];
254        
255 <      // extract the component from the list;
296 <      
297 <      currentStamp = the_stamps->extractMolStamp( id );
298 <      if( currentStamp == NULL ){
299 <        sprintf( painCave.errMsg,
300 <                 "SimSetup error: Component \"%s\" was not found in the "
301 <                 "list of declared molecules\n",
302 <                 id );
303 <        painCave.isFatal = 1;
304 <        simError();
305 <      }
306 <      
307 <      headStamp->add( currentStamp );
308 <      comp_stamps[i] = headStamp->match( id );
309 <    }
310 <  }
255 >      // make the Atoms
256  
257 < #ifdef IS_MPI
258 <  strcpy( checkPointMsg, "Component stamps successfully extracted\n" );
314 <  MPIcheckPoint();
315 < #endif // is_mpi
316 <  
257 >      for (j = 0; j < molInfo.nAtoms; j++){
258 >        currentAtom = comp_stamps[stampID]->getAtom(j);
259  
260 +        if (currentAtom->haveOrientation()){
261 +          dAtom = new DirectionalAtom((j + atomOffset),
262 +                                      info[k].getConfiguration());
263 +          info[k].n_oriented++;
264 +          molInfo.myAtoms[j] = dAtom;
265  
266 +          // Directional Atoms have standard unit vectors which are oriented
267 +          // in space using the three Euler angles.  We assume the standard
268 +          // unit vector was originally along the z axis below.
269  
270 <  // caclulate the number of atoms, bonds, bends and torsions
270 >          phi = currentAtom->getEulerPhi() * M_PI / 180.0;
271 >          theta = currentAtom->getEulerTheta() * M_PI / 180.0;
272 >          psi = currentAtom->getEulerPsi()* M_PI / 180.0;
273  
274 <  tot_atoms = 0;
275 <  tot_bonds = 0;
276 <  tot_bends = 0;
277 <  tot_torsions = 0;
326 <  for( i=0; i<n_components; i++ ){
327 <    
328 <    tot_atoms +=    components_nmol[i] * comp_stamps[i]->getNAtoms();
329 <    tot_bonds +=    components_nmol[i] * comp_stamps[i]->getNBonds();
330 <    tot_bends +=    components_nmol[i] * comp_stamps[i]->getNBends();
331 <    tot_torsions += components_nmol[i] * comp_stamps[i]->getNTorsions();
332 <  }
274 >          dAtom->setUnitFrameFromEuler(phi, theta, psi);
275 >            
276 >        }
277 >        else{
278  
279 <  tot_SRI = tot_bonds + tot_bends + tot_torsions;
279 >          molInfo.myAtoms[j] = new Atom((j + atomOffset), info[k].getConfiguration());
280  
281 <  simnfo->n_atoms = tot_atoms;
337 <  simnfo->n_bonds = tot_bonds;
338 <  simnfo->n_bends = tot_bends;
339 <  simnfo->n_torsions = tot_torsions;
340 <  simnfo->n_SRI = tot_SRI;
341 <  simnfo->n_mol = tot_nmol;
342 <  
343 <  simnfo->molMembershipArray = new int[tot_atoms];
281 >        }
282  
283 +        molInfo.myAtoms[j]->setType(currentAtom->getType());
284   #ifdef IS_MPI
285  
286 <  // divide the molecules among processors here.
348 <  
349 <  mpiSim = new mpiSimulation( simnfo );
350 <  
351 <  globalIndex = mpiSim->divideLabor();
286 >        molInfo.myAtoms[j]->setGlobalIndex(globalAtomIndex[j + atomOffset]);
287  
288 <  // set up the local variables
289 <  
355 <  int localMol, allMol;
356 <  int local_atoms, local_bonds, local_bends, local_torsions, local_SRI;
288 > #endif // is_mpi
289 >      }
290  
291 <  int* mol2proc = mpiSim->getMolToProcMap();
292 <  int* molCompType = mpiSim->getMolComponentType();
293 <  
294 <  allMol = 0;
295 <  localMol = 0;
363 <  local_atoms = 0;
364 <  local_bonds = 0;
365 <  local_bends = 0;
366 <  local_torsions = 0;
367 <  globalAtomIndex = 0;
291 >      // make the bonds
292 >      for (j = 0; j < molInfo.nBonds; j++){
293 >        currentBond = comp_stamps[stampID]->getBond(j);
294 >        theBonds[j].a = currentBond->getA() + atomOffset;
295 >        theBonds[j].b = currentBond->getB() + atomOffset;
296  
297 +        tempI = theBonds[j].a;
298 +        tempJ = theBonds[j].b;
299  
300 <  for( i=0; i<n_components; i++ ){
300 > #ifdef IS_MPI
301 >        exI = info[k].atoms[tempI]->getGlobalIndex() + 1;
302 >        exJ = info[k].atoms[tempJ]->getGlobalIndex() + 1;
303 > #else
304 >        exI = tempI + 1;
305 >        exJ = tempJ + 1;
306 > #endif
307  
308 <    for( j=0; j<components_nmol[i]; j++ ){
373 <      
374 <      if( mol2proc[allMol] == worldRank ){
375 <        
376 <        local_atoms +=    comp_stamps[i]->getNAtoms();
377 <        local_bonds +=    comp_stamps[i]->getNBonds();
378 <        local_bends +=    comp_stamps[i]->getNBends();
379 <        local_torsions += comp_stamps[i]->getNTorsions();
380 <        localMol++;
381 <      }      
382 <      for (k = 0; k < comp_stamps[i]->getNAtoms(); k++) {
383 <        simnfo->molMembershipArray[globalAtomIndex] = allMol;
384 <        globalAtomIndex++;
308 >        info[k].excludes->addPair(exI, exJ);
309        }
310  
311 <      allMol++;      
312 <    }
313 <  }
314 <  local_SRI = local_bonds + local_bends + local_torsions;
315 <  
316 <  simnfo->n_atoms = mpiSim->getMyNlocal();  
393 <  
394 <  if( local_atoms != simnfo->n_atoms ){
395 <    sprintf( painCave.errMsg,
396 <             "SimSetup error: mpiSim's localAtom (%d) and SimSetup's"
397 <             " localAtom (%d) are not equal.\n",
398 <             simnfo->n_atoms,
399 <             local_atoms );
400 <    painCave.isFatal = 1;
401 <    simError();
402 <  }
311 >      //make the bends
312 >      for (j = 0; j < molInfo.nBends; j++){
313 >        currentBend = comp_stamps[stampID]->getBend(j);
314 >        theBends[j].a = currentBend->getA() + atomOffset;
315 >        theBends[j].b = currentBend->getB() + atomOffset;
316 >        theBends[j].c = currentBend->getC() + atomOffset;
317  
318 <  simnfo->n_bonds = local_bonds;
319 <  simnfo->n_bends = local_bends;
320 <  simnfo->n_torsions = local_torsions;
407 <  simnfo->n_SRI = local_SRI;
408 <  simnfo->n_mol = localMol;
318 >        if (currentBend->haveExtras()){
319 >          extras = currentBend->getExtras();
320 >          current_extra = extras;
321  
322 <  strcpy( checkPointMsg, "Passed nlocal consistency check." );
323 <  MPIcheckPoint();
324 <  
325 <  
326 < #endif // is_mpi
327 <  
322 >          while (current_extra != NULL){
323 >            if (!strcmp(current_extra->getlhs(), "ghostVectorSource")){
324 >              switch (current_extra->getType()){
325 >                case 0:
326 >                  theBends[j].ghost = current_extra->getInt() + atomOffset;
327 >                  theBends[j].isGhost = 1;
328 >                  break;
329  
330 <  // create the atom and short range interaction arrays
330 >                case 1:
331 >                  theBends[j].ghost = (int) current_extra->getDouble() +
332 >                                      atomOffset;
333 >                  theBends[j].isGhost = 1;
334 >                  break;
335  
336 <  Atom::createArrays(simnfo->n_atoms);
337 <  the_atoms = new Atom*[simnfo->n_atoms];
338 <  the_molecules = new Molecule[simnfo->n_mol];
339 <  int molIndex;
340 <
341 <  // initialize the molecule's stampID's
336 >                default:
337 >                  sprintf(painCave.errMsg,
338 >                          "SimSetup Error: ghostVectorSource was neither a "
339 >                          "double nor an int.\n"
340 >                          "-->Bend[%d] in %s\n",
341 >                          j, comp_stamps[stampID]->getID());
342 >                  painCave.isFatal = 1;
343 >                  simError();
344 >              }
345 >            }
346 >            else{
347 >              sprintf(painCave.errMsg,
348 >                      "SimSetup Error: unhandled bend assignment:\n"
349 >                      "    -->%s in Bend[%d] in %s\n",
350 >                      current_extra->getlhs(), j, comp_stamps[stampID]->getID());
351 >              painCave.isFatal = 1;
352 >              simError();
353 >            }
354  
355 +            current_extra = current_extra->getNext();
356 +          }
357 +        }
358 +
359 +        if (theBends[j].isGhost) {
360 +          
361 +          tempI = theBends[j].a;
362 +          tempJ = theBends[j].b;
363 +          
364   #ifdef IS_MPI
365 <  
365 >          exI = info[k].atoms[tempI]->getGlobalIndex() + 1;
366 >          exJ = info[k].atoms[tempJ]->getGlobalIndex() + 1;
367 > #else
368 >          exI = tempI + 1;
369 >          exJ = tempJ + 1;
370 > #endif          
371 >          info[k].excludes->addPair(exI, exJ);
372  
373 <  molIndex = 0;
430 <  for(i=0; i<mpiSim->getTotNmol(); i++){
431 <    
432 <    if(mol2proc[i] == worldRank ){
433 <      the_molecules[molIndex].setStampID( molCompType[i] );
434 <      the_molecules[molIndex].setMyIndex( molIndex );
435 <      the_molecules[molIndex].setGlobalIndex( i );
436 <      molIndex++;
437 <    }
438 <  }
373 >        } else {
374  
375 < #else // is_mpi
376 <  
377 <  molIndex = 0;
378 <  globalAtomIndex = 0;
379 <  for(i=0; i<n_components; i++){
380 <    for(j=0; j<components_nmol[i]; j++ ){
381 <      the_molecules[molIndex].setStampID( i );
382 <      the_molecules[molIndex].setMyIndex( molIndex );
383 <      the_molecules[molIndex].setGlobalIndex( molIndex );
384 <      for (k = 0; k < comp_stamps[i]->getNAtoms(); k++) {
385 <        simnfo->molMembershipArray[globalAtomIndex] = molIndex;
386 <        globalAtomIndex++;
375 >          tempI = theBends[j].a;
376 >          tempJ = theBends[j].b;
377 >          tempK = theBends[j].c;
378 >          
379 > #ifdef IS_MPI
380 >          exI = info[k].atoms[tempI]->getGlobalIndex() + 1;
381 >          exJ = info[k].atoms[tempJ]->getGlobalIndex() + 1;
382 >          exK = info[k].atoms[tempK]->getGlobalIndex() + 1;
383 > #else
384 >          exI = tempI + 1;
385 >          exJ = tempJ + 1;
386 >          exK = tempK + 1;
387 > #endif
388 >          
389 >          info[k].excludes->addPair(exI, exK);
390 >          info[k].excludes->addPair(exI, exJ);
391 >          info[k].excludes->addPair(exJ, exK);
392 >        }
393        }
453      molIndex++;
454    }
455  }
456    
394  
395 < #endif // is_mpi
395 >      for (j = 0; j < molInfo.nTorsions; j++){
396 >        currentTorsion = comp_stamps[stampID]->getTorsion(j);
397 >        theTorsions[j].a = currentTorsion->getA() + atomOffset;
398 >        theTorsions[j].b = currentTorsion->getB() + atomOffset;
399 >        theTorsions[j].c = currentTorsion->getC() + atomOffset;
400 >        theTorsions[j].d = currentTorsion->getD() + atomOffset;
401  
402 +        tempI = theTorsions[j].a;      
403 +        tempJ = theTorsions[j].b;
404 +        tempK = theTorsions[j].c;
405 +        tempL = theTorsions[j].d;
406  
407 <  if( simnfo->n_SRI ){
408 <    
409 <    Exclude::createArray(simnfo->n_SRI);
410 <    the_excludes = new Exclude*[simnfo->n_SRI];
411 <    for( int ex=0; ex<simnfo->n_SRI; ex++) the_excludes[ex] = new Exclude(ex);
412 <    simnfo->globalExcludes = new int;
413 <    simnfo->n_exclude = simnfo->n_SRI;
414 <  }
415 <  else{
416 <    
417 <    Exclude::createArray( 1 );
472 <    the_excludes = new Exclude*;
473 <    the_excludes[0] = new Exclude(0);
474 <    the_excludes[0]->setPair( 0,0 );
475 <    simnfo->globalExcludes = new int;
476 <    simnfo->globalExcludes[0] = 0;
477 <    simnfo->n_exclude = 0;
478 <  }
407 > #ifdef IS_MPI
408 >        exI = info[k].atoms[tempI]->getGlobalIndex() + 1;
409 >        exJ = info[k].atoms[tempJ]->getGlobalIndex() + 1;
410 >        exK = info[k].atoms[tempK]->getGlobalIndex() + 1;
411 >        exL = info[k].atoms[tempL]->getGlobalIndex() + 1;
412 > #else
413 >        exI = tempI + 1;
414 >        exJ = tempJ + 1;
415 >        exK = tempK + 1;
416 >        exL = tempL + 1;
417 > #endif
418  
419 <  // set the arrays into the SimInfo object
419 >        info[k].excludes->addPair(exI, exJ);
420 >        info[k].excludes->addPair(exI, exK);
421 >        info[k].excludes->addPair(exI, exL);        
422 >        info[k].excludes->addPair(exJ, exK);
423 >        info[k].excludes->addPair(exJ, exL);
424 >        info[k].excludes->addPair(exK, exL);
425 >      }
426  
427 <  simnfo->atoms = the_atoms;
428 <  simnfo->molecules = the_molecules;
429 <  simnfo->nGlobalExcludes = 0;
430 <  simnfo->excludes = the_excludes;
427 >      
428 >      molInfo.myRigidBodies.clear();
429 >      
430 >      for (j = 0; j < molInfo.nRigidBodies; j++){
431  
432 +        currentRigidBody = comp_stamps[stampID]->getRigidBody(j);
433 +        nMembers = currentRigidBody->getNMembers();
434  
435 <  // get some of the tricky things that may still be in the globals
435 >        // Create the Rigid Body:
436  
437 <  double boxVector[3];
491 <  if( the_globals->haveBox() ){
492 <    boxVector[0] = the_globals->getBox();
493 <    boxVector[1] = the_globals->getBox();
494 <    boxVector[2] = the_globals->getBox();
495 <    
496 <    simnfo->setBox( boxVector );
497 <  }
498 <  else if( the_globals->haveDensity() ){
437 >        myRB = new RigidBody();
438  
439 <    double vol;
440 <    vol = (double)tot_nmol / the_globals->getDensity();
441 <     boxVector[0] = pow( vol, ( 1.0 / 3.0 ) );
442 <     boxVector[1] = boxVector[0];
504 <     boxVector[2] = boxVector[0];
439 >        sprintf(rbName,"%s_RB_%d", molName, j);
440 >        myRB->setType(rbName);
441 >        
442 >        for (rb1 = 0; rb1 < nMembers; rb1++) {
443  
444 <    simnfo->setBox( boxVector );
445 <  }
508 <  else{
509 <    if( !the_globals->haveBoxX() ){
510 <      sprintf( painCave.errMsg,
511 <               "SimSetup error, no periodic BoxX size given.\n" );
512 <      painCave.isFatal = 1;
513 <      simError();
514 <    }
515 <    boxVector[0] = the_globals->getBoxX();
444 >          // molI is atom numbering inside this molecule
445 >          molI = currentRigidBody->getMember(rb1);    
446  
447 <    if( !the_globals->haveBoxY() ){
448 <      sprintf( painCave.errMsg,
519 <               "SimSetup error, no periodic BoxY size given.\n" );
520 <      painCave.isFatal = 1;
521 <      simError();
522 <    }
523 <    boxVector[1] = the_globals->getBoxY();
447 >          // tempI is atom numbering on local processor
448 >          tempI = molI + atomOffset;
449  
450 <    if( !the_globals->haveBoxZ() ){
451 <      sprintf( painCave.errMsg,
452 <               "SimSetup error, no periodic BoxZ size given.\n" );
528 <      painCave.isFatal = 1;
529 <      simError();
530 <    }
531 <    boxVector[2] = the_globals->getBoxZ();
450 >          // currentAtom is the AtomStamp (which we need for
451 >          // rigid body reference positions)
452 >          currentAtom = comp_stamps[stampID]->getAtom(molI);
453  
454 <    simnfo->setBox( boxVector );
455 <  }
454 >          // When we add to the rigid body, add the atom itself and
455 >          // the stamp info:
456  
457 +          myRB->addAtom(info[k].atoms[tempI], currentAtom);
458 +          
459 +          // Add this atom to the Skip List for the integrators
460   #ifdef IS_MPI
461 <  strcpy( checkPointMsg, "Box size set up" );
462 <  MPIcheckPoint();
463 < #endif // is_mpi
461 >          slI = info[k].atoms[tempI]->getGlobalIndex();
462 > #else
463 >          slI = tempI;
464 > #endif
465 >          skipList.insert(slI);
466 >          
467 >        }
468 >        
469 >        for(rb1 = 0; rb1 < nMembers - 1; rb1++) {
470 >          for(rb2 = rb1+1; rb2 < nMembers; rb2++) {
471 >            
472 >            tempI = currentRigidBody->getMember(rb1);
473 >            tempJ = currentRigidBody->getMember(rb2);
474 >            
475 >            // Some explanation is required here.
476 >            // Fortran indexing starts at 1, while c indexing starts at 0
477 >            // Also, in parallel computations, the GlobalIndex is
478 >            // used for the exclude list:
479 >            
480 > #ifdef IS_MPI
481 >            exI = molInfo.myAtoms[tempI]->getGlobalIndex() + 1;
482 >            exJ = molInfo.myAtoms[tempJ]->getGlobalIndex() + 1;
483 > #else
484 >            exI = molInfo.myAtoms[tempI]->getIndex() + 1;
485 >            exJ = molInfo.myAtoms[tempJ]->getIndex() + 1;
486 > #endif
487 >            
488 >            info[k].excludes->addPair(exI, exJ);
489 >            
490 >          }
491 >        }
492  
493 +        molInfo.myRigidBodies.push_back(myRB);
494 +        info[k].rigidBodies.push_back(myRB);
495 +      }
496 +      
497  
498 <  // initialize the arrays
498 >      //create cutoff group for molecule
499  
500 <  the_ff->setSimInfo( simnfo );
500 >      cutoffAtomSet.clear();
501 >      molInfo.myCutoffGroups.clear();
502 >      
503 >      for (j = 0; j < nCutoffGroups; j++){
504  
505 <  makeMolecules();
506 <  simnfo->identArray = new int[simnfo->n_atoms];
548 <  for(i=0; i<simnfo->n_atoms; i++){
549 <    simnfo->identArray[i] = the_atoms[i]->getIdent();
550 <  }
551 <  
552 <  if (the_globals->getUseRF() ) {
553 <    simnfo->useReactionField = 1;
554 <  
555 <    if( !the_globals->haveECR() ){
556 <      sprintf( painCave.errMsg,
557 <               "SimSetup Warning: using default value of 1/2 the smallest "
558 <               "box length for the electrostaticCutoffRadius.\n"
559 <               "I hope you have a very fast processor!\n");
560 <      painCave.isFatal = 0;
561 <      simError();
562 <      double smallest;
563 <      smallest = simnfo->boxLx;
564 <      if (simnfo->boxLy <= smallest) smallest = simnfo->boxLy;
565 <      if (simnfo->boxLz <= smallest) smallest = simnfo->boxLz;
566 <      simnfo->ecr = 0.5 * smallest;
567 <    } else {
568 <      simnfo->ecr        = the_globals->getECR();
569 <    }
505 >        currentCutoffGroup = comp_stamps[stampID]->getCutoffGroup(j);
506 >        nMembers = currentCutoffGroup->getNMembers();
507  
508 <    if( !the_globals->haveEST() ){
509 <      sprintf( painCave.errMsg,
510 <               "SimSetup Warning: using default value of 0.05 * the "
511 <               "electrostaticCutoffRadius for the electrostaticSkinThickness\n"
575 <               );
576 <      painCave.isFatal = 0;
577 <      simError();
578 <      simnfo->est = 0.05 * simnfo->ecr;
579 <    } else {
580 <      simnfo->est        = the_globals->getEST();
581 <    }
582 <    
583 <    if(!the_globals->haveDielectric() ){
584 <      sprintf( painCave.errMsg,
585 <               "SimSetup Error: You are trying to use Reaction Field without"
586 <               "setting a dielectric constant!\n"
587 <               );
588 <      painCave.isFatal = 1;
589 <      simError();
590 <    }
591 <    simnfo->dielectric = the_globals->getDielectric();  
592 <  } else {
593 <    if (usesDipoles) {
594 <      
595 <      if( !the_globals->haveECR() ){
596 <        sprintf( painCave.errMsg,
597 <                 "SimSetup Warning: using default value of 1/2 the smallest "
598 <                 "box length for the electrostaticCutoffRadius.\n"
599 <                 "I hope you have a very fast processor!\n");
600 <        painCave.isFatal = 0;
601 <        simError();
602 <        double smallest;
603 <        smallest = simnfo->boxLx;
604 <        if (simnfo->boxLy <= smallest) smallest = simnfo->boxLy;
605 <        if (simnfo->boxLz <= smallest) smallest = simnfo->boxLz;
606 <        simnfo->ecr = 0.5 * smallest;
607 <      } else {
608 <        simnfo->ecr        = the_globals->getECR();
609 <      }
610 <      
611 <      if( !the_globals->haveEST() ){
612 <        sprintf( painCave.errMsg,
613 <                 "SimSetup Warning: using default value of 5%% of the "
614 <                 "electrostaticCutoffRadius for the "
615 <                 "electrostaticSkinThickness\n"
616 <                 );
617 <        painCave.isFatal = 0;
618 <        simError();
619 <        simnfo->est = 0.05 * simnfo->ecr;
620 <      } else {
621 <        simnfo->est        = the_globals->getEST();
622 <      }
623 <    }
624 <  }  
508 >        myCutoffGroup = new CutoffGroup();
509 >        myCutoffGroup->setGlobalIndex(globalGroupIndex[j + groupOffset]);
510 >        
511 >        for (int cg = 0; cg < nMembers; cg++) {
512  
513 < #ifdef IS_MPI
514 <  strcpy( checkPointMsg, "electrostatic parameters check out" );
628 <  MPIcheckPoint();
629 < #endif // is_mpi
513 >          // molI is atom numbering inside this molecule
514 >          molI = currentCutoffGroup->getMember(cg);    
515  
516 < if( the_globals->haveInitialConfig() ){
517 <
518 <     InitializeFromFile* fileInit;
634 < #ifdef IS_MPI // is_mpi
635 <     if( worldRank == 0 ){
636 < #endif //is_mpi
637 <   fileInit = new InitializeFromFile( the_globals->getInitialConfig() );
516 >          // tempI is atom numbering on local processor
517 >          tempI = molI + atomOffset;
518 >
519   #ifdef IS_MPI
520 <     }else fileInit = new InitializeFromFile( NULL );
520 >          globalID = info[k].atoms[tempI]->getGlobalIndex()
521 > #else
522 >          globalID = info[k].atoms[tempI]->getIndex();
523   #endif
641   fileInit->read_xyz( simnfo ); // default velocities on
524  
525 <   delete fileInit;
644 < }
645 < else{
525 >          globalGroupMembership[globalID] = globalGroupIndex[j+groupOffset];
526  
527 < #ifdef IS_MPI
527 >          myCutoffGroup->addAtom(info[k].atoms[tempI]);          
528  
529 <  // no init from bass
530 <  
531 <  sprintf( painCave.errMsg,
532 <           "Cannot intialize a parallel simulation without an initial configuration file.\n" );
533 <  painCave.isFatal;
654 <  simError();
655 <  
656 < #else
529 >          cutoffAtomSet.insert(tempI);
530 >        }
531 >      
532 >        molInfo.myCutoffGroups.push_back(myCutoffGroup);
533 >        groupOffset++;
534  
535 <  initFromBass();
535 >      }//end for (j = 0; j < molInfo.nCutoffGroups; j++)
536  
537 +      //creat a cutoff group for every atom  in current molecule which does not belong to cutoffgroup defined at mdl file
538  
539 < #endif
662 < }
539 >      for(j = 0; j < molInfo.nAtoms; j++){
540  
541 +        if(cutoffAtomSet.find(molInfo.myAtoms[j]->getIndex()) == cutoffAtomSet.end()){
542 +          myCutoffGroup = new CutoffGroup();
543 +          myCutoffGroup->addAtom(molInfo.myAtoms[j]);
544 +          myCutoffGroup->setGlobalIndex(globalGroupIndex[j + groupOffset]);
545   #ifdef IS_MPI
546 <  strcpy( checkPointMsg, "Successfully read in the initial configuration" );
547 <  MPIcheckPoint();
548 < #endif // is_mpi
546 >          globalID = info[k].atoms[atomOffset + j]->getGlobalIndex()
547 > #else
548 >          globalID = info[k].atoms[atomOffset + j]->getIndex();
549 > #endif
550 >          globalGroupMembership[globalID] = globalGroupIndex[j+groupOffset];
551 >          molInfo.myCutoffGroups.push_back(myCutoffGroup);
552 >          groupOffset++;
553 >        }
554 >          
555 >      }
556  
557 +      // After this is all set up, scan through the atoms to
558 +      // see if they can be added to the integrableObjects:
559  
560 <  
561 <
672 <  
560 >      molInfo.myIntegrableObjects.clear();
561 >      
562  
563 <  
563 >      for (j = 0; j < molInfo.nAtoms; j++){
564 >
565   #ifdef IS_MPI
566 <  if( worldRank == 0 ){
567 < #endif // is_mpi
568 <    
569 <    if( the_globals->haveFinalConfig() ){
570 <      strcpy( simnfo->finalName, the_globals->getFinalConfig() );
571 <    }
572 <    else{
573 <      strcpy( simnfo->finalName, inFileName );
574 <      char* endTest;
575 <      int nameLength = strlen( simnfo->finalName );
576 <      endTest = &(simnfo->finalName[nameLength - 5]);
577 <      if( !strcmp( endTest, ".bass" ) ){
688 <        strcpy( endTest, ".eor" );
566 >        slJ = molInfo.myAtoms[j]->getGlobalIndex();
567 > #else
568 >        slJ = j+atomOffset;
569 > #endif
570 >
571 >        // if they aren't on the skip list, then they can be integrated
572 >
573 >        if (skipList.find(slJ) == skipList.end()) {
574 >          mySD = (StuntDouble *) molInfo.myAtoms[j];
575 >          info[k].integrableObjects.push_back(mySD);
576 >          molInfo.myIntegrableObjects.push_back(mySD);
577 >        }
578        }
579 <      else if( !strcmp( endTest, ".BASS" ) ){
580 <        strcpy( endTest, ".eor" );
579 >
580 >      // all rigid bodies are integrated:
581 >
582 >      for (j = 0; j < molInfo.nRigidBodies; j++) {
583 >        mySD = (StuntDouble *) molInfo.myRigidBodies[j];
584 >        info[k].integrableObjects.push_back(mySD);      
585 >        molInfo.myIntegrableObjects.push_back(mySD);
586        }
693      else{
694        endTest = &(simnfo->finalName[nameLength - 4]);
695        if( !strcmp( endTest, ".bss" ) ){
696          strcpy( endTest, ".eor" );
697        }
698        else if( !strcmp( endTest, ".mdl" ) ){
699          strcpy( endTest, ".eor" );
700        }
701        else{
702          strcat( simnfo->finalName, ".eor" );
703        }
704      }
705    }
706    
707    // make the sample and status out names
708    
709    strcpy( simnfo->sampleName, inFileName );
710    char* endTest;
711    int nameLength = strlen( simnfo->sampleName );
712    endTest = &(simnfo->sampleName[nameLength - 5]);
713    if( !strcmp( endTest, ".bass" ) ){
714      strcpy( endTest, ".dump" );
715    }
716    else if( !strcmp( endTest, ".BASS" ) ){
717      strcpy( endTest, ".dump" );
718    }
719    else{
720      endTest = &(simnfo->sampleName[nameLength - 4]);
721      if( !strcmp( endTest, ".bss" ) ){
722        strcpy( endTest, ".dump" );
723      }
724      else if( !strcmp( endTest, ".mdl" ) ){
725        strcpy( endTest, ".dump" );
726      }
727      else{
728        strcat( simnfo->sampleName, ".dump" );
729      }
730    }
731    
732    strcpy( simnfo->statusName, inFileName );
733    nameLength = strlen( simnfo->statusName );
734    endTest = &(simnfo->statusName[nameLength - 5]);
735    if( !strcmp( endTest, ".bass" ) ){
736      strcpy( endTest, ".stat" );
737    }
738    else if( !strcmp( endTest, ".BASS" ) ){
739      strcpy( endTest, ".stat" );
740    }
741    else{
742      endTest = &(simnfo->statusName[nameLength - 4]);
743      if( !strcmp( endTest, ".bss" ) ){
744        strcpy( endTest, ".stat" );
745      }
746      else if( !strcmp( endTest, ".mdl" ) ){
747        strcpy( endTest, ".stat" );
748      }
749      else{
750        strcat( simnfo->statusName, ".stat" );
751      }
752    }
753    
754 #ifdef IS_MPI
755  }
756 #endif // is_mpi
757  
758  // set the status, sample, and themal kick times
759  
760  if( the_globals->haveSampleTime() ){
761    simnfo->sampleTime = the_globals->getSampleTime();
762    simnfo->statusTime = simnfo->sampleTime;
763    simnfo->thermalTime = simnfo->sampleTime;
764  }
765  else{
766    simnfo->sampleTime = the_globals->getRunTime();
767    simnfo->statusTime = simnfo->sampleTime;
768    simnfo->thermalTime = simnfo->sampleTime;
769  }
587  
771  if( the_globals->haveStatusTime() ){
772    simnfo->statusTime = the_globals->getStatusTime();
773  }
588  
589 <  if( the_globals->haveThermalTime() ){
776 <    simnfo->thermalTime = the_globals->getThermalTime();
777 <  }
589 >    /*
590  
591 <  // check for the temperature set flag
591 >      //creat ConstraintPair.
592 >      molInfo.myConstraintPair.clear();
593 >      
594 >      for (j = 0; j < molInfo.nBonds; j++){
595  
596 <  if( the_globals->haveTempSet() ) simnfo->setTemp = the_globals->getTempSet();
596 >        //if both atoms are in the same rigid body, just skip it
597 >        currentBond = comp_stamps[stampID]->getBond(j);
598 >        if(!comp_stamps[stampID]->isBondInSameRigidBody(currentBond)){
599  
600 +          tempI = currentBond->getA() + atomOffset;
601 +          if( comp_stamps[stampID]->isAtomInRigidBody(currentBond->getA(), whichRigidBody, consAtomIndex))
602 +            consElement1 = new ConstraintRigidBody(molInfo.myRigidBodies[whichRigidBody], consAtomIndex);
603 +          else
604 +             consElement1 = new ConstraintAtom(info[k].atoms[tempI]);      
605  
606 <  // make the integrator
607 <  
608 <  
609 <  NVT*  myNVT = NULL;
610 <  NPTi* myNPTi = NULL;
789 <  NPTf* myNPTf = NULL;
790 <  NPTim* myNPTim = NULL;
606 >          tempJ =  currentBond->getB() + atomOffset;
607 >          if(comp_stamps[stampID]->isAtomInRigidBody(currentBond->getB(), whichRigidBody, consAtomIndex))
608 >            consElement2 = new ConstraintRigidBody(molInfo.myRigidBodies[whichRigidBody], consAtomIndex);
609 >          else
610 >             consElement2 = new ConstraintAtom(info[k].atoms[tempJ]);    
611  
612 <  switch( ensembleCase ){
612 >          consPair = new DistanceConstraintPair(consElement1, consElement2);
613 >          molInfo.myConstraintPairs.push_back(consPair);
614 >        }
615 >      }  
616 >      
617 >      //loop over rigid bodies, if two rigid bodies share same joint, creat a HingeConstraintPair
618 >      for (int rb1 = 0; rb1 < molInfo.nRigidBodies -1 ; rb1++){
619 >        for (int rb2 = rb1 + 1; rb2 < molInfo.nRigidBodies ; rb2++){
620 >          
621 >          jointAtoms = comp_stamps[stampID]->getJointAtoms(rb1, rb2);
622  
623 <  case NVE_ENS:
624 <    new NVE( simnfo, the_ff );
625 <    break;
623 >          for(size_t m = 0; m < jointAtoms.size(); m++){          
624 >            consElement1 = new ConstraintRigidBody(molInfo.myRigidBodies[rb1], jointAtoms[m].first);
625 >            consElement2 = new ConstraintRigidBody(molInfo.myRigidBodies[rb2], jointAtoms[m].second);
626  
627 <  case NVT_ENS:
628 <    myNVT = new NVT( simnfo, the_ff );
629 <    myNVT->setTargetTemp(the_globals->getTargetTemp());
627 >            consPair = new JointConstraintPair(consElement1, consElement2);  
628 >            molInfo.myConstraintPairs.push_back(consPair);            
629 >          }
630  
631 <    if (the_globals->haveTauThermostat())
632 <      myNVT->setTauThermostat(the_globals->getTauThermostat());
631 >        }
632 >      }
633 >      
634 > */      
635 >      // send the arrays off to the forceField for init.
636 >      
637 >      the_ff->initializeAtoms(molInfo.nAtoms, molInfo.myAtoms);
638 >      the_ff->initializeBonds(molInfo.nBonds, molInfo.myBonds, theBonds);
639 >      the_ff->initializeBends(molInfo.nBends, molInfo.myBends, theBends);
640 >      the_ff->initializeTorsions(molInfo.nTorsions, molInfo.myTorsions,
641 >                                 theTorsions);
642  
643 <    else {
806 <      sprintf( painCave.errMsg,
807 <               "SimSetup error: If you use the NVT\n"
808 <               "    ensemble, you must set tauThermostat.\n");
809 <      painCave.isFatal = 1;
810 <      simError();
811 <    }
812 <    break;
643 >      info[k].molecules[i].initialize(molInfo);
644  
814  case NPTi_ENS:
815    myNPTi = new NPTi( simnfo, the_ff );
816    myNPTi->setTargetTemp( the_globals->getTargetTemp());
645  
646 <    if (the_globals->haveTargetPressure())
647 <      myNPTi->setTargetPressure(the_globals->getTargetPressure());
648 <    else {
649 <      sprintf( painCave.errMsg,
650 <               "SimSetup error: If you use a constant pressure\n"
651 <               "    ensemble, you must set targetPressure in the BASS file.\n");
824 <      painCave.isFatal = 1;
825 <      simError();
826 <    }
827 <    
828 <    if( the_globals->haveTauThermostat() )
829 <      myNPTi->setTauThermostat( the_globals->getTauThermostat() );
830 <    else{
831 <      sprintf( painCave.errMsg,
832 <               "SimSetup error: If you use an NPT\n"
833 <               "    ensemble, you must set tauThermostat.\n");
834 <      painCave.isFatal = 1;
835 <      simError();
836 <    }
646 >      atomOffset += molInfo.nAtoms;
647 >      delete[] theBonds;
648 >      delete[] theBends;
649 >      delete[] theTorsions;
650 >    }    
651 >  }
652  
653 <    if( the_globals->haveTauBarostat() )
654 <      myNPTi->setTauBarostat( the_globals->getTauBarostat() );
655 <    else{
656 <      sprintf( painCave.errMsg,
842 <               "SimSetup error: If you use an NPT\n"
843 <               "    ensemble, you must set tauBarostat.\n");
844 <      painCave.isFatal = 1;
845 <      simError();
846 <    }
847 <    break;
653 > #ifdef IS_MPI
654 >  sprintf(checkPointMsg, "all molecules initialized succesfully");
655 >  MPIcheckPoint();
656 > #endif // is_mpi
657  
658 <  case NPTf_ENS:
850 <    myNPTf = new NPTf( simnfo, the_ff );
851 <    myNPTf->setTargetTemp( the_globals->getTargetTemp());
658 > }
659  
660 <    if (the_globals->haveTargetPressure())
661 <      myNPTf->setTargetPressure(the_globals->getTargetPressure());
662 <    else {
663 <      sprintf( painCave.errMsg,
664 <               "SimSetup error: If you use a constant pressure\n"
665 <               "    ensemble, you must set targetPressure in the BASS file.\n");
666 <      painCave.isFatal = 1;
667 <      simError();
861 <    }    
660 > void SimSetup::initFromBass(void){
661 >  int i, j, k;
662 >  int n_cells;
663 >  double cellx, celly, cellz;
664 >  double temp1, temp2, temp3;
665 >  int n_per_extra;
666 >  int n_extra;
667 >  int have_extra, done;
668  
669 <    if( the_globals->haveTauThermostat() )
670 <      myNPTf->setTauThermostat( the_globals->getTauThermostat() );
671 <    else{
672 <      sprintf( painCave.errMsg,
867 <               "SimSetup error: If you use an NPT\n"
868 <               "    ensemble, you must set tauThermostat.\n");
869 <      painCave.isFatal = 1;
870 <      simError();
871 <    }
669 >  double vel[3];
670 >  vel[0] = 0.0;
671 >  vel[1] = 0.0;
672 >  vel[2] = 0.0;
673  
674 <    if( the_globals->haveTauBarostat() )
675 <      myNPTf->setTauBarostat( the_globals->getTauBarostat() );
676 <    else{
876 <      sprintf( painCave.errMsg,
877 <               "SimSetup error: If you use an NPT\n"
878 <               "    ensemble, you must set tauBarostat.\n");
879 <      painCave.isFatal = 1;
880 <      simError();
881 <    }
882 <    break;
883 <    
884 <  case NPTim_ENS:
885 <    myNPTim = new NPTim( simnfo, the_ff );
886 <    myNPTim->setTargetTemp( the_globals->getTargetTemp());
674 >  temp1 = (double) tot_nmol / 4.0;
675 >  temp2 = pow(temp1, (1.0 / 3.0));
676 >  temp3 = ceil(temp2);
677  
678 <    if (the_globals->haveTargetPressure())
679 <      myNPTim->setTargetPressure(the_globals->getTargetPressure());
680 <    else {
681 <      sprintf( painCave.errMsg,
892 <               "SimSetup error: If you use a constant pressure\n"
893 <               "    ensemble, you must set targetPressure in the BASS file.\n");
894 <      painCave.isFatal = 1;
895 <      simError();
896 <    }
897 <    
898 <    if( the_globals->haveTauThermostat() )
899 <      myNPTim->setTauThermostat( the_globals->getTauThermostat() );
900 <    else{
901 <      sprintf( painCave.errMsg,
902 <               "SimSetup error: If you use an NPT\n"
903 <               "    ensemble, you must set tauThermostat.\n");
904 <      painCave.isFatal = 1;
905 <      simError();
906 <    }
678 >  have_extra = 0;
679 >  if (temp2 < temp3){
680 >    // we have a non-complete lattice
681 >    have_extra = 1;
682  
683 <    if( the_globals->haveTauBarostat() )
684 <      myNPTim->setTauBarostat( the_globals->getTauBarostat() );
685 <    else{
686 <      sprintf( painCave.errMsg,
687 <               "SimSetup error: If you use an NPT\n"
688 <               "    ensemble, you must set tauBarostat.\n");
683 >    n_cells = (int) temp3 - 1;
684 >    cellx = info[0].boxL[0] / temp3;
685 >    celly = info[0].boxL[1] / temp3;
686 >    cellz = info[0].boxL[2] / temp3;
687 >    n_extra = tot_nmol - (4 * n_cells * n_cells * n_cells);
688 >    temp1 = ((double) n_extra) / (pow(temp3, 3.0) - pow(n_cells, 3.0));
689 >    n_per_extra = (int) ceil(temp1);
690 >
691 >    if (n_per_extra > 4){
692 >      sprintf(painCave.errMsg,
693 >              "SimSetup error. There has been an error in constructing"
694 >              " the non-complete lattice.\n");
695        painCave.isFatal = 1;
696        simError();
697      }
917    break;
918
919    
920
921  default:
922    sprintf( painCave.errMsg,
923             "SimSetup Error. Unrecognized ensemble in case statement.\n");
924    painCave.isFatal = 1;
925    simError();
698    }
699 +  else{
700 +    n_cells = (int) temp3;
701 +    cellx = info[0].boxL[0] / temp3;
702 +    celly = info[0].boxL[1] / temp3;
703 +    cellz = info[0].boxL[2] / temp3;
704 +  }
705  
706 +  current_mol = 0;
707 +  current_comp_mol = 0;
708 +  current_comp = 0;
709 +  current_atom_ndx = 0;
710  
711 < #ifdef IS_MPI
712 <  mpiSim->mpiRefresh();
713 < #endif
711 >  for (i = 0; i < n_cells ; i++){
712 >    for (j = 0; j < n_cells; j++){
713 >      for (k = 0; k < n_cells; k++){
714 >        makeElement(i * cellx, j * celly, k * cellz);
715  
716 <  // initialize the Fortran
716 >        makeElement(i * cellx + 0.5 * cellx, j * celly + 0.5 * celly, k * cellz);
717  
718 +        makeElement(i * cellx, j * celly + 0.5 * celly, k * cellz + 0.5 * cellz);
719  
720 <  simnfo->refreshSim();
721 <  
722 <  if( !strcmp( simnfo->mixingRule, "standard") ){
939 <    the_ff->initForceField( LB_MIXING_RULE );
940 <  }
941 <  else if( !strcmp( simnfo->mixingRule, "explicit") ){
942 <    the_ff->initForceField( EXPLICIT_MIXING_RULE );
720 >        makeElement(i * cellx + 0.5 * cellx, j * celly, k * cellz + 0.5 * cellz);
721 >      }
722 >    }
723    }
724 <  else{
725 <    sprintf( painCave.errMsg,
726 <             "SimSetup Error: unknown mixing rule -> \"%s\"\n",
727 <             simnfo->mixingRule );
728 <    painCave.isFatal = 1;
729 <    simError();
724 >
725 >  if (have_extra){
726 >    done = 0;
727 >
728 >    int start_ndx;
729 >    for (i = 0; i < (n_cells + 1) && !done; i++){
730 >      for (j = 0; j < (n_cells + 1) && !done; j++){
731 >        if (i < n_cells){
732 >          if (j < n_cells){
733 >            start_ndx = n_cells;
734 >          }
735 >          else
736 >            start_ndx = 0;
737 >        }
738 >        else
739 >          start_ndx = 0;
740 >
741 >        for (k = start_ndx; k < (n_cells + 1) && !done; k++){
742 >          makeElement(i * cellx, j * celly, k * cellz);
743 >          done = (current_mol >= tot_nmol);
744 >
745 >          if (!done && n_per_extra > 1){
746 >            makeElement(i * cellx + 0.5 * cellx, j * celly + 0.5 * celly,
747 >                        k * cellz);
748 >            done = (current_mol >= tot_nmol);
749 >          }
750 >
751 >          if (!done && n_per_extra > 2){
752 >            makeElement(i * cellx, j * celly + 0.5 * celly,
753 >                        k * cellz + 0.5 * cellz);
754 >            done = (current_mol >= tot_nmol);
755 >          }
756 >
757 >          if (!done && n_per_extra > 3){
758 >            makeElement(i * cellx + 0.5 * cellx, j * celly,
759 >                        k * cellz + 0.5 * cellz);
760 >            done = (current_mol >= tot_nmol);
761 >          }
762 >        }
763 >      }
764 >    }
765    }
766  
767 +  for (i = 0; i < info[0].n_atoms; i++){
768 +    info[0].atoms[i]->setVel(vel);
769 +  }
770 + }
771  
772 < #ifdef IS_MPI
773 <  strcpy( checkPointMsg,
774 <          "Successfully intialized the mixingRule for Fortran." );
775 <  MPIcheckPoint();
776 < #endif // is_mpi
772 > void SimSetup::makeElement(double x, double y, double z){
773 >  int k;
774 >  AtomStamp* current_atom;
775 >  DirectionalAtom* dAtom;
776 >  double rotMat[3][3];
777 >  double pos[3];
778 >
779 >  for (k = 0; k < comp_stamps[current_comp]->getNAtoms(); k++){
780 >    current_atom = comp_stamps[current_comp]->getAtom(k);
781 >    if (!current_atom->havePosition()){
782 >      sprintf(painCave.errMsg,
783 >              "SimSetup:initFromBass error.\n"
784 >              "\tComponent %s, atom %s does not have a position specified.\n"
785 >              "\tThe initialization routine is unable to give a start"
786 >              " position.\n",
787 >              comp_stamps[current_comp]->getID(), current_atom->getType());
788 >      painCave.isFatal = 1;
789 >      simError();
790 >    }
791 >
792 >    pos[0] = x + current_atom->getPosX();
793 >    pos[1] = y + current_atom->getPosY();
794 >    pos[2] = z + current_atom->getPosZ();
795 >
796 >    info[0].atoms[current_atom_ndx]->setPos(pos);
797 >
798 >    if (info[0].atoms[current_atom_ndx]->isDirectional()){
799 >      dAtom = (DirectionalAtom *) info[0].atoms[current_atom_ndx];
800 >
801 >      rotMat[0][0] = 1.0;
802 >      rotMat[0][1] = 0.0;
803 >      rotMat[0][2] = 0.0;
804 >
805 >      rotMat[1][0] = 0.0;
806 >      rotMat[1][1] = 1.0;
807 >      rotMat[1][2] = 0.0;
808 >
809 >      rotMat[2][0] = 0.0;
810 >      rotMat[2][1] = 0.0;
811 >      rotMat[2][2] = 1.0;
812 >
813 >      dAtom->setA(rotMat);
814 >    }
815 >
816 >    current_atom_ndx++;
817 >  }
818 >
819 >  current_mol++;
820 >  current_comp_mol++;
821 >
822 >  if (current_comp_mol >= components_nmol[current_comp]){
823 >    current_comp_mol = 0;
824 >    current_comp++;
825 >  }
826   }
827  
828  
829 < void SimSetup::makeMolecules( void ){
829 > void SimSetup::gatherInfo(void){
830 >  int i;
831  
832 <  int i, j, exI, exJ, tempEx, stampID, atomOffset, excludeOffset;
833 <  molInit info;
965 <  DirectionalAtom* dAtom;
966 <  LinkedAssign* extras;
967 <  LinkedAssign* current_extra;
968 <  AtomStamp* currentAtom;
969 <  BondStamp* currentBond;
970 <  BendStamp* currentBend;
971 <  TorsionStamp* currentTorsion;
832 >  ensembleCase = -1;
833 >  ffCase = -1;
834  
835 <  bond_pair* theBonds;
974 <  bend_set* theBends;
975 <  torsion_set* theTorsions;
835 >  // set the easy ones first
836  
837 <  
838 <  //init the forceField paramters
837 >  for (i = 0; i < nInfo; i++){
838 >    info[i].target_temp = globals->getTargetTemp();
839 >    info[i].dt = globals->getDt();
840 >    info[i].run_time = globals->getRunTime();
841 >  }
842 >  n_components = globals->getNComponents();
843  
980  the_ff->readParams();
844  
845 <  
983 <  // init the atoms
845 >  // get the forceField
846  
847 <  double ux, uy, uz, u, uSqr;
986 <  
987 <  atomOffset = 0;
988 <  excludeOffset = 0;
989 <  for(i=0; i<simnfo->n_mol; i++){
990 <    
991 <    stampID = the_molecules[i].getStampID();
847 >  strcpy(force_field, globals->getForceField());
848  
849 <    info.nAtoms    = comp_stamps[stampID]->getNAtoms();
850 <    info.nBonds    = comp_stamps[stampID]->getNBonds();
851 <    info.nBends    = comp_stamps[stampID]->getNBends();
852 <    info.nTorsions = comp_stamps[stampID]->getNTorsions();
853 <    info.nExcludes = info.nBonds + info.nBends + info.nTorsions;
849 >  if (!strcasecmp(force_field, "DUFF")){
850 >    ffCase = FF_DUFF;
851 >  }
852 >  else if (!strcasecmp(force_field, "LJ")){
853 >    ffCase = FF_LJ;
854 >  }
855 >  else if (!strcasecmp(force_field, "EAM")){
856 >    ffCase = FF_EAM;
857 >  }
858 >  else if (!strcasecmp(force_field, "WATER")){
859 >    ffCase = FF_H2O;
860 >  }
861 >  else{
862 >    sprintf(painCave.errMsg, "SimSetup Error. Unrecognized force field -> %s\n",
863 >            force_field);
864 >         painCave.isFatal = 1;
865 >         simError();
866 >  }
867  
868 <    info.myAtoms = &the_atoms[atomOffset];
1000 <    info.myExcludes = &the_excludes[excludeOffset];
1001 <    info.myBonds = new Bond*[info.nBonds];
1002 <    info.myBends = new Bend*[info.nBends];
1003 <    info.myTorsions = new Torsion*[info.nTorsions];
868 >    // get the ensemble
869  
870 <    theBonds = new bond_pair[info.nBonds];
871 <    theBends = new bend_set[info.nBends];
872 <    theTorsions = new torsion_set[info.nTorsions];
873 <    
874 <    // make the Atoms
875 <    
876 <    for(j=0; j<info.nAtoms; j++){
877 <      
878 <      currentAtom = comp_stamps[stampID]->getAtom( j );
879 <      if( currentAtom->haveOrientation() ){
880 <        
881 <        dAtom = new DirectionalAtom(j + atomOffset);
882 <        simnfo->n_oriented++;
883 <        info.myAtoms[j] = dAtom;
884 <        
885 <        ux = currentAtom->getOrntX();
886 <        uy = currentAtom->getOrntY();
887 <        uz = currentAtom->getOrntZ();
888 <        
889 <        uSqr = (ux * ux) + (uy * uy) + (uz * uz);
890 <        
891 <        u = sqrt( uSqr );
892 <        ux = ux / u;
893 <        uy = uy / u;
894 <        uz = uz / u;
895 <        
896 <        dAtom->setSUx( ux );
897 <        dAtom->setSUy( uy );
898 <        dAtom->setSUz( uz );
870 >  strcpy(ensemble, globals->getEnsemble());
871 >
872 >  if (!strcasecmp(ensemble, "NVE")){
873 >    ensembleCase = NVE_ENS;
874 >  }
875 >  else if (!strcasecmp(ensemble, "NVT")){
876 >    ensembleCase = NVT_ENS;
877 >  }
878 >  else if (!strcasecmp(ensemble, "NPTi") || !strcasecmp(ensemble, "NPT")){
879 >    ensembleCase = NPTi_ENS;
880 >  }
881 >  else if (!strcasecmp(ensemble, "NPTf")){
882 >    ensembleCase = NPTf_ENS;
883 >  }
884 >  else if (!strcasecmp(ensemble, "NPTxyz")){
885 >    ensembleCase = NPTxyz_ENS;
886 >  }
887 >  else{
888 >    sprintf(painCave.errMsg,
889 >            "SimSetup Warning. Unrecognized Ensemble -> %s \n"
890 >            "\treverting to NVE for this simulation.\n",
891 >            ensemble);
892 >         painCave.isFatal = 0;
893 >         simError();
894 >         strcpy(ensemble, "NVE");
895 >         ensembleCase = NVE_ENS;
896 >  }  
897 >
898 >  for (i = 0; i < nInfo; i++){
899 >    strcpy(info[i].ensemble, ensemble);
900 >
901 >    // get the mixing rule
902 >
903 >    strcpy(info[i].mixingRule, globals->getMixingRule());
904 >    info[i].usePBC = globals->getPBC();
905 >  }
906 >
907 >  // get the components and calculate the tot_nMol and indvidual n_mol
908 >
909 >  the_components = globals->getComponents();
910 >  components_nmol = new int[n_components];
911 >
912 >
913 >  if (!globals->haveNMol()){
914 >    // we don't have the total number of molecules, so we assume it is
915 >    // given in each component
916 >
917 >    tot_nmol = 0;
918 >    for (i = 0; i < n_components; i++){
919 >      if (!the_components[i]->haveNMol()){
920 >        // we have a problem
921 >        sprintf(painCave.errMsg,
922 >                "SimSetup Error. No global NMol or component NMol given.\n"
923 >                "\tCannot calculate the number of atoms.\n");
924 >        painCave.isFatal = 1;
925 >        simError();
926        }
927 <      else{
928 <        info.myAtoms[j] = new GeneralAtom(j + atomOffset);
929 <      }
930 <      info.myAtoms[j]->setType( currentAtom->getType() );
931 <    
932 < #ifdef IS_MPI
933 <      
934 <      info.myAtoms[j]->setGlobalIndex( globalIndex[j+atomOffset] );
935 <      
936 < #endif // is_mpi
937 <    }
938 <    
939 <    // make the bonds
940 <    for(j=0; j<info.nBonds; j++){
941 <      
1050 <      currentBond = comp_stamps[stampID]->getBond( j );
1051 <      theBonds[j].a = currentBond->getA() + atomOffset;
1052 <      theBonds[j].b = currentBond->getB() + atomOffset;
927 >
928 >      tot_nmol += the_components[i]->getNMol();
929 >      components_nmol[i] = the_components[i]->getNMol();
930 >    }
931 >  }
932 >  else{
933 >    sprintf(painCave.errMsg,
934 >            "SimSetup error.\n"
935 >            "\tSorry, the ability to specify total"
936 >            " nMols and then give molfractions in the components\n"
937 >            "\tis not currently supported."
938 >            " Please give nMol in the components.\n");
939 >    painCave.isFatal = 1;
940 >    simError();
941 >  }
942  
943 <      exI = theBonds[j].a;
944 <      exJ = theBonds[j].b;
943 >  //check whether sample time, status time, thermal time and reset time are divisble by dt
944 >  if (globals->haveSampleTime() && !isDivisible(globals->getSampleTime(), globals->getDt())){
945 >    sprintf(painCave.errMsg,
946 >            "Sample time is not divisible by dt.\n"
947 >            "\tThis will result in samples that are not uniformly\n"
948 >            "\tdistributed in time.  If this is a problem, change\n"
949 >            "\tyour sampleTime variable.\n");
950 >    painCave.isFatal = 0;
951 >    simError();    
952 >  }
953  
954 <      // exclude_I must always be the smaller of the pair
955 <      if( exI > exJ ){
956 <        tempEx = exI;
957 <        exI = exJ;
958 <        exJ = tempEx;
959 <      }
960 < #ifdef IS_MPI
961 <      tempEx = exI;
962 <      exI = the_atoms[tempEx]->getGlobalIndex() + 1;
1066 <      tempEx = exJ;
1067 <      exJ = the_atoms[tempEx]->getGlobalIndex() + 1;
1068 <      
1069 <      the_excludes[j+excludeOffset]->setPair( exI, exJ );
1070 < #else  // isn't MPI
954 >  if (globals->haveStatusTime() && !isDivisible(globals->getStatusTime(), globals->getDt())){
955 >    sprintf(painCave.errMsg,
956 >            "Status time is not divisible by dt.\n"
957 >            "\tThis will result in status reports that are not uniformly\n"
958 >            "\tdistributed in time.  If this is a problem, change \n"
959 >            "\tyour statusTime variable.\n");
960 >    painCave.isFatal = 0;
961 >    simError();    
962 >  }
963  
964 <      the_excludes[j+excludeOffset]->setPair( (exI+1), (exJ+1) );
965 < #endif  //is_mpi
964 >  if (globals->haveThermalTime() && !isDivisible(globals->getThermalTime(), globals->getDt())){
965 >    sprintf(painCave.errMsg,
966 >            "Thermal time is not divisible by dt.\n"
967 >            "\tThis will result in thermalizations that are not uniformly\n"
968 >            "\tdistributed in time.  If this is a problem, change \n"
969 >            "\tyour thermalTime variable.\n");
970 >    painCave.isFatal = 0;
971 >    simError();    
972 >  }  
973 >
974 >  if (globals->haveResetTime() && !isDivisible(globals->getResetTime(), globals->getDt())){
975 >    sprintf(painCave.errMsg,
976 >            "Reset time is not divisible by dt.\n"
977 >            "\tThis will result in integrator resets that are not uniformly\n"
978 >            "\tdistributed in time.  If this is a problem, change\n"
979 >            "\tyour resetTime variable.\n");
980 >    painCave.isFatal = 0;
981 >    simError();    
982 >  }
983 >
984 >  // set the status, sample, and thermal kick times
985 >
986 >  for (i = 0; i < nInfo; i++){
987 >    if (globals->haveSampleTime()){
988 >      info[i].sampleTime = globals->getSampleTime();
989 >      info[i].statusTime = info[i].sampleTime;
990      }
991 <    excludeOffset += info.nBonds;
991 >    else{
992 >      info[i].sampleTime = globals->getRunTime();
993 >      info[i].statusTime = info[i].sampleTime;
994 >    }
995  
996 <    //make the bends
997 <    for(j=0; j<info.nBends; j++){
1079 <      
1080 <      currentBend = comp_stamps[stampID]->getBend( j );
1081 <      theBends[j].a = currentBend->getA() + atomOffset;
1082 <      theBends[j].b = currentBend->getB() + atomOffset;
1083 <      theBends[j].c = currentBend->getC() + atomOffset;
1084 <          
1085 <      if( currentBend->haveExtras() ){
1086 <            
1087 <        extras = currentBend->getExtras();
1088 <        current_extra = extras;
1089 <            
1090 <        while( current_extra != NULL ){
1091 <          if( !strcmp( current_extra->getlhs(), "ghostVectorSource" )){
1092 <                
1093 <            switch( current_extra->getType() ){
1094 <              
1095 <            case 0:
1096 <              theBends[j].ghost =
1097 <                current_extra->getInt() + atomOffset;
1098 <              theBends[j].isGhost = 1;
1099 <              break;
1100 <                  
1101 <            case 1:
1102 <              theBends[j].ghost =
1103 <                (int)current_extra->getDouble() + atomOffset;
1104 <              theBends[j].isGhost = 1;
1105 <              break;
1106 <              
1107 <            default:
1108 <              sprintf( painCave.errMsg,
1109 <                       "SimSetup Error: ghostVectorSource was neither a "
1110 <                       "double nor an int.\n"
1111 <                       "-->Bend[%d] in %s\n",
1112 <                       j, comp_stamps[stampID]->getID() );
1113 <              painCave.isFatal = 1;
1114 <              simError();
1115 <            }
1116 <          }
1117 <          
1118 <          else{
1119 <            
1120 <            sprintf( painCave.errMsg,
1121 <                     "SimSetup Error: unhandled bend assignment:\n"
1122 <                     "    -->%s in Bend[%d] in %s\n",
1123 <                     current_extra->getlhs(),
1124 <                     j, comp_stamps[stampID]->getID() );
1125 <            painCave.isFatal = 1;
1126 <            simError();
1127 <          }
1128 <          
1129 <          current_extra = current_extra->getNext();
1130 <        }
1131 <      }
1132 <          
1133 <      if( !theBends[j].isGhost ){
1134 <            
1135 <        exI = theBends[j].a;
1136 <        exJ = theBends[j].c;
1137 <      }
1138 <      else{
1139 <        
1140 <        exI = theBends[j].a;
1141 <        exJ = theBends[j].b;
1142 <      }
1143 <      
1144 <      // exclude_I must always be the smaller of the pair
1145 <      if( exI > exJ ){
1146 <        tempEx = exI;
1147 <        exI = exJ;
1148 <        exJ = tempEx;
1149 <      }
1150 < #ifdef IS_MPI
1151 <      tempEx = exI;
1152 <      exI = the_atoms[tempEx]->getGlobalIndex() + 1;
1153 <      tempEx = exJ;
1154 <      exJ = the_atoms[tempEx]->getGlobalIndex() + 1;
1155 <      
1156 <      the_excludes[j+excludeOffset]->setPair( exI, exJ );
1157 < #else  // isn't MPI
1158 <      the_excludes[j+excludeOffset]->setPair( (exI+1), (exJ+1) );
1159 < #endif  //is_mpi
996 >    if (globals->haveStatusTime()){
997 >      info[i].statusTime = globals->getStatusTime();
998      }
1161    excludeOffset += info.nBends;
999  
1000 <    for(j=0; j<info.nTorsions; j++){
1001 <      
1002 <      currentTorsion = comp_stamps[stampID]->getTorsion( j );
1003 <      theTorsions[j].a = currentTorsion->getA() + atomOffset;
1004 <      theTorsions[j].b = currentTorsion->getB() + atomOffset;
1168 <      theTorsions[j].c = currentTorsion->getC() + atomOffset;
1169 <      theTorsions[j].d = currentTorsion->getD() + atomOffset;
1170 <      
1171 <      exI = theTorsions[j].a;
1172 <      exJ = theTorsions[j].d;
1000 >    if (globals->haveThermalTime()){
1001 >      info[i].thermalTime = globals->getThermalTime();
1002 >    } else {
1003 >      info[i].thermalTime = globals->getRunTime();
1004 >    }
1005  
1006 <      // exclude_I must always be the smaller of the pair
1007 <      if( exI > exJ ){
1008 <        tempEx = exI;
1009 <        exI = exJ;
1178 <        exJ = tempEx;
1179 <      }
1180 < #ifdef IS_MPI
1181 <      tempEx = exI;
1182 <      exI = the_atoms[tempEx]->getGlobalIndex() + 1;
1183 <      tempEx = exJ;
1184 <      exJ = the_atoms[tempEx]->getGlobalIndex() + 1;
1185 <      
1186 <      the_excludes[j+excludeOffset]->setPair( exI, exJ );
1187 < #else  // isn't MPI
1188 <      the_excludes[j+excludeOffset]->setPair( (exI+1), (exJ+1) );
1189 < #endif  //is_mpi
1006 >    info[i].resetIntegrator = 0;
1007 >    if( globals->haveResetTime() ){
1008 >      info[i].resetTime = globals->getResetTime();
1009 >      info[i].resetIntegrator = 1;
1010      }
1191    excludeOffset += info.nTorsions;
1011  
1012 +    // check for the temperature set flag
1013      
1014 <    // send the arrays off to the forceField for init.
1014 >    if (globals->haveTempSet())
1015 >      info[i].setTemp = globals->getTempSet();
1016  
1017 <    the_ff->initializeAtoms( info.nAtoms, info.myAtoms );
1197 <    the_ff->initializeBonds( info.nBonds, info.myBonds, theBonds );
1198 <    the_ff->initializeBends( info.nBends, info.myBends, theBends );
1199 <    the_ff->initializeTorsions( info.nTorsions, info.myTorsions, theTorsions );
1017 >    // check for the extended State init
1018  
1019 +    info[i].useInitXSstate = globals->getUseInitXSstate();
1020 +    info[i].orthoTolerance = globals->getOrthoBoxTolerance();
1021  
1022 <    the_molecules[i].initialize( info );
1023 <
1024 <
1025 <    atomOffset += info.nAtoms;
1026 <    delete[] theBonds;
1027 <    delete[] theBends;
1028 <    delete[] theTorsions;
1022 >    // check for thermodynamic integration
1023 >    if (globals->getUseSolidThermInt() && !globals->getUseLiquidThermInt()) {
1024 >      if (globals->haveThermIntLambda() && globals->haveThermIntK()) {
1025 >        info[i].useSolidThermInt = globals->getUseSolidThermInt();
1026 >        info[i].thermIntLambda = globals->getThermIntLambda();
1027 >        info[i].thermIntK = globals->getThermIntK();
1028 >        
1029 >        Restraints *myRestraint = new Restraints(tot_nmol, info[i].thermIntLambda, info[i].thermIntK);
1030 >        info[i].restraint = myRestraint;
1031 >      }
1032 >      else {
1033 >        sprintf(painCave.errMsg,
1034 >                "SimSetup Error:\n"
1035 >                "\tKeyword useSolidThermInt was set to 'true' but\n"
1036 >                "\tthermodynamicIntegrationLambda (and/or\n"
1037 >                "\tthermodynamicIntegrationK) was not specified.\n"
1038 >                "\tPlease provide a lambda value and k value in your .bass file.\n");
1039 >        painCave.isFatal = 1;
1040 >        simError();    
1041 >      }
1042 >    }
1043 >    else if(globals->getUseLiquidThermInt()) {
1044 >      if (globals->getUseSolidThermInt()) {
1045 >        sprintf( painCave.errMsg,
1046 >                 "SimSetup Warning: It appears that you have both solid and\n"
1047 >                 "\tliquid thermodynamic integration activated in your .bass\n"
1048 >                 "\tfile. To avoid confusion, specify only one technique in\n"
1049 >                 "\tyour .bass file. Liquid-state thermodynamic integration\n"
1050 >                 "\twill be assumed for the current simulation. If this is not\n"
1051 >                 "\twhat you desire, set useSolidThermInt to 'true' and\n"
1052 >                 "\tuseLiquidThermInt to 'false' in your .bass file.\n");
1053 >        painCave.isFatal = 0;
1054 >        simError();
1055 >      }
1056 >      if (globals->haveThermIntLambda() && globals->haveThermIntK()) {
1057 >        info[i].useLiquidThermInt = globals->getUseLiquidThermInt();
1058 >        info[i].thermIntLambda = globals->getThermIntLambda();
1059 >        info[i].thermIntK = globals->getThermIntK();
1060 >      }
1061 >      else {
1062 >        sprintf(painCave.errMsg,
1063 >                "SimSetup Error:\n"
1064 >                "\tKeyword useLiquidThermInt was set to 'true' but\n"
1065 >                "\tthermodynamicIntegrationLambda (and/or\n"
1066 >                "\tthermodynamicIntegrationK) was not specified.\n"
1067 >                "\tPlease provide a lambda value and k value in your .bass file.\n");
1068 >        painCave.isFatal = 1;
1069 >        simError();    
1070 >      }
1071 >    }
1072 >    else if(globals->haveThermIntLambda() || globals->haveThermIntK()){
1073 >        sprintf(painCave.errMsg,
1074 >                "SimSetup Warning: If you want to use Thermodynamic\n"
1075 >                "\tIntegration, set useSolidThermInt or useLiquidThermInt to\n"
1076 >                "\t'true' in your .bass file.  These keywords are set to\n"
1077 >                "\t'false' by default, so your lambda and/or k values are\n"
1078 >                "\tbeing ignored.\n");
1079 >        painCave.isFatal = 0;
1080 >        simError();  
1081 >    }
1082    }
1083 +  
1084 +  //setup seed for random number generator
1085 +  int seedValue;
1086  
1087 +  if (globals->haveSeed()){
1088 +    seedValue = globals->getSeed();
1089 +
1090 +    if(seedValue / 1E9 == 0){
1091 +      sprintf(painCave.errMsg,
1092 +              "Seed for sprng library should contain at least 9 digits\n"
1093 +              "OOPSE will generate a seed for user\n");
1094 +      painCave.isFatal = 0;
1095 +      simError();
1096 +
1097 +      //using seed generated by system instead of invalid seed set by user
1098 + #ifndef IS_MPI
1099 +      seedValue = make_sprng_seed();
1100 + #else
1101 +      if (worldRank == 0){
1102 +        seedValue = make_sprng_seed();
1103 +      }
1104 +      MPI_Bcast(&seedValue, 1, MPI_INT, 0, MPI_COMM_WORLD);  
1105 + #endif      
1106 +    }
1107 +  }//end of if branch of globals->haveSeed()
1108 +  else{
1109 +    
1110 + #ifndef IS_MPI
1111 +    seedValue = make_sprng_seed();
1112 + #else
1113 +    if (worldRank == 0){
1114 +      seedValue = make_sprng_seed();
1115 +    }
1116 +    MPI_Bcast(&seedValue, 1, MPI_INT, 0, MPI_COMM_WORLD);  
1117 + #endif
1118 +  }//end of globals->haveSeed()
1119 +
1120 +  for (int i = 0; i < nInfo; i++){
1121 +    info[i].setSeed(seedValue);
1122 +  }
1123 +  
1124   #ifdef IS_MPI
1125 <  sprintf( checkPointMsg, "all molecules initialized succesfully" );
1125 >  strcpy(checkPointMsg, "Successfully gathered all information from Bass\n");
1126    MPIcheckPoint();
1127   #endif // is_mpi
1128 + }
1129  
1130 +
1131 + void SimSetup::finalInfoCheck(void){
1132 +  int index;
1133 +  int usesDipoles;
1134 +  int usesCharges;
1135 +  int i;
1136 +
1137 +  for (i = 0; i < nInfo; i++){
1138 +    // check electrostatic parameters
1139 +
1140 +    index = 0;
1141 +    usesDipoles = 0;
1142 +    while ((index < info[i].n_atoms) && !usesDipoles){
1143 +      usesDipoles = (info[i].atoms[index])->hasDipole();
1144 +      index++;
1145 +    }
1146 +    index = 0;
1147 +    usesCharges = 0;
1148 +    while ((index < info[i].n_atoms) && !usesCharges){
1149 +      usesCharges= (info[i].atoms[index])->hasCharge();
1150 +      index++;
1151 +    }
1152 + #ifdef IS_MPI
1153 +    int myUse = usesDipoles;
1154 +    MPI_Allreduce(&myUse, &usesDipoles, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
1155 + #endif //is_mpi
1156 +
1157 +    double theRcut, theRsw;
1158 +
1159 +    if (globals->haveRcut()) {
1160 +      theRcut = globals->getRcut();
1161 +
1162 +      if (globals->haveRsw())
1163 +        theRsw = globals->getRsw();
1164 +      else
1165 +        theRsw = theRcut;
1166 +      
1167 +      info[i].setDefaultRcut(theRcut, theRsw);
1168 +
1169 +    } else {
1170 +      
1171 +      the_ff->calcRcut();
1172 +      theRcut = info[i].getRcut();
1173 +
1174 +      if (globals->haveRsw())
1175 +        theRsw = globals->getRsw();
1176 +      else
1177 +        theRsw = theRcut;
1178 +      
1179 +      info[i].setDefaultRcut(theRcut, theRsw);
1180 +    }
1181 +
1182 +    if (globals->getUseRF()){
1183 +      info[i].useReactionField = 1;
1184 +      
1185 +      if (!globals->haveRcut()){
1186 +        sprintf(painCave.errMsg,
1187 +                "SimSetup Warning: No value was set for the cutoffRadius.\n"
1188 +                "\tOOPSE will use a default value of 15.0 angstroms"
1189 +                "\tfor the cutoffRadius.\n");
1190 +        painCave.isFatal = 0;
1191 +        simError();
1192 +        theRcut = 15.0;
1193 +      }
1194 +      else{
1195 +        theRcut = globals->getRcut();
1196 +      }
1197 +
1198 +      if (!globals->haveRsw()){
1199 +        sprintf(painCave.errMsg,
1200 +                "SimSetup Warning: No value was set for switchingRadius.\n"
1201 +                "\tOOPSE will use a default value of\n"
1202 +                "\t0.95 * cutoffRadius for the switchingRadius\n");
1203 +        painCave.isFatal = 0;
1204 +        simError();
1205 +        theRsw = 0.95 * theRcut;
1206 +      }
1207 +      else{
1208 +        theRsw = globals->getRsw();
1209 +      }
1210 +
1211 +      info[i].setDefaultRcut(theRcut, theRsw);
1212 +
1213 +      if (!globals->haveDielectric()){
1214 +        sprintf(painCave.errMsg,
1215 +                "SimSetup Error: No Dielectric constant was set.\n"
1216 +                "\tYou are trying to use Reaction Field without"
1217 +                "\tsetting a dielectric constant!\n");
1218 +        painCave.isFatal = 1;
1219 +        simError();
1220 +      }
1221 +      info[i].dielectric = globals->getDielectric();
1222 +    }
1223 +    else{
1224 +      if (usesDipoles || usesCharges){
1225 +
1226 +        if (!globals->haveRcut()){
1227 +          sprintf(painCave.errMsg,
1228 +                  "SimSetup Warning: No value was set for the cutoffRadius.\n"
1229 +                  "\tOOPSE will use a default value of 15.0 angstroms"
1230 +                  "\tfor the cutoffRadius.\n");
1231 +          painCave.isFatal = 0;
1232 +          simError();
1233 +          theRcut = 15.0;
1234 +      }
1235 +        else{
1236 +          theRcut = globals->getRcut();
1237 +        }
1238 +        
1239 +        if (!globals->haveRsw()){
1240 +          sprintf(painCave.errMsg,
1241 +                  "SimSetup Warning: No value was set for switchingRadius.\n"
1242 +                  "\tOOPSE will use a default value of\n"
1243 +                  "\t0.95 * cutoffRadius for the switchingRadius\n");
1244 +          painCave.isFatal = 0;
1245 +          simError();
1246 +          theRsw = 0.95 * theRcut;
1247 +        }
1248 +        else{
1249 +          theRsw = globals->getRsw();
1250 +        }
1251 +        
1252 +        info[i].setDefaultRcut(theRcut, theRsw);
1253 +        
1254 +      }
1255 +    }
1256 +  }
1257 + #ifdef IS_MPI
1258 +  strcpy(checkPointMsg, "post processing checks out");
1259 +  MPIcheckPoint();
1260 + #endif // is_mpi
1261 +
1262    // clean up the forcefield
1217  the_ff->calcRcut();
1263    the_ff->cleanMe();
1219
1264   }
1265 +  
1266 + void SimSetup::initSystemCoords(void){
1267 +  int i;
1268  
1269 < void SimSetup::initFromBass( void ){
1269 >  char* inName;
1270  
1271 <  int i, j, k;
1225 <  int n_cells;
1226 <  double cellx, celly, cellz;
1227 <  double temp1, temp2, temp3;
1228 <  int n_per_extra;
1229 <  int n_extra;
1230 <  int have_extra, done;
1271 >  (info[0].getConfiguration())->createArrays(info[0].n_atoms);
1272  
1273 <  temp1 = (double)tot_nmol / 4.0;
1274 <  temp2 = pow( temp1, ( 1.0 / 3.0 ) );
1234 <  temp3 = ceil( temp2 );
1273 >  for (i = 0; i < info[0].n_atoms; i++)
1274 >    info[0].atoms[i]->setCoords();
1275  
1276 <  have_extra =0;
1277 <  if( temp2 < temp3 ){ // we have a non-complete lattice
1278 <    have_extra =1;
1279 <
1280 <    n_cells = (int)temp3 - 1;
1281 <    cellx = simnfo->boxLx / temp3;
1282 <    celly = simnfo->boxLy / temp3;
1283 <    cellz = simnfo->boxLz / temp3;
1244 <    n_extra = tot_nmol - ( 4 * n_cells * n_cells * n_cells );
1245 <    temp1 = ((double)n_extra) / ( pow( temp3, 3.0 ) - pow( n_cells, 3.0 ) );
1246 <    n_per_extra = (int)ceil( temp1 );
1247 <
1248 <    if( n_per_extra > 4){
1249 <      sprintf( painCave.errMsg,
1250 <               "SimSetup error. There has been an error in constructing"
1251 <               " the non-complete lattice.\n" );
1252 <      painCave.isFatal = 1;
1253 <      simError();
1276 >  if (globals->haveInitialConfig()){
1277 >    InitializeFromFile* fileInit;
1278 > #ifdef IS_MPI // is_mpi
1279 >    if (worldRank == 0){
1280 > #endif //is_mpi
1281 >      inName = globals->getInitialConfig();
1282 >      fileInit = new InitializeFromFile(inName);
1283 > #ifdef IS_MPI
1284      }
1285 +    else
1286 +      fileInit = new InitializeFromFile(NULL);
1287 + #endif
1288 +    fileInit->readInit(info); // default velocities on
1289 +
1290 +    delete fileInit;
1291    }
1292    else{
1293 <    n_cells = (int)temp3;
1294 <    cellx = simnfo->boxLx / temp3;
1295 <    celly = simnfo->boxLy / temp3;
1296 <    cellz = simnfo->boxLz / temp3;
1293 >    
1294 >    // no init from bass
1295 >    
1296 >    sprintf(painCave.errMsg,
1297 >            "Cannot intialize a simulation without an initial configuration file.\n");
1298 >    painCave.isFatal = 1;;
1299 >    simError();
1300 >    
1301    }
1302  
1303 <  current_mol = 0;
1304 <  current_comp_mol = 0;
1305 <  current_comp = 0;
1306 <  current_atom_ndx = 0;
1303 > #ifdef IS_MPI
1304 >  strcpy(checkPointMsg, "Successfully read in the initial configuration");
1305 >  MPIcheckPoint();
1306 > #endif // is_mpi
1307 > }
1308  
1268  for( i=0; i < n_cells ; i++ ){
1269    for( j=0; j < n_cells; j++ ){
1270      for( k=0; k < n_cells; k++ ){
1309  
1310 <        makeElement( i * cellx,
1311 <                     j * celly,
1274 <                     k * cellz );
1310 > void SimSetup::makeOutNames(void){
1311 >  int k;
1312  
1276        makeElement( i * cellx + 0.5 * cellx,
1277                     j * celly + 0.5 * celly,
1278                     k * cellz );
1313  
1314 <        makeElement( i * cellx,
1315 <                     j * celly + 0.5 * celly,
1316 <                     k * cellz + 0.5 * cellz );
1314 >  for (k = 0; k < nInfo; k++){
1315 > #ifdef IS_MPI
1316 >    if (worldRank == 0){
1317 > #endif // is_mpi
1318  
1319 <        makeElement( i * cellx + 0.5 * cellx,
1320 <                     j * celly,
1286 <                     k * cellz + 0.5 * cellz );
1319 >      if (globals->haveFinalConfig()){
1320 >        strcpy(info[k].finalName, globals->getFinalConfig());
1321        }
1322 +      else{
1323 +        strcpy(info[k].finalName, inFileName);
1324 +        char* endTest;
1325 +        int nameLength = strlen(info[k].finalName);
1326 +        endTest = &(info[k].finalName[nameLength - 5]);
1327 +        if (!strcmp(endTest, ".bass")){
1328 +          strcpy(endTest, ".eor");
1329 +        }
1330 +        else if (!strcmp(endTest, ".BASS")){
1331 +          strcpy(endTest, ".eor");
1332 +        }
1333 +        else{
1334 +          endTest = &(info[k].finalName[nameLength - 4]);
1335 +          if (!strcmp(endTest, ".bss")){
1336 +            strcpy(endTest, ".eor");
1337 +          }
1338 +          else if (!strcmp(endTest, ".mdl")){
1339 +            strcpy(endTest, ".eor");
1340 +          }
1341 +          else{
1342 +            strcat(info[k].finalName, ".eor");
1343 +          }
1344 +        }
1345 +      }
1346 +
1347 +      // make the sample and status out names
1348 +
1349 +      strcpy(info[k].sampleName, inFileName);
1350 +      char* endTest;
1351 +      int nameLength = strlen(info[k].sampleName);
1352 +      endTest = &(info[k].sampleName[nameLength - 5]);
1353 +      if (!strcmp(endTest, ".bass")){
1354 +        strcpy(endTest, ".dump");
1355 +      }
1356 +      else if (!strcmp(endTest, ".BASS")){
1357 +        strcpy(endTest, ".dump");
1358 +      }
1359 +      else{
1360 +        endTest = &(info[k].sampleName[nameLength - 4]);
1361 +        if (!strcmp(endTest, ".bss")){
1362 +          strcpy(endTest, ".dump");
1363 +        }
1364 +        else if (!strcmp(endTest, ".mdl")){
1365 +          strcpy(endTest, ".dump");
1366 +        }
1367 +        else{
1368 +          strcat(info[k].sampleName, ".dump");
1369 +        }
1370 +      }
1371 +
1372 +      strcpy(info[k].statusName, inFileName);
1373 +      nameLength = strlen(info[k].statusName);
1374 +      endTest = &(info[k].statusName[nameLength - 5]);
1375 +      if (!strcmp(endTest, ".bass")){
1376 +        strcpy(endTest, ".stat");
1377 +      }
1378 +      else if (!strcmp(endTest, ".BASS")){
1379 +        strcpy(endTest, ".stat");
1380 +      }
1381 +      else{
1382 +        endTest = &(info[k].statusName[nameLength - 4]);
1383 +        if (!strcmp(endTest, ".bss")){
1384 +          strcpy(endTest, ".stat");
1385 +        }
1386 +        else if (!strcmp(endTest, ".mdl")){
1387 +          strcpy(endTest, ".stat");
1388 +        }
1389 +        else{
1390 +          strcat(info[k].statusName, ".stat");
1391 +        }
1392 +      }
1393 +
1394 +      strcpy(info[k].rawPotName, inFileName);
1395 +      nameLength = strlen(info[k].rawPotName);
1396 +      endTest = &(info[k].rawPotName[nameLength - 5]);
1397 +      if (!strcmp(endTest, ".bass")){
1398 +        strcpy(endTest, ".raw");
1399 +      }
1400 +      else if (!strcmp(endTest, ".BASS")){
1401 +        strcpy(endTest, ".raw");
1402 +      }
1403 +      else{
1404 +        endTest = &(info[k].rawPotName[nameLength - 4]);
1405 +        if (!strcmp(endTest, ".bss")){
1406 +          strcpy(endTest, ".raw");
1407 +        }
1408 +        else if (!strcmp(endTest, ".mdl")){
1409 +          strcpy(endTest, ".raw");
1410 +        }
1411 +        else{
1412 +          strcat(info[k].rawPotName, ".raw");
1413 +        }
1414 +      }
1415 +
1416 + #ifdef IS_MPI
1417 +
1418      }
1419 + #endif // is_mpi
1420    }
1421 + }
1422  
1291  if( have_extra ){
1292    done = 0;
1423  
1424 <    int start_ndx;
1425 <    for( i=0; i < (n_cells+1) && !done; i++ ){
1296 <      for( j=0; j < (n_cells+1) && !done; j++ ){
1424 > void SimSetup::sysObjectsCreation(void){
1425 >  int i, k;
1426  
1427 <        if( i < n_cells ){
1427 >  // create the forceField
1428  
1429 <          if( j < n_cells ){
1301 <            start_ndx = n_cells;
1302 <          }
1303 <          else start_ndx = 0;
1304 <        }
1305 <        else start_ndx = 0;
1429 >  createFF();
1430  
1431 <        for( k=start_ndx; k < (n_cells+1) && !done; k++ ){
1431 >  // extract componentList
1432  
1433 <          makeElement( i * cellx,
1310 <                       j * celly,
1311 <                       k * cellz );
1312 <          done = ( current_mol >= tot_nmol );
1433 >  compList();
1434  
1435 <          if( !done && n_per_extra > 1 ){
1315 <            makeElement( i * cellx + 0.5 * cellx,
1316 <                         j * celly + 0.5 * celly,
1317 <                         k * cellz );
1318 <            done = ( current_mol >= tot_nmol );
1319 <          }
1435 >  // calc the number of atoms, bond, bends, and torsions
1436  
1437 <          if( !done && n_per_extra > 2){
1322 <            makeElement( i * cellx,
1323 <                         j * celly + 0.5 * celly,
1324 <                         k * cellz + 0.5 * cellz );
1325 <            done = ( current_mol >= tot_nmol );
1326 <          }
1437 >  calcSysValues();
1438  
1439 <          if( !done && n_per_extra > 3){
1440 <            makeElement( i * cellx + 0.5 * cellx,
1330 <                         j * celly,
1331 <                         k * cellz + 0.5 * cellz );
1332 <            done = ( current_mol >= tot_nmol );
1333 <          }
1334 <        }
1335 <      }
1336 <    }
1337 <  }
1439 > #ifdef IS_MPI
1440 >  // divide the molecules among the processors
1441  
1442 +  mpiMolDivide();
1443 + #endif //is_mpi
1444  
1445 <  for( i=0; i<simnfo->n_atoms; i++ ){
1446 <    simnfo->atoms[i]->set_vx( 0.0 );
1447 <    simnfo->atoms[i]->set_vy( 0.0 );
1448 <    simnfo->atoms[i]->set_vz( 0.0 );
1445 >  // create the atom and SRI arrays. Also initialize Molecule Stamp ID's
1446 >
1447 >  makeSysArrays();
1448 >
1449 >  // make and initialize the molecules (all but atomic coordinates)
1450 >
1451 >  makeMolecules();
1452 >
1453 >  for (k = 0; k < nInfo; k++){
1454 >    info[k].identArray = new int[info[k].n_atoms];
1455 >    for (i = 0; i < info[k].n_atoms; i++){
1456 >      info[k].identArray[i] = info[k].atoms[i]->getIdent();
1457 >    }
1458    }
1459   }
1460  
1347 void SimSetup::makeElement( double x, double y, double z ){
1461  
1462 <  int k;
1463 <  AtomStamp* current_atom;
1464 <  DirectionalAtom* dAtom;
1465 <  double rotMat[3][3];
1462 > void SimSetup::createFF(void){
1463 >  switch (ffCase){
1464 >    case FF_DUFF:
1465 >      the_ff = new DUFF();
1466 >      break;
1467  
1468 <  for( k=0; k<comp_stamps[current_comp]->getNAtoms(); k++ ){
1468 >    case FF_LJ:
1469 >      the_ff = new LJFF();
1470 >      break;
1471  
1472 <    current_atom = comp_stamps[current_comp]->getAtom( k );
1473 <    if( !current_atom->havePosition() ){
1474 <      sprintf( painCave.errMsg,
1475 <               "SimSetup:initFromBass error.\n"
1476 <               "\tComponent %s, atom %s does not have a position specified.\n"
1477 <               "\tThe initialization routine is unable to give a start"
1478 <               " position.\n",
1479 <               comp_stamps[current_comp]->getID(),
1480 <               current_atom->getType() );
1472 >    case FF_EAM:
1473 >      the_ff = new EAM_FF();
1474 >      break;
1475 >
1476 >    case FF_H2O:
1477 >      the_ff = new WATER();
1478 >      break;
1479 >
1480 >    default:
1481 >      sprintf(painCave.errMsg,
1482 >              "SimSetup Error. Unrecognized force field in case statement.\n");
1483        painCave.isFatal = 1;
1484        simError();
1485 +  }
1486 +
1487 + #ifdef IS_MPI
1488 +  strcpy(checkPointMsg, "ForceField creation successful");
1489 +  MPIcheckPoint();
1490 + #endif // is_mpi
1491 + }
1492 +
1493 +
1494 + void SimSetup::compList(void){
1495 +  int i;
1496 +  char* id;
1497 +  LinkedMolStamp* headStamp = new LinkedMolStamp();
1498 +  LinkedMolStamp* currentStamp = NULL;
1499 +  comp_stamps = new MoleculeStamp * [n_components];
1500 +  bool haveCutoffGroups;
1501 +
1502 +  haveCutoffGroups = false;
1503 +  
1504 +  // make an array of molecule stamps that match the components used.
1505 +  // also extract the used stamps out into a separate linked list
1506 +
1507 +  for (i = 0; i < nInfo; i++){
1508 +    info[i].nComponents = n_components;
1509 +    info[i].componentsNmol = components_nmol;
1510 +    info[i].compStamps = comp_stamps;
1511 +    info[i].headStamp = headStamp;
1512 +  }
1513 +
1514 +
1515 +  for (i = 0; i < n_components; i++){
1516 +    id = the_components[i]->getType();
1517 +    comp_stamps[i] = NULL;
1518 +
1519 +    // check to make sure the component isn't already in the list
1520 +
1521 +    comp_stamps[i] = headStamp->match(id);
1522 +    if (comp_stamps[i] == NULL){
1523 +      // extract the component from the list;
1524 +
1525 +      currentStamp = stamps->extractMolStamp(id);
1526 +      if (currentStamp == NULL){
1527 +        sprintf(painCave.errMsg,
1528 +                "SimSetup error: Component \"%s\" was not found in the "
1529 +                "list of declared molecules\n",
1530 +                id);
1531 +        painCave.isFatal = 1;
1532 +        simError();
1533 +      }
1534 +
1535 +      headStamp->add(currentStamp);
1536 +      comp_stamps[i] = headStamp->match(id);
1537      }
1538  
1539 <    the_atoms[current_atom_ndx]->setX( x + current_atom->getPosX() );
1540 <    the_atoms[current_atom_ndx]->setY( y + current_atom->getPosY() );
1541 <    the_atoms[current_atom_ndx]->setZ( z + current_atom->getPosZ() );
1539 >    if(comp_stamps[i]->getNCutoffGroups() > 0)
1540 >      haveCutoffGroups = true;    
1541 >  }
1542 >    
1543 >  for (i = 0; i < nInfo; i++)
1544 >    info[i].haveCutoffGroups = haveCutoffGroups;
1545  
1546 <    if( the_atoms[current_atom_ndx]->isDirectional() ){
1546 > #ifdef IS_MPI
1547 >  strcpy(checkPointMsg, "Component stamps successfully extracted\n");
1548 >  MPIcheckPoint();
1549 > #endif // is_mpi
1550 > }
1551  
1552 <      dAtom = (DirectionalAtom *)the_atoms[current_atom_ndx];
1552 > void SimSetup::calcSysValues(void){
1553 >  int i, j;
1554 >  int ncutgroups, atomsingroups, ngroupsinstamp;
1555  
1556 <      rotMat[0][0] = 1.0;
1557 <      rotMat[0][1] = 0.0;
1379 <      rotMat[0][2] = 0.0;
1556 >  int* molMembershipArray;
1557 >  CutoffGroupStamp* cg;
1558  
1559 <      rotMat[1][0] = 0.0;
1560 <      rotMat[1][1] = 1.0;
1561 <      rotMat[1][2] = 0.0;
1559 >  tot_atoms = 0;
1560 >  tot_bonds = 0;
1561 >  tot_bends = 0;
1562 >  tot_torsions = 0;
1563 >  tot_rigid = 0;
1564 >  tot_groups = 0;
1565 >  for (i = 0; i < n_components; i++){
1566 >    tot_atoms += components_nmol[i] * comp_stamps[i]->getNAtoms();
1567 >    tot_bonds += components_nmol[i] * comp_stamps[i]->getNBonds();
1568 >    tot_bends += components_nmol[i] * comp_stamps[i]->getNBends();
1569 >    tot_torsions += components_nmol[i] * comp_stamps[i]->getNTorsions();
1570 >    tot_rigid += components_nmol[i] * comp_stamps[i]->getNRigidBodies();
1571  
1572 <      rotMat[2][0] = 0.0;
1573 <      rotMat[2][1] = 0.0;
1574 <      rotMat[2][2] = 1.0;
1572 >    ncutgroups = comp_stamps[i]->getNCutoffGroups();
1573 >    atomsingroups = 0;
1574 >    for (j=0; j < ncutgroups; j++) {
1575 >      cg = comp_stamps[i]->getCutoffGroup(j);
1576 >      atomsingroups += cg->getNMembers();
1577 >    }
1578 >    ngroupsinstamp = comp_stamps[i]->getNAtoms() - atomsingroups + ncutgroups;
1579 >    tot_groups += components_nmol[i] * ngroupsinstamp;    
1580 >  }
1581 >  
1582 >  tot_SRI = tot_bonds + tot_bends + tot_torsions;
1583 >  molMembershipArray = new int[tot_atoms];
1584  
1585 <      dAtom->setA( rotMat );
1585 >  for (i = 0; i < nInfo; i++){
1586 >    info[i].n_atoms = tot_atoms;
1587 >    info[i].n_bonds = tot_bonds;
1588 >    info[i].n_bends = tot_bends;
1589 >    info[i].n_torsions = tot_torsions;
1590 >    info[i].n_SRI = tot_SRI;
1591 >    info[i].n_mol = tot_nmol;
1592 >    info[i].ngroup = tot_groups;
1593 >    info[i].molMembershipArray = molMembershipArray;
1594 >  }
1595 > }
1596 >
1597 > #ifdef IS_MPI
1598 >
1599 > void SimSetup::mpiMolDivide(void){
1600 >  int i, j, k;
1601 >  int localMol, allMol;
1602 >  int local_atoms, local_bonds, local_bends, local_torsions, local_SRI;
1603 >  int local_rigid, local_groups;
1604 >  vector<int> globalMolIndex;
1605 >  int ncutgroups, atomsingroups, ngroupsinstamp;
1606 >  CutoffGroupStamp* cg;
1607 >
1608 >  mpiSim = new mpiSimulation(info);
1609 >
1610 >  mpiSim->divideLabor();
1611 >  globalAtomIndex = mpiSim->getGlobalAtomIndex();
1612 >  //globalMolIndex = mpiSim->getGlobalMolIndex();
1613 >
1614 >  // set up the local variables
1615 >
1616 >  mol2proc = mpiSim->getMolToProcMap();
1617 >  molCompType = mpiSim->getMolComponentType();
1618 >
1619 >  allMol = 0;
1620 >  localMol = 0;
1621 >  local_atoms = 0;
1622 >  local_bonds = 0;
1623 >  local_bends = 0;
1624 >  local_torsions = 0;
1625 >  local_rigid = 0;
1626 >  local_groups = 0;
1627 >  globalAtomCounter = 0;
1628 >
1629 >  for (i = 0; i < n_components; i++){
1630 >    for (j = 0; j < components_nmol[i]; j++){
1631 >      if (mol2proc[allMol] == worldRank){
1632 >        local_atoms += comp_stamps[i]->getNAtoms();
1633 >        local_bonds += comp_stamps[i]->getNBonds();
1634 >        local_bends += comp_stamps[i]->getNBends();
1635 >        local_torsions += comp_stamps[i]->getNTorsions();
1636 >        local_rigid += comp_stamps[i]->getNRigidBodies();
1637 >
1638 >        ncutgroups = comp_stamps[i]->getNCutoffGroups();
1639 >        atomsingroups = 0;
1640 >        for (k=0; k < ncutgroups; k++) {
1641 >          cg = comp_stamps[i]->getCutoffGroup(k);
1642 >          atomsingroups += cg->getNMembers();
1643 >        }
1644 >        ngroupsinstamp = comp_stamps[i]->getNAtoms() - atomsingroups +
1645 >          ncutgroups;
1646 >        local_groups += ngroupsinstamp;    
1647 >
1648 >        localMol++;
1649 >      }      
1650 >      for (k = 0; k < comp_stamps[i]->getNAtoms(); k++){
1651 >        info[0].molMembershipArray[globalAtomCounter] = allMol;
1652 >        globalAtomCounter++;
1653 >      }
1654 >
1655 >      allMol++;
1656      }
1657 +  }
1658 +  local_SRI = local_bonds + local_bends + local_torsions;
1659  
1660 <    current_atom_ndx++;
1660 >  info[0].n_atoms = mpiSim->getNAtomsLocal();  
1661 >  
1662 >  if (local_atoms != info[0].n_atoms){
1663 >    sprintf(painCave.errMsg,
1664 >            "SimSetup error: mpiSim's localAtom (%d) and SimSetup's\n"
1665 >            "\tlocalAtom (%d) are not equal.\n",
1666 >            info[0].n_atoms, local_atoms);
1667 >    painCave.isFatal = 1;
1668 >    simError();
1669    }
1670  
1671 <  current_mol++;
1672 <  current_comp_mol++;
1671 >  info[0].ngroup = mpiSim->getNGroupsLocal();  
1672 >  if (local_groups != info[0].ngroup){
1673 >    sprintf(painCave.errMsg,
1674 >            "SimSetup error: mpiSim's localGroups (%d) and SimSetup's\n"
1675 >            "\tlocalGroups (%d) are not equal.\n",
1676 >            info[0].ngroup, local_groups);
1677 >    painCave.isFatal = 1;
1678 >    simError();
1679 >  }
1680 >  
1681 >  info[0].n_bonds = local_bonds;
1682 >  info[0].n_bends = local_bends;
1683 >  info[0].n_torsions = local_torsions;
1684 >  info[0].n_SRI = local_SRI;
1685 >  info[0].n_mol = localMol;
1686  
1687 <  if( current_comp_mol >= components_nmol[current_comp] ){
1687 >  strcpy(checkPointMsg, "Passed nlocal consistency check.");
1688 >  MPIcheckPoint();
1689 > }
1690  
1691 <    current_comp_mol = 0;
1692 <    current_comp++;
1691 > #endif // is_mpi
1692 >
1693 >
1694 > void SimSetup::makeSysArrays(void){
1695 >
1696 > #ifndef IS_MPI
1697 >  int k, j;
1698 > #endif // is_mpi
1699 >  int i, l;
1700 >
1701 >  Atom** the_atoms;
1702 >  Molecule* the_molecules;
1703 >
1704 >  for (l = 0; l < nInfo; l++){
1705 >    // create the atom and short range interaction arrays
1706 >
1707 >    the_atoms = new Atom * [info[l].n_atoms];
1708 >    the_molecules = new Molecule[info[l].n_mol];
1709 >    int molIndex;
1710 >
1711 >    // initialize the molecule's stampID's
1712 >
1713 > #ifdef IS_MPI
1714 >
1715 >
1716 >    molIndex = 0;
1717 >    for (i = 0; i < mpiSim->getNMolGlobal(); i++){
1718 >      if (mol2proc[i] == worldRank){
1719 >        the_molecules[molIndex].setStampID(molCompType[i]);
1720 >        the_molecules[molIndex].setMyIndex(molIndex);
1721 >        the_molecules[molIndex].setGlobalIndex(i);
1722 >        molIndex++;
1723 >      }
1724 >    }
1725 >
1726 > #else // is_mpi
1727 >
1728 >    molIndex = 0;
1729 >    globalAtomCounter = 0;
1730 >    for (i = 0; i < n_components; i++){
1731 >      for (j = 0; j < components_nmol[i]; j++){
1732 >        the_molecules[molIndex].setStampID(i);
1733 >        the_molecules[molIndex].setMyIndex(molIndex);
1734 >        the_molecules[molIndex].setGlobalIndex(molIndex);
1735 >        for (k = 0; k < comp_stamps[i]->getNAtoms(); k++){
1736 >          info[l].molMembershipArray[globalAtomCounter] = molIndex;
1737 >          globalAtomCounter++;
1738 >        }
1739 >        molIndex++;
1740 >      }
1741 >    }
1742 >
1743 >
1744 > #endif // is_mpi
1745 >
1746 >    info[l].globalExcludes = new int;
1747 >    info[l].globalExcludes[0] = 0;
1748 >    
1749 >    // set the arrays into the SimInfo object
1750 >
1751 >    info[l].atoms = the_atoms;
1752 >    info[l].molecules = the_molecules;
1753 >    info[l].nGlobalExcludes = 0;
1754 >    
1755 >    the_ff->setSimInfo(info);
1756    }
1757   }
1758 +
1759 + void SimSetup::makeIntegrator(void){
1760 +  int k;
1761 +
1762 +  NVE<RealIntegrator>* myNVE = NULL;
1763 +  NVT<RealIntegrator>* myNVT = NULL;
1764 +  NPTi<NPT<RealIntegrator> >* myNPTi = NULL;
1765 +  NPTf<NPT<RealIntegrator> >* myNPTf = NULL;
1766 +  NPTxyz<NPT<RealIntegrator> >* myNPTxyz = NULL;
1767 +  
1768 +  for (k = 0; k < nInfo; k++){
1769 +    switch (ensembleCase){
1770 +      case NVE_ENS:
1771 +        if (globals->haveZconstraints()){
1772 +          setupZConstraint(info[k]);
1773 +          myNVE = new ZConstraint<NVE<RealIntegrator> >(&(info[k]), the_ff);
1774 +        }
1775 +        else{
1776 +          myNVE = new NVE<RealIntegrator>(&(info[k]), the_ff);
1777 +        }
1778 +        
1779 +        info->the_integrator = myNVE;
1780 +        break;
1781 +
1782 +      case NVT_ENS:
1783 +        if (globals->haveZconstraints()){
1784 +          setupZConstraint(info[k]);
1785 +          myNVT = new ZConstraint<NVT<RealIntegrator> >(&(info[k]), the_ff);
1786 +        }
1787 +        else
1788 +          myNVT = new NVT<RealIntegrator>(&(info[k]), the_ff);
1789 +
1790 +        myNVT->setTargetTemp(globals->getTargetTemp());
1791 +
1792 +        if (globals->haveTauThermostat())
1793 +          myNVT->setTauThermostat(globals->getTauThermostat());
1794 +        else{
1795 +          sprintf(painCave.errMsg,
1796 +                  "SimSetup error: If you use the NVT\n"
1797 +                  "\tensemble, you must set tauThermostat.\n");
1798 +          painCave.isFatal = 1;
1799 +          simError();
1800 +        }
1801 +
1802 +        info->the_integrator = myNVT;
1803 +        break;
1804 +
1805 +      case NPTi_ENS:
1806 +        if (globals->haveZconstraints()){
1807 +          setupZConstraint(info[k]);
1808 +          myNPTi = new ZConstraint<NPTi<NPT <RealIntegrator> > >(&(info[k]), the_ff);
1809 +        }
1810 +        else
1811 +          myNPTi = new NPTi<NPT<RealIntegrator> >(&(info[k]), the_ff);
1812 +
1813 +        myNPTi->setTargetTemp(globals->getTargetTemp());
1814 +
1815 +        if (globals->haveTargetPressure())
1816 +          myNPTi->setTargetPressure(globals->getTargetPressure());
1817 +        else{
1818 +          sprintf(painCave.errMsg,
1819 +                  "SimSetup error: If you use a constant pressure\n"
1820 +                  "\tensemble, you must set targetPressure in the BASS file.\n");
1821 +          painCave.isFatal = 1;
1822 +          simError();
1823 +        }
1824 +
1825 +        if (globals->haveTauThermostat())
1826 +          myNPTi->setTauThermostat(globals->getTauThermostat());
1827 +        else{
1828 +          sprintf(painCave.errMsg,
1829 +                  "SimSetup error: If you use an NPT\n"
1830 +                  "\tensemble, you must set tauThermostat.\n");
1831 +          painCave.isFatal = 1;
1832 +          simError();
1833 +        }
1834 +
1835 +        if (globals->haveTauBarostat())
1836 +          myNPTi->setTauBarostat(globals->getTauBarostat());
1837 +        else{
1838 +          sprintf(painCave.errMsg,
1839 +                  "SimSetup error: If you use an NPT\n"
1840 +                  "\tensemble, you must set tauBarostat.\n");
1841 +          painCave.isFatal = 1;
1842 +          simError();
1843 +        }
1844 +
1845 +        info->the_integrator = myNPTi;
1846 +        break;
1847 +
1848 +      case NPTf_ENS:
1849 +        if (globals->haveZconstraints()){
1850 +          setupZConstraint(info[k]);
1851 +          myNPTf = new ZConstraint<NPTf<NPT <RealIntegrator> > >(&(info[k]), the_ff);
1852 +        }
1853 +        else
1854 +          myNPTf = new NPTf<NPT <RealIntegrator> >(&(info[k]), the_ff);
1855 +
1856 +        myNPTf->setTargetTemp(globals->getTargetTemp());
1857 +
1858 +        if (globals->haveTargetPressure())
1859 +          myNPTf->setTargetPressure(globals->getTargetPressure());
1860 +        else{
1861 +          sprintf(painCave.errMsg,
1862 +                  "SimSetup error: If you use a constant pressure\n"
1863 +                  "\tensemble, you must set targetPressure in the BASS file.\n");
1864 +          painCave.isFatal = 1;
1865 +          simError();
1866 +        }    
1867 +
1868 +        if (globals->haveTauThermostat())
1869 +          myNPTf->setTauThermostat(globals->getTauThermostat());
1870 +
1871 +        else{
1872 +          sprintf(painCave.errMsg,
1873 +                  "SimSetup error: If you use an NPT\n"
1874 +                  "\tensemble, you must set tauThermostat.\n");
1875 +          painCave.isFatal = 1;
1876 +          simError();
1877 +        }
1878 +
1879 +        if (globals->haveTauBarostat())
1880 +          myNPTf->setTauBarostat(globals->getTauBarostat());
1881 +
1882 +        else{
1883 +          sprintf(painCave.errMsg,
1884 +                  "SimSetup error: If you use an NPT\n"
1885 +                  "\tensemble, you must set tauBarostat.\n");
1886 +          painCave.isFatal = 1;
1887 +          simError();
1888 +        }
1889 +
1890 +        info->the_integrator = myNPTf;
1891 +        break;
1892 +
1893 +      case NPTxyz_ENS:
1894 +        if (globals->haveZconstraints()){
1895 +          setupZConstraint(info[k]);
1896 +          myNPTxyz = new ZConstraint<NPTxyz<NPT <RealIntegrator> > >(&(info[k]), the_ff);
1897 +        }
1898 +        else
1899 +          myNPTxyz = new NPTxyz<NPT <RealIntegrator> >(&(info[k]), the_ff);
1900 +
1901 +        myNPTxyz->setTargetTemp(globals->getTargetTemp());
1902 +
1903 +        if (globals->haveTargetPressure())
1904 +          myNPTxyz->setTargetPressure(globals->getTargetPressure());
1905 +        else{
1906 +          sprintf(painCave.errMsg,
1907 +                  "SimSetup error: If you use a constant pressure\n"
1908 +                  "\tensemble, you must set targetPressure in the BASS file.\n");
1909 +          painCave.isFatal = 1;
1910 +          simError();
1911 +        }    
1912 +
1913 +        if (globals->haveTauThermostat())
1914 +          myNPTxyz->setTauThermostat(globals->getTauThermostat());
1915 +        else{
1916 +          sprintf(painCave.errMsg,
1917 +                  "SimSetup error: If you use an NPT\n"
1918 +                  "\tensemble, you must set tauThermostat.\n");
1919 +          painCave.isFatal = 1;
1920 +          simError();
1921 +        }
1922 +
1923 +        if (globals->haveTauBarostat())
1924 +          myNPTxyz->setTauBarostat(globals->getTauBarostat());
1925 +        else{
1926 +          sprintf(painCave.errMsg,
1927 +                  "SimSetup error: If you use an NPT\n"
1928 +                  "\tensemble, you must set tauBarostat.\n");
1929 +          painCave.isFatal = 1;
1930 +          simError();
1931 +        }
1932 +
1933 +        info->the_integrator = myNPTxyz;
1934 +        break;
1935 +
1936 +      default:
1937 +        sprintf(painCave.errMsg,
1938 +                "SimSetup Error. Unrecognized ensemble in case statement.\n");
1939 +        painCave.isFatal = 1;
1940 +        simError();
1941 +    }
1942 +  }
1943 + }
1944 +
1945 + void SimSetup::initFortran(void){
1946 +  info[0].refreshSim();
1947 +
1948 +  if (!strcmp(info[0].mixingRule, "standard")){
1949 +    the_ff->initForceField(LB_MIXING_RULE);
1950 +  }
1951 +  else if (!strcmp(info[0].mixingRule, "explicit")){
1952 +    the_ff->initForceField(EXPLICIT_MIXING_RULE);
1953 +  }
1954 +  else{
1955 +    sprintf(painCave.errMsg, "SimSetup Error: unknown mixing rule -> \"%s\"\n",
1956 +            info[0].mixingRule);
1957 +    painCave.isFatal = 1;
1958 +    simError();
1959 +  }
1960 +
1961 +
1962 + #ifdef IS_MPI
1963 +  strcpy(checkPointMsg, "Successfully intialized the mixingRule for Fortran.");
1964 +  MPIcheckPoint();
1965 + #endif // is_mpi
1966 + }
1967 +
1968 + void SimSetup::setupZConstraint(SimInfo& theInfo){
1969 +  int nZConstraints;
1970 +  ZconStamp** zconStamp;
1971 +
1972 +  if (globals->haveZconstraintTime()){
1973 +    //add sample time of z-constraint  into SimInfo's property list                    
1974 +    DoubleData* zconsTimeProp = new DoubleData();
1975 +    zconsTimeProp->setID(ZCONSTIME_ID);
1976 +    zconsTimeProp->setData(globals->getZconsTime());
1977 +    theInfo.addProperty(zconsTimeProp);
1978 +  }
1979 +  else{
1980 +    sprintf(painCave.errMsg,
1981 +            "ZConstraint error: If you use a ZConstraint,\n"
1982 +            "\tyou must set zconsTime.\n");
1983 +    painCave.isFatal = 1;
1984 +    simError();
1985 +  }
1986 +
1987 +  //push zconsTol into siminfo, if user does not specify
1988 +  //value for zconsTol, a default value will be used
1989 +  DoubleData* zconsTol = new DoubleData();
1990 +  zconsTol->setID(ZCONSTOL_ID);
1991 +  if (globals->haveZconsTol()){
1992 +    zconsTol->setData(globals->getZconsTol());
1993 +  }
1994 +  else{
1995 +    double defaultZConsTol = 0.01;
1996 +    sprintf(painCave.errMsg,
1997 +            "ZConstraint Warning: Tolerance for z-constraint method is not specified.\n"
1998 +            "\tOOPSE will use a default value of %f.\n"
1999 +            "\tTo set the tolerance, use the zconsTol variable.\n",
2000 +            defaultZConsTol);
2001 +    painCave.isFatal = 0;
2002 +    simError();      
2003 +
2004 +    zconsTol->setData(defaultZConsTol);
2005 +  }
2006 +  theInfo.addProperty(zconsTol);
2007 +
2008 +  //set Force Subtraction Policy
2009 +  StringData* zconsForcePolicy = new StringData();
2010 +  zconsForcePolicy->setID(ZCONSFORCEPOLICY_ID);
2011 +
2012 +  if (globals->haveZconsForcePolicy()){
2013 +    zconsForcePolicy->setData(globals->getZconsForcePolicy());
2014 +  }
2015 +  else{
2016 +    sprintf(painCave.errMsg,
2017 +            "ZConstraint Warning: No force subtraction policy was set.\n"
2018 +            "\tOOPSE will use PolicyByMass.\n"
2019 +            "\tTo set the policy, use the zconsForcePolicy variable.\n");
2020 +    painCave.isFatal = 0;
2021 +    simError();
2022 +    zconsForcePolicy->setData("BYMASS");
2023 +  }
2024 +
2025 +  theInfo.addProperty(zconsForcePolicy);
2026 +
2027 +  //set zcons gap
2028 +  DoubleData* zconsGap = new DoubleData();
2029 +  zconsGap->setID(ZCONSGAP_ID);
2030 +
2031 +  if (globals->haveZConsGap()){
2032 +    zconsGap->setData(globals->getZconsGap());
2033 +    theInfo.addProperty(zconsGap);  
2034 +  }
2035 +
2036 +  //set zcons fixtime
2037 +  DoubleData* zconsFixtime = new DoubleData();
2038 +  zconsFixtime->setID(ZCONSFIXTIME_ID);
2039 +
2040 +  if (globals->haveZConsFixTime()){
2041 +    zconsFixtime->setData(globals->getZconsFixtime());
2042 +    theInfo.addProperty(zconsFixtime);  
2043 +  }
2044 +
2045 +  //set zconsUsingSMD
2046 +  IntData* zconsUsingSMD = new IntData();
2047 +  zconsUsingSMD->setID(ZCONSUSINGSMD_ID);
2048 +
2049 +  if (globals->haveZConsUsingSMD()){
2050 +    zconsUsingSMD->setData(globals->getZconsUsingSMD());
2051 +    theInfo.addProperty(zconsUsingSMD);  
2052 +  }
2053 +
2054 +  //Determine the name of ouput file and add it into SimInfo's property list
2055 +  //Be careful, do not use inFileName, since it is a pointer which
2056 +  //point to a string at master node, and slave nodes do not contain that string
2057 +
2058 +  string zconsOutput(theInfo.finalName);
2059 +
2060 +  zconsOutput = zconsOutput.substr(0, zconsOutput.rfind(".")) + ".fz";
2061 +
2062 +  StringData* zconsFilename = new StringData();
2063 +  zconsFilename->setID(ZCONSFILENAME_ID);
2064 +  zconsFilename->setData(zconsOutput);
2065 +
2066 +  theInfo.addProperty(zconsFilename);
2067 +
2068 +  //setup index, pos and other parameters of z-constraint molecules
2069 +  nZConstraints = globals->getNzConstraints();
2070 +  theInfo.nZconstraints = nZConstraints;
2071 +
2072 +  zconStamp = globals->getZconStamp();
2073 +  ZConsParaItem tempParaItem;
2074 +
2075 +  ZConsParaData* zconsParaData = new ZConsParaData();
2076 +  zconsParaData->setID(ZCONSPARADATA_ID);
2077 +
2078 +  for (int i = 0; i < nZConstraints; i++){
2079 +    tempParaItem.havingZPos = zconStamp[i]->haveZpos();
2080 +    tempParaItem.zPos = zconStamp[i]->getZpos();
2081 +    tempParaItem.zconsIndex = zconStamp[i]->getMolIndex();
2082 +    tempParaItem.kRatio = zconStamp[i]->getKratio();
2083 +    tempParaItem.havingCantVel = zconStamp[i]->haveCantVel();
2084 +    tempParaItem.cantVel = zconStamp[i]->getCantVel();    
2085 +    zconsParaData->addItem(tempParaItem);
2086 +  }
2087 +
2088 +  //check the uniqueness of index  
2089 +  if(!zconsParaData->isIndexUnique()){
2090 +    sprintf(painCave.errMsg,
2091 +            "ZConstraint Error: molIndex is not unique!\n");
2092 +    painCave.isFatal = 1;
2093 +    simError();
2094 +  }
2095 +
2096 +  //sort the parameters by index of molecules
2097 +  zconsParaData->sortByIndex();
2098 +  
2099 +  //push data into siminfo, therefore, we can retrieve later
2100 +  theInfo.addProperty(zconsParaData);
2101 + }
2102 +
2103 + void SimSetup::makeMinimizer(){
2104 +
2105 +  OOPSEMinimizer* myOOPSEMinimizer;
2106 +  MinimizerParameterSet* param;
2107 +  char minimizerName[100];
2108 +  
2109 +  for (int i = 0; i < nInfo; i++){
2110 +    
2111 +    //prepare parameter set for minimizer
2112 +    param = new MinimizerParameterSet();
2113 +    param->setDefaultParameter();
2114 +
2115 +    if (globals->haveMinimizer()){
2116 +      param->setFTol(globals->getMinFTol());
2117 +    }
2118 +
2119 +    if (globals->haveMinGTol()){
2120 +      param->setGTol(globals->getMinGTol());
2121 +    }
2122 +
2123 +    if (globals->haveMinMaxIter()){
2124 +      param->setMaxIteration(globals->getMinMaxIter());
2125 +    }
2126 +
2127 +    if (globals->haveMinWriteFrq()){
2128 +      param->setMaxIteration(globals->getMinMaxIter());
2129 +    }
2130 +
2131 +    if (globals->haveMinWriteFrq()){
2132 +      param->setWriteFrq(globals->getMinWriteFrq());
2133 +    }
2134 +    
2135 +    if (globals->haveMinStepSize()){
2136 +      param->setStepSize(globals->getMinStepSize());
2137 +    }
2138 +
2139 +    if (globals->haveMinLSMaxIter()){
2140 +      param->setLineSearchMaxIteration(globals->getMinLSMaxIter());
2141 +    }    
2142 +
2143 +    if (globals->haveMinLSTol()){
2144 +      param->setLineSearchTol(globals->getMinLSTol());
2145 +    }    
2146 +
2147 +    strcpy(minimizerName, globals->getMinimizer());
2148 +
2149 +    if (!strcasecmp(minimizerName, "CG")){
2150 +      myOOPSEMinimizer = new PRCGMinimizer(&(info[i]), the_ff, param);
2151 +    }
2152 +    else if (!strcasecmp(minimizerName, "SD")){
2153 +    //myOOPSEMinimizer = MinimizerFactory.creatMinimizer("", &(info[i]), the_ff, param);
2154 +      myOOPSEMinimizer = new SDMinimizer(&(info[i]), the_ff, param);
2155 +    }
2156 +    else{
2157 +          sprintf(painCave.errMsg,
2158 +                  "SimSetup error: Unrecognized Minimizer, use Conjugate Gradient \n");
2159 +          painCave.isFatal = 0;
2160 +          simError();
2161 +
2162 +      myOOPSEMinimizer = new PRCGMinimizer(&(info[i]), the_ff, param);          
2163 +    }
2164 +     info[i].the_integrator = myOOPSEMinimizer;
2165 +
2166 +     //store the minimizer into simInfo
2167 +     info[i].the_minimizer = myOOPSEMinimizer;
2168 +     info[i].has_minimizer = true;
2169 +  }
2170 +
2171 + }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines