ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/SimSetup.cpp
(Generate patch)

Comparing trunk/OOPSE/libmdtools/SimSetup.cpp (file contents):
Revision 394 by gezelter, Mon Mar 24 21:55:34 2003 UTC vs.
Revision 1212 by chrisfen, Tue Jun 1 17:15:43 2004 UTC

# Line 1 | Line 1
1 < #include <cstdlib>
1 > #include <algorithm>
2 > #include <stdlib.h>
3   #include <iostream>
4 < #include <cmath>
5 <
4 > #include <math.h>
5 > #include <string>
6 > #include <sprng.h>
7   #include "SimSetup.hpp"
8 + #include "ReadWrite.hpp"
9   #include "parse_me.h"
10   #include "Integrator.hpp"
11   #include "simError.h"
12 + #include "RigidBody.hpp"
13 + #include "OOPSEMinimizer.hpp"
14 + //#include "ConstraintElement.hpp"
15 + //#include "ConstraintPair.hpp"
16  
17   #ifdef IS_MPI
18   #include "mpiBASS.h"
19   #include "mpiSimulation.hpp"
20   #endif
21  
22 + // some defines for ensemble and Forcefield  cases
23 +
24 + #define NVE_ENS        0
25 + #define NVT_ENS        1
26 + #define NPTi_ENS       2
27 + #define NPTf_ENS       3
28 + #define NPTxyz_ENS     4
29 +
30 +
31 + #define FF_DUFF  0
32 + #define FF_LJ    1
33 + #define FF_EAM   2
34 + #define FF_H2O   3
35 +
36 + using namespace std;
37 +
38 + /**
39 + * Check whether dividend is divisble by divisor or not
40 + */
41 + bool isDivisible(double dividend, double divisor){
42 +  double tolerance = 0.000001;
43 +  double quotient;
44 +  double diff;
45 +  int intQuotient;
46 +  
47 +  quotient = dividend / divisor;
48 +
49 +  if (quotient < 0)
50 +    quotient = -quotient;
51 +
52 +  intQuotient = int (quotient + tolerance);
53 +
54 +  diff = fabs(fabs(dividend) - intQuotient  * fabs(divisor));
55 +
56 +  if (diff <= tolerance)
57 +    return true;
58 +  else
59 +    return false;  
60 + }
61 +
62   SimSetup::SimSetup(){
63 +  
64 +  initSuspend = false;
65 +  isInfoArray = 0;
66 +  nInfo = 1;
67 +
68    stamps = new MakeStamps();
69    globals = new Globals();
70 <  
70 >
71 >
72   #ifdef IS_MPI
73 <  strcpy( checkPointMsg, "SimSetup creation successful" );
73 >  strcpy(checkPointMsg, "SimSetup creation successful");
74    MPIcheckPoint();
75   #endif // IS_MPI
76   }
# Line 27 | Line 80 | SimSetup::~SimSetup(){
80    delete globals;
81   }
82  
83 < void SimSetup::parseFile( char* fileName ){
83 > void SimSetup::setSimInfo(SimInfo* the_info, int theNinfo){
84 >  info = the_info;
85 >  nInfo = theNinfo;
86 >  isInfoArray = 1;
87 >  initSuspend = true;
88 > }
89  
90 +
91 + void SimSetup::parseFile(char* fileName){
92   #ifdef IS_MPI
93 <  if( worldRank == 0 ){
93 >  if (worldRank == 0){
94   #endif // is_mpi
95 <    
95 >
96      inFileName = fileName;
97 <    set_interface_stamps( stamps, globals );
98 <    
97 >    set_interface_stamps(stamps, globals);
98 >
99   #ifdef IS_MPI
100      mpiEventInit();
101   #endif
102  
103 <    yacc_BASS( fileName );
103 >    yacc_BASS(fileName);
104  
105   #ifdef IS_MPI
106      throwMPIEvent(NULL);
107    }
108 <  else receiveParse();
108 >  else{
109 >    receiveParse();
110 >  }
111   #endif
112  
113   }
114  
115   #ifdef IS_MPI
116   void SimSetup::receiveParse(void){
117 <
118 <    set_interface_stamps( stamps, globals );
119 <    mpiEventInit();
120 <    MPIcheckPoint();
59 <    mpiEventLoop();
60 <
117 >  set_interface_stamps(stamps, globals);
118 >  mpiEventInit();
119 >  MPIcheckPoint();
120 >  mpiEventLoop();
121   }
122  
123   #endif // is_mpi
124  
125 < void SimSetup::createSim( void ){
125 > void SimSetup::createSim(void){
126  
127 <  MakeStamps *the_stamps;
68 <  Globals* the_globals;
69 <  int i, j;
127 >  // gather all of the information from the Bass file
128  
129 <  // get the stamps and globals;
72 <  the_stamps = stamps;
73 <  the_globals = globals;
129 >  gatherInfo();
130  
131 <  // set the easy ones first
76 <  simnfo->target_temp = the_globals->getTargetTemp();
77 <  simnfo->dt = the_globals->getDt();
78 <  simnfo->run_time = the_globals->getRunTime();
131 >  // creation of complex system objects
132  
133 <  // get the ones we know are there, yet still may need some work.
81 <  n_components = the_globals->getNComponents();
82 <  strcpy( force_field, the_globals->getForceField() );
83 <  strcpy( ensemble, the_globals->getEnsemble() );
84 <  strcpy( simnfo->ensemble, ensemble );
133 >  sysObjectsCreation();
134  
135 <  strcpy( simnfo->mixingRule, the_globals->getMixingRule() );
87 <  simnfo->usePBC = the_globals->getPBC();
88 <          
135 >  // check on the post processing info
136  
137 +  finalInfoCheck();
138  
139 <  if( !strcmp( force_field, "TraPPE" ) ) the_ff = new TraPPEFF();
92 <  else if( !strcmp( force_field, "DipoleTest" ) ) the_ff = new DipoleTestFF();
93 <  else if( !strcmp( force_field, "TraPPE_Ex" ) ) the_ff = new TraPPE_ExFF();
94 <  else if( !strcmp( force_field, "LJ" ) ) the_ff = new LJ_FF();
95 <  else{
96 <    sprintf( painCave.errMsg,
97 <             "SimSetup Error. Unrecognized force field -> %s\n",
98 <             force_field );
99 <    painCave.isFatal = 1;
100 <    simError();
101 <  }
139 >  // initialize the system coordinates
140  
141 < #ifdef IS_MPI
142 <  strcpy( checkPointMsg, "ForceField creation successful" );
105 <  MPIcheckPoint();
106 < #endif // is_mpi
141 >  if ( !initSuspend ){
142 >    initSystemCoords();
143  
144 <  
144 >    if( !(globals->getUseInitTime()) )
145 >      info[0].currentTime = 0.0;
146 >  }  
147  
148 <  // get the components and calculate the tot_nMol and indvidual n_mol
111 <  the_components = the_globals->getComponents();
112 <  components_nmol = new int[n_components];
113 <  comp_stamps = new MoleculeStamp*[n_components];
148 >  // make the output filenames
149  
150 <  if( !the_globals->haveNMol() ){
151 <    // we don't have the total number of molecules, so we assume it is
152 <    // given in each component
150 >  makeOutNames();
151 >  
152 > #ifdef IS_MPI
153 >  mpiSim->mpiRefresh();
154 > #endif
155  
156 <    tot_nmol = 0;
120 <    for( i=0; i<n_components; i++ ){
156 >  // initialize the Fortran
157  
158 <      if( !the_components[i]->haveNMol() ){
123 <        // we have a problem
124 <        sprintf( painCave.errMsg,
125 <                 "SimSetup Error. No global NMol or component NMol"
126 <                 " given. Cannot calculate the number of atoms.\n" );
127 <        painCave.isFatal = 1;
128 <        simError();
129 <      }
158 >  initFortran();
159  
160 <      tot_nmol += the_components[i]->getNMol();
161 <      components_nmol[i] = the_components[i]->getNMol();
162 <    }
163 <  }
164 <  else{
165 <    sprintf( painCave.errMsg,
137 <             "SimSetup error.\n"
138 <             "\tSorry, the ability to specify total"
139 <             " nMols and then give molfractions in the components\n"
140 <             "\tis not currently supported."
141 <             " Please give nMol in the components.\n" );
142 <    painCave.isFatal = 1;
143 <    simError();
144 <    
145 <    
146 <    //     tot_nmol = the_globals->getNMol();
147 <    
148 <    //   //we have the total number of molecules, now we check for molfractions
149 <    //     for( i=0; i<n_components; i++ ){
150 <    
151 <    //       if( !the_components[i]->haveMolFraction() ){
152 <    
153 <    //  if( !the_components[i]->haveNMol() ){
154 <    //    //we have a problem
155 <    //    std::cerr << "SimSetup error. Neither molFraction nor "
156 <    //              << " nMol was given in component
157 <    
158 <  }
160 >  if (globals->haveMinimizer())
161 >    // make minimizer
162 >    makeMinimizer();
163 >  else
164 >    // make the integrator
165 >    makeIntegrator();
166  
167 < #ifdef IS_MPI
161 <  strcpy( checkPointMsg, "Have the number of components" );
162 <  MPIcheckPoint();
163 < #endif // is_mpi
167 > }
168  
165  // make an array of molecule stamps that match the components used.
166  // also extract the used stamps out into a separate linked list
169  
170 <  simnfo->nComponents = n_components;
171 <  simnfo->componentsNmol = components_nmol;
172 <  simnfo->compStamps = comp_stamps;
173 <  simnfo->headStamp = new LinkedMolStamp();
174 <  
175 <  char* id;
176 <  LinkedMolStamp* headStamp = simnfo->headStamp;
177 <  LinkedMolStamp* currentStamp = NULL;
178 <  for( i=0; i<n_components; i++ ){
170 > void SimSetup::makeMolecules(void){
171 >  int i, j, k;
172 >  int exI, exJ, exK, exL, slI, slJ;
173 >  int tempI, tempJ, tempK, tempL;
174 >  int molI;
175 >  int stampID, atomOffset, rbOffset;
176 >  molInit molInfo;
177 >  DirectionalAtom* dAtom;
178 >  RigidBody* myRB;
179 >  StuntDouble* mySD;
180 >  LinkedAssign* extras;
181 >  LinkedAssign* current_extra;
182 >  AtomStamp* currentAtom;
183 >  BondStamp* currentBond;
184 >  BendStamp* currentBend;
185 >  TorsionStamp* currentTorsion;
186 >  RigidBodyStamp* currentRigidBody;
187 >  CutoffGroupStamp* currentCutoffGroup;
188 >  CutoffGroup* myCutoffGroup;
189 >  int nCutoffGroups;// number of cutoff group of a molecule defined in mdl file
190 >  set<int> cutoffAtomSet; //atoms belong to  cutoffgroup defined at mdl file
191  
192 <    id = the_components[i]->getType();
193 <    comp_stamps[i] = NULL;
194 <    
181 <    // check to make sure the component isn't already in the list
192 >  bond_pair* theBonds;
193 >  bend_set* theBends;
194 >  torsion_set* theTorsions;
195  
196 <    comp_stamps[i] = headStamp->match( id );
184 <    if( comp_stamps[i] == NULL ){
185 <      
186 <      // extract the component from the list;
187 <      
188 <      currentStamp = the_stamps->extractMolStamp( id );
189 <      if( currentStamp == NULL ){
190 <        sprintf( painCave.errMsg,
191 <                 "SimSetup error: Component \"%s\" was not found in the "
192 <                 "list of declared molecules\n",
193 <                 id );
194 <        painCave.isFatal = 1;
195 <        simError();
196 <      }
197 <      
198 <      headStamp->add( currentStamp );
199 <      comp_stamps[i] = headStamp->match( id );
200 <    }
201 <  }
196 >  set<int> skipList;
197  
198 < #ifdef IS_MPI
199 <  strcpy( checkPointMsg, "Component stamps successfully extracted\n" );
200 <  MPIcheckPoint();
206 < #endif // is_mpi
207 <  
198 >  double phi, theta, psi;
199 >  char* molName;
200 >  char rbName[100];
201  
202 +  //ConstraintPair* consPair; //constraint pair
203 +  //ConstraintElement* consElement1;  //first element of constraint pair
204 +  //ConstraintElement* consElement2;  //second element of constraint pair
205 +  //int whichRigidBody;
206 +  //int consAtomIndex;  //index of constraint atom in rigid body's atom array
207 +  //vector<pair<int, int> > jointAtoms;
208 +  //init the forceField paramters
209  
210 +  the_ff->readParams();
211  
212 <  // caclulate the number of atoms, bonds, bends and torsions
212 >  // init the atoms
213  
214 <  tot_atoms = 0;
214 <  tot_bonds = 0;
215 <  tot_bends = 0;
216 <  tot_torsions = 0;
217 <  for( i=0; i<n_components; i++ ){
218 <    
219 <    tot_atoms +=    components_nmol[i] * comp_stamps[i]->getNAtoms();
220 <    tot_bonds +=    components_nmol[i] * comp_stamps[i]->getNBonds();
221 <    tot_bends +=    components_nmol[i] * comp_stamps[i]->getNBends();
222 <    tot_torsions += components_nmol[i] * comp_stamps[i]->getNTorsions();
223 <  }
214 >  int nMembers, nNew, rb1, rb2;
215  
216 <  tot_SRI = tot_bonds + tot_bends + tot_torsions;
216 >  for (k = 0; k < nInfo; k++){
217 >    the_ff->setSimInfo(&(info[k]));
218  
219 <  simnfo->n_atoms = tot_atoms;
220 <  simnfo->n_bonds = tot_bonds;
229 <  simnfo->n_bends = tot_bends;
230 <  simnfo->n_torsions = tot_torsions;
231 <  simnfo->n_SRI = tot_SRI;
232 <  simnfo->n_mol = tot_nmol;
219 >    atomOffset = 0;
220 >    groupOffset = 0;
221  
222 <  
223 < #ifdef IS_MPI
222 >    for (i = 0; i < info[k].n_mol; i++){
223 >      stampID = info[k].molecules[i].getStampID();
224 >      molName = comp_stamps[stampID]->getID();
225  
226 <  // divide the molecules among processors here.
227 <  
228 <  mpiSim = new mpiSimulation( simnfo );
229 <  
230 <  
226 >      molInfo.nAtoms = comp_stamps[stampID]->getNAtoms();
227 >      molInfo.nBonds = comp_stamps[stampID]->getNBonds();
228 >      molInfo.nBends = comp_stamps[stampID]->getNBends();
229 >      molInfo.nTorsions = comp_stamps[stampID]->getNTorsions();
230 >      molInfo.nRigidBodies = comp_stamps[stampID]->getNRigidBodies();
231  
232 <  globalIndex = mpiSim->divideLabor();
232 >      nCutoffGroups = comp_stamps[stampID]->getNCutoffGroups();
233 >      
234 >      molInfo.myAtoms = &(info[k].atoms[atomOffset]);
235  
236 +      if (molInfo.nBonds > 0)
237 +        molInfo.myBonds = new Bond*[molInfo.nBonds];
238 +      else
239 +        molInfo.myBonds = NULL;
240  
241 +      if (molInfo.nBends > 0)
242 +        molInfo.myBends = new Bend*[molInfo.nBends];
243 +      else
244 +        molInfo.myBends = NULL;
245  
246 <  // set up the local variables
247 <  
248 <  int localMol, allMol;
249 <  int local_atoms, local_bonds, local_bends, local_torsions, local_SRI;
251 <  
252 <  allMol = 0;
253 <  localMol = 0;
254 <  local_atoms = 0;
255 <  local_bonds = 0;
256 <  local_bends = 0;
257 <  local_torsions = 0;
258 <  for( i=0; i<n_components; i++ ){
246 >      if (molInfo.nTorsions > 0)
247 >        molInfo.myTorsions = new Torsion *[molInfo.nTorsions];
248 >      else
249 >        molInfo.myTorsions = NULL;
250  
251 <    for( j=0; j<components_nmol[i]; j++ ){
251 >      theBonds = new bond_pair[molInfo.nBonds];
252 >      theBends = new bend_set[molInfo.nBends];
253 >      theTorsions = new torsion_set[molInfo.nTorsions];
254        
255 <      if( mpiSim->getMyMolStart() <= allMol &&
263 <          allMol <= mpiSim->getMyMolEnd() ){
264 <        
265 <        local_atoms +=    comp_stamps[i]->getNAtoms();
266 <        local_bonds +=    comp_stamps[i]->getNBonds();
267 <        local_bends +=    comp_stamps[i]->getNBends();
268 <        local_torsions += comp_stamps[i]->getNTorsions();
269 <        localMol++;
270 <      }      
271 <      allMol++;
272 <    }
273 <  }
274 <  local_SRI = local_bonds + local_bends + local_torsions;
275 <  
255 >      // make the Atoms
256  
257 <  simnfo->n_atoms = mpiSim->getMyNlocal();  
258 <  
279 <  if( local_atoms != simnfo->n_atoms ){
280 <    sprintf( painCave.errMsg,
281 <             "SimSetup error: mpiSim's localAtom (%d) and SimSetup's"
282 <             " localAtom (%d) are note equal.\n",
283 <             simnfo->n_atoms,
284 <             local_atoms );
285 <    painCave.isFatal = 1;
286 <    simError();
287 <  }
257 >      for (j = 0; j < molInfo.nAtoms; j++){
258 >        currentAtom = comp_stamps[stampID]->getAtom(j);
259  
260 <  simnfo->n_bonds = local_bonds;
261 <  simnfo->n_bends = local_bends;
262 <  simnfo->n_torsions = local_torsions;
263 <  simnfo->n_SRI = local_SRI;
264 <  simnfo->n_mol = localMol;
260 >        if (currentAtom->haveOrientation()){
261 >          dAtom = new DirectionalAtom((j + atomOffset),
262 >                                      info[k].getConfiguration());
263 >          info[k].n_oriented++;
264 >          molInfo.myAtoms[j] = dAtom;
265  
266 <  strcpy( checkPointMsg, "Passed nlocal consistency check." );
267 <  MPIcheckPoint();
268 <  
298 <  
299 < #endif // is_mpi
300 <  
266 >          // Directional Atoms have standard unit vectors which are oriented
267 >          // in space using the three Euler angles.  We assume the standard
268 >          // unit vector was originally along the z axis below.
269  
270 <  // create the atom and short range interaction arrays
270 >          phi = currentAtom->getEulerPhi() * M_PI / 180.0;
271 >          theta = currentAtom->getEulerTheta() * M_PI / 180.0;
272 >          psi = currentAtom->getEulerPsi()* M_PI / 180.0;
273  
274 <  Atom::createArrays(simnfo->n_atoms);
275 <  the_atoms = new Atom*[simnfo->n_atoms];
276 <  the_molecules = new Molecule[simnfo->n_mol];
274 >          dAtom->setUnitFrameFromEuler(phi, theta, psi);
275 >            
276 >        }
277 >        else{
278  
279 +          molInfo.myAtoms[j] = new Atom((j + atomOffset), info[k].getConfiguration());
280  
281 <  if( simnfo->n_SRI ){
310 <    the_sris = new SRI*[simnfo->n_SRI];
311 <    the_excludes = new int[2 * simnfo->n_SRI];
312 <    simnfo->globalExcludes = new int;
313 <    simnfo->n_exclude = tot_SRI;
314 <  }
315 <  else{
316 <    
317 <    the_excludes = new int[2];
318 <    the_excludes[0] = 0;
319 <    the_excludes[1] = 0;
320 <    simnfo->globalExcludes = new int;
321 <    simnfo->globalExcludes[0] = 0;
281 >        }
282  
283 <    simnfo->n_exclude = 1;
284 <  }
283 >        molInfo.myAtoms[j]->setType(currentAtom->getType());
284 > #ifdef IS_MPI
285  
286 <  // set the arrays into the SimInfo object
286 >        molInfo.myAtoms[j]->setGlobalIndex(globalAtomIndex[j + atomOffset]);
287  
288 <  simnfo->atoms = the_atoms;
289 <  simnfo->sr_interactions = the_sris;
330 <  simnfo->nGlobalExcludes = 0;
331 <  simnfo->excludes = the_excludes;
288 > #endif // is_mpi
289 >      }
290  
291 +      // make the bonds
292 +      for (j = 0; j < molInfo.nBonds; j++){
293 +        currentBond = comp_stamps[stampID]->getBond(j);
294 +        theBonds[j].a = currentBond->getA() + atomOffset;
295 +        theBonds[j].b = currentBond->getB() + atomOffset;
296  
297 <  // get some of the tricky things that may still be in the globals
297 >        tempI = theBonds[j].a;
298 >        tempJ = theBonds[j].b;
299  
336  
337  if( the_globals->haveBox() ){
338    simnfo->box_x = the_globals->getBox();
339    simnfo->box_y = the_globals->getBox();
340    simnfo->box_z = the_globals->getBox();
341  }
342  else if( the_globals->haveDensity() ){
343
344    double vol;
345    vol = (double)tot_nmol / the_globals->getDensity();
346    simnfo->box_x = pow( vol, ( 1.0 / 3.0 ) );
347    simnfo->box_y = simnfo->box_x;
348    simnfo->box_z = simnfo->box_x;
349  }
350  else{
351    if( !the_globals->haveBoxX() ){
352      sprintf( painCave.errMsg,
353               "SimSetup error, no periodic BoxX size given.\n" );
354      painCave.isFatal = 1;
355      simError();
356    }
357    simnfo->box_x = the_globals->getBoxX();
358
359    if( !the_globals->haveBoxY() ){
360      sprintf( painCave.errMsg,
361               "SimSetup error, no periodic BoxY size given.\n" );
362      painCave.isFatal = 1;
363      simError();
364    }
365    simnfo->box_y = the_globals->getBoxY();
366
367    if( !the_globals->haveBoxZ() ){
368      sprintf( painCave.errMsg,
369               "SimSetup error, no periodic BoxZ size given.\n" );
370      painCave.isFatal = 1;
371      simError();
372    }
373    simnfo->box_z = the_globals->getBoxZ();
374  }
375
300   #ifdef IS_MPI
301 <  strcpy( checkPointMsg, "Box size set up" );
302 <  MPIcheckPoint();
303 < #endif // is_mpi
301 >        exI = info[k].atoms[tempI]->getGlobalIndex() + 1;
302 >        exJ = info[k].atoms[tempJ]->getGlobalIndex() + 1;
303 > #else
304 >        exI = tempI + 1;
305 >        exJ = tempJ + 1;
306 > #endif
307  
308 +        info[k].excludes->addPair(exI, exJ);
309 +      }
310  
311 <  // initialize the arrays
311 >      //make the bends
312 >      for (j = 0; j < molInfo.nBends; j++){
313 >        currentBend = comp_stamps[stampID]->getBend(j);
314 >        theBends[j].a = currentBend->getA() + atomOffset;
315 >        theBends[j].b = currentBend->getB() + atomOffset;
316 >        theBends[j].c = currentBend->getC() + atomOffset;
317  
318 <  the_ff->setSimInfo( simnfo );
318 >        if (currentBend->haveExtras()){
319 >          extras = currentBend->getExtras();
320 >          current_extra = extras;
321  
322 <  makeAtoms();
323 <  simnfo->identArray = new int[simnfo->n_atoms];
324 <  for(i=0; i<simnfo->n_atoms; i++){
325 <    simnfo->identArray[i] = the_atoms[i]->getIdent();
326 <  }
327 <  
328 <  if( tot_bonds ){
393 <    makeBonds();
394 <  }
322 >          while (current_extra != NULL){
323 >            if (!strcmp(current_extra->getlhs(), "ghostVectorSource")){
324 >              switch (current_extra->getType()){
325 >                case 0:
326 >                  theBends[j].ghost = current_extra->getInt() + atomOffset;
327 >                  theBends[j].isGhost = 1;
328 >                  break;
329  
330 <  if( tot_bends ){
331 <    makeBends();
332 <  }
330 >                case 1:
331 >                  theBends[j].ghost = (int) current_extra->getDouble() +
332 >                                      atomOffset;
333 >                  theBends[j].isGhost = 1;
334 >                  break;
335  
336 <  if( tot_torsions ){
337 <    makeTorsions();
338 <  }
336 >                default:
337 >                  sprintf(painCave.errMsg,
338 >                          "SimSetup Error: ghostVectorSource was neither a "
339 >                          "double nor an int.\n"
340 >                          "-->Bend[%d] in %s\n",
341 >                          j, comp_stamps[stampID]->getID());
342 >                  painCave.isFatal = 1;
343 >                  simError();
344 >              }
345 >            }
346 >            else{
347 >              sprintf(painCave.errMsg,
348 >                      "SimSetup Error: unhandled bend assignment:\n"
349 >                      "    -->%s in Bend[%d] in %s\n",
350 >                      current_extra->getlhs(), j, comp_stamps[stampID]->getID());
351 >              painCave.isFatal = 1;
352 >              simError();
353 >            }
354  
355 +            current_extra = current_extra->getNext();
356 +          }
357 +        }
358  
359 <  if (the_globals->getUseRF() ) {
360 <    simnfo->useReactionField = 1;
361 <  
362 <    if( !the_globals->haveECR() ){
363 <      sprintf( painCave.errMsg,
364 <               "SimSetup Warning: using default value of 1/2 the smallest "
365 <               "box length for the electrostaticCutoffRadius.\n"
366 <               "I hope you have a very fast processor!\n");
367 <      painCave.isFatal = 0;
368 <      simError();
369 <      double smallest;
370 <      smallest = simnfo->box_x;
371 <      if (simnfo->box_y <= smallest) smallest = simnfo->box_y;
418 <      if (simnfo->box_z <= smallest) smallest = simnfo->box_z;
419 <      simnfo->ecr = 0.5 * smallest;
420 <    } else {
421 <      simnfo->ecr        = the_globals->getECR();
422 <    }
359 >        if (theBends[j].isGhost) {
360 >          
361 >          tempI = theBends[j].a;
362 >          tempJ = theBends[j].b;
363 >          
364 > #ifdef IS_MPI
365 >          exI = info[k].atoms[tempI]->getGlobalIndex() + 1;
366 >          exJ = info[k].atoms[tempJ]->getGlobalIndex() + 1;
367 > #else
368 >          exI = tempI + 1;
369 >          exJ = tempJ + 1;
370 > #endif          
371 >          info[k].excludes->addPair(exI, exJ);
372  
373 <    if( !the_globals->haveEST() ){
425 <      sprintf( painCave.errMsg,
426 <               "SimSetup Warning: using default value of 0.05 * the "
427 <               "electrostaticCutoffRadius for the electrostaticSkinThickness\n"
428 <               );
429 <      painCave.isFatal = 0;
430 <      simError();
431 <      simnfo->est = 0.05 * simnfo->ecr;
432 <    } else {
433 <      simnfo->est        = the_globals->getEST();
434 <    }
435 <    
436 <    if(!the_globals->haveDielectric() ){
437 <      sprintf( painCave.errMsg,
438 <               "SimSetup Error: You are trying to use Reaction Field without"
439 <               "setting a dielectric constant!\n"
440 <               );
441 <      painCave.isFatal = 1;
442 <      simError();
443 <    }
444 <    simnfo->dielectric = the_globals->getDielectric();  
445 <  } else {
446 <    if (simnfo->n_dipoles) {
447 <      
448 <      if( !the_globals->haveECR() ){
449 <        sprintf( painCave.errMsg,
450 <                 "SimSetup Warning: using default value of 1/2 the smallest"
451 <                 "box length for the electrostaticCutoffRadius.\n"
452 <                 "I hope you have a very fast processor!\n");
453 <        painCave.isFatal = 0;
454 <        simError();
455 <        double smallest;
456 <        smallest = simnfo->box_x;
457 <        if (simnfo->box_y <= smallest) smallest = simnfo->box_y;
458 <        if (simnfo->box_z <= smallest) smallest = simnfo->box_z;
459 <        simnfo->ecr = 0.5 * smallest;
460 <      } else {
461 <        simnfo->ecr        = the_globals->getECR();
462 <      }
463 <      
464 <      if( !the_globals->haveEST() ){
465 <        sprintf( painCave.errMsg,
466 <                 "SimSetup Warning: using default value of 5% of the"
467 <                 "electrostaticCutoffRadius for the "
468 <                 "electrostaticSkinThickness\n"
469 <                 );
470 <        painCave.isFatal = 0;
471 <        simError();
472 <        simnfo->est = 0.05 * simnfo->ecr;
473 <      } else {
474 <        simnfo->est        = the_globals->getEST();
475 <      }
476 <    }
477 <  }  
373 >        } else {
374  
375 +          tempI = theBends[j].a;
376 +          tempJ = theBends[j].b;
377 +          tempK = theBends[j].c;
378 +          
379   #ifdef IS_MPI
380 <  strcpy( checkPointMsg, "electrostatic parameters check out" );
381 <  MPIcheckPoint();
382 < #endif // is_mpi
380 >          exI = info[k].atoms[tempI]->getGlobalIndex() + 1;
381 >          exJ = info[k].atoms[tempJ]->getGlobalIndex() + 1;
382 >          exK = info[k].atoms[tempK]->getGlobalIndex() + 1;
383 > #else
384 >          exI = tempI + 1;
385 >          exJ = tempJ + 1;
386 >          exK = tempK + 1;
387 > #endif
388 >          
389 >          info[k].excludes->addPair(exI, exK);
390 >          info[k].excludes->addPair(exI, exJ);
391 >          info[k].excludes->addPair(exJ, exK);
392 >        }
393 >      }
394  
395 < if( the_globals->haveInitialConfig() ){
396 <
397 <     InitializeFromFile* fileInit;
398 < #ifdef IS_MPI // is_mpi
399 <     if( worldRank == 0 ){
400 < #endif //is_mpi
401 <   fileInit = new InitializeFromFile( the_globals->getInitialConfig() );
395 >      for (j = 0; j < molInfo.nTorsions; j++){
396 >        currentTorsion = comp_stamps[stampID]->getTorsion(j);
397 >        theTorsions[j].a = currentTorsion->getA() + atomOffset;
398 >        theTorsions[j].b = currentTorsion->getB() + atomOffset;
399 >        theTorsions[j].c = currentTorsion->getC() + atomOffset;
400 >        theTorsions[j].d = currentTorsion->getD() + atomOffset;
401 >
402 >        tempI = theTorsions[j].a;      
403 >        tempJ = theTorsions[j].b;
404 >        tempK = theTorsions[j].c;
405 >        tempL = theTorsions[j].d;
406 >
407   #ifdef IS_MPI
408 <     }else fileInit = new InitializeFromFile( NULL );
408 >        exI = info[k].atoms[tempI]->getGlobalIndex() + 1;
409 >        exJ = info[k].atoms[tempJ]->getGlobalIndex() + 1;
410 >        exK = info[k].atoms[tempK]->getGlobalIndex() + 1;
411 >        exL = info[k].atoms[tempL]->getGlobalIndex() + 1;
412 > #else
413 >        exI = tempI + 1;
414 >        exJ = tempJ + 1;
415 >        exK = tempK + 1;
416 >        exL = tempL + 1;
417   #endif
494   fileInit->read_xyz( simnfo ); // default velocities on
418  
419 <   delete fileInit;
420 < }
421 < else{
419 >        info[k].excludes->addPair(exI, exJ);
420 >        info[k].excludes->addPair(exI, exK);
421 >        info[k].excludes->addPair(exI, exL);        
422 >        info[k].excludes->addPair(exJ, exK);
423 >        info[k].excludes->addPair(exJ, exL);
424 >        info[k].excludes->addPair(exK, exL);
425 >      }
426  
427 < #ifdef IS_MPI
427 >      
428 >      molInfo.myRigidBodies.clear();
429 >      
430 >      for (j = 0; j < molInfo.nRigidBodies; j++){
431  
432 <  // no init from bass
433 <  
504 <  sprintf( painCave.errMsg,
505 <           "Cannot intialize a parallel simulation without an initial configuration file.\n" );
506 <  painCave.isFatal;
507 <  simError();
508 <  
509 < #else
432 >        currentRigidBody = comp_stamps[stampID]->getRigidBody(j);
433 >        nMembers = currentRigidBody->getNMembers();
434  
435 <  initFromBass();
435 >        // Create the Rigid Body:
436  
437 +        myRB = new RigidBody();
438  
439 < #endif
440 < }
439 >        sprintf(rbName,"%s_RB_%d", molName, j);
440 >        myRB->setType(rbName);
441 >        
442 >        for (rb1 = 0; rb1 < nMembers; rb1++) {
443  
444 < #ifdef IS_MPI
445 <  strcpy( checkPointMsg, "Successfully read in the initial configuration" );
519 <  MPIcheckPoint();
520 < #endif // is_mpi
444 >          // molI is atom numbering inside this molecule
445 >          molI = currentRigidBody->getMember(rb1);    
446  
447 +          // tempI is atom numbering on local processor
448 +          tempI = molI + atomOffset;
449  
450 <  
451 <
452 <  
450 >          // currentAtom is the AtomStamp (which we need for
451 >          // rigid body reference positions)
452 >          currentAtom = comp_stamps[stampID]->getAtom(molI);
453  
454 <  
454 >          // When we add to the rigid body, add the atom itself and
455 >          // the stamp info:
456 >
457 >          myRB->addAtom(info[k].atoms[tempI], currentAtom);
458 >          
459 >          // Add this atom to the Skip List for the integrators
460   #ifdef IS_MPI
461 <  if( worldRank == 0 ){
462 < #endif // is_mpi
463 <    
464 <    if( the_globals->haveFinalConfig() ){
465 <      strcpy( simnfo->finalName, the_globals->getFinalConfig() );
466 <    }
467 <    else{
468 <      strcpy( simnfo->finalName, inFileName );
469 <      char* endTest;
470 <      int nameLength = strlen( simnfo->finalName );
471 <      endTest = &(simnfo->finalName[nameLength - 5]);
472 <      if( !strcmp( endTest, ".bass" ) ){
473 <        strcpy( endTest, ".eor" );
461 >          slI = info[k].atoms[tempI]->getGlobalIndex();
462 > #else
463 >          slI = tempI;
464 > #endif
465 >          skipList.insert(slI);
466 >          
467 >        }
468 >        
469 >        for(rb1 = 0; rb1 < nMembers - 1; rb1++) {
470 >          for(rb2 = rb1+1; rb2 < nMembers; rb2++) {
471 >            
472 >            tempI = currentRigidBody->getMember(rb1);
473 >            tempJ = currentRigidBody->getMember(rb2);
474 >            
475 >            // Some explanation is required here.
476 >            // Fortran indexing starts at 1, while c indexing starts at 0
477 >            // Also, in parallel computations, the GlobalIndex is
478 >            // used for the exclude list:
479 >            
480 > #ifdef IS_MPI
481 >            exI = molInfo.myAtoms[tempI]->getGlobalIndex() + 1;
482 >            exJ = molInfo.myAtoms[tempJ]->getGlobalIndex() + 1;
483 > #else
484 >            exI = molInfo.myAtoms[tempI]->getIndex() + 1;
485 >            exJ = molInfo.myAtoms[tempJ]->getIndex() + 1;
486 > #endif
487 >            
488 >            info[k].excludes->addPair(exI, exJ);
489 >            
490 >          }
491 >        }
492 >
493 >        molInfo.myRigidBodies.push_back(myRB);
494 >        info[k].rigidBodies.push_back(myRB);
495        }
496 <      else if( !strcmp( endTest, ".BASS" ) ){
497 <        strcpy( endTest, ".eor" );
498 <      }
499 <      else{
500 <        endTest = &(simnfo->finalName[nameLength - 4]);
501 <        if( !strcmp( endTest, ".bss" ) ){
502 <          strcpy( endTest, ".eor" );
503 <        }
504 <        else if( !strcmp( endTest, ".mdl" ) ){
505 <          strcpy( endTest, ".eor" );
506 <        }
554 <        else{
555 <          strcat( simnfo->finalName, ".eor" );
556 <        }
557 <      }
558 <    }
559 <    
560 <    // make the sample and status out names
561 <    
562 <    strcpy( simnfo->sampleName, inFileName );
563 <    char* endTest;
564 <    int nameLength = strlen( simnfo->sampleName );
565 <    endTest = &(simnfo->sampleName[nameLength - 5]);
566 <    if( !strcmp( endTest, ".bass" ) ){
567 <      strcpy( endTest, ".dump" );
568 <    }
569 <    else if( !strcmp( endTest, ".BASS" ) ){
570 <      strcpy( endTest, ".dump" );
571 <    }
572 <    else{
573 <      endTest = &(simnfo->sampleName[nameLength - 4]);
574 <      if( !strcmp( endTest, ".bss" ) ){
575 <        strcpy( endTest, ".dump" );
576 <      }
577 <      else if( !strcmp( endTest, ".mdl" ) ){
578 <        strcpy( endTest, ".dump" );
579 <      }
580 <      else{
581 <        strcat( simnfo->sampleName, ".dump" );
582 <      }
583 <    }
584 <    
585 <    strcpy( simnfo->statusName, inFileName );
586 <    nameLength = strlen( simnfo->statusName );
587 <    endTest = &(simnfo->statusName[nameLength - 5]);
588 <    if( !strcmp( endTest, ".bass" ) ){
589 <      strcpy( endTest, ".stat" );
590 <    }
591 <    else if( !strcmp( endTest, ".BASS" ) ){
592 <      strcpy( endTest, ".stat" );
593 <    }
594 <    else{
595 <      endTest = &(simnfo->statusName[nameLength - 4]);
596 <      if( !strcmp( endTest, ".bss" ) ){
597 <        strcpy( endTest, ".stat" );
598 <      }
599 <      else if( !strcmp( endTest, ".mdl" ) ){
600 <        strcpy( endTest, ".stat" );
601 <      }
602 <      else{
603 <        strcat( simnfo->statusName, ".stat" );
604 <      }
605 <    }
606 <    
607 < #ifdef IS_MPI
608 <  }
609 < #endif // is_mpi
610 <  
611 <  // set the status, sample, and themal kick times
612 <  
613 <  if( the_globals->haveSampleTime() ){
614 <    simnfo->sampleTime = the_globals->getSampleTime();
615 <    simnfo->statusTime = simnfo->sampleTime;
616 <    simnfo->thermalTime = simnfo->sampleTime;
617 <  }
618 <  else{
619 <    simnfo->sampleTime = the_globals->getRunTime();
620 <    simnfo->statusTime = simnfo->sampleTime;
621 <    simnfo->thermalTime = simnfo->sampleTime;
622 <  }
496 >      
497 >
498 >      //create cutoff group for molecule
499 >
500 >      cutoffAtomSet.clear();
501 >      molInfo.myCutoffGroups.clear();
502 >      
503 >      for (j = 0; j < nCutoffGroups; j++){
504 >
505 >        currentCutoffGroup = comp_stamps[stampID]->getCutoffGroup(j);
506 >        nMembers = currentCutoffGroup->getNMembers();
507  
508 <  if( the_globals->haveStatusTime() ){
509 <    simnfo->statusTime = the_globals->getStatusTime();
510 <  }
508 >        myCutoffGroup = new CutoffGroup();
509 >        myCutoffGroup->setGlobalIndex(globalGroupIndex[j + groupOffset]);
510 >        
511 >        for (int cg = 0; cg < nMembers; cg++) {
512  
513 <  if( the_globals->haveThermalTime() ){
514 <    simnfo->thermalTime = the_globals->getThermalTime();
630 <  }
513 >          // molI is atom numbering inside this molecule
514 >          molI = currentCutoffGroup->getMember(cg);    
515  
516 <  // check for the temperature set flag
516 >          // tempI is atom numbering on local processor
517 >          tempI = molI + atomOffset;
518  
519 <  if( the_globals->haveTempSet() ) simnfo->setTemp = the_globals->getTempSet();
519 > #ifdef IS_MPI
520 >          globalID = info[k].atoms[tempI]->getGlobalIndex()
521 > #else
522 >          globalID = info[k].atoms[tempI]->getIndex();
523 > #endif
524  
525 +          globalGroupMembership[globalID] = globalGroupIndex[j+groupOffset];
526  
527 < //   // make the longe range forces and the integrator
527 >          myCutoffGroup->addAtom(info[k].atoms[tempI]);          
528  
529 < //   new AllLong( simnfo );
529 >          cutoffAtomSet.insert(tempI);
530 >        }
531 >      
532 >        molInfo.myCutoffGroups.push_back(myCutoffGroup);
533 >        groupOffset++;
534  
535 <  if( !strcmp( force_field, "TraPPE" ) ) new Verlet( *simnfo, the_ff );
642 <  if( !strcmp( force_field, "DipoleTest" ) ) new Symplectic( simnfo, the_ff );
643 <  if( !strcmp( force_field, "TraPPE_Ex" ) ) new Symplectic( simnfo, the_ff );
644 <  if( !strcmp( force_field, "LJ" ) ) new Verlet( *simnfo, the_ff );
535 >      }//end for (j = 0; j < molInfo.nCutoffGroups; j++)
536  
537 +      //creat a cutoff group for every atom  in current molecule which does not belong to cutoffgroup defined at mdl file
538  
539 +      for(j = 0; j < molInfo.nAtoms; j++){
540  
541 <  // initialize the Fortran
542 <  
543 <  simnfo->refreshSim();
544 <  
652 <  if( !strcmp( simnfo->mixingRule, "standard") ){
653 <    the_ff->initForceField( LB_MIXING_RULE );
654 <  }
655 <  else if( !strcmp( simnfo->mixingRule, "explicit") ){
656 <    the_ff->initForceField( EXPLICIT_MIXING_RULE );
657 <  }
658 <  else{
659 <    sprintf( painCave.errMsg,
660 <             "SimSetup Error: unknown mixing rule -> \"%s\"\n",
661 <             simnfo->mixingRule );
662 <    painCave.isFatal = 1;
663 <    simError();
664 <  }
665 <
666 <
541 >        if(cutoffAtomSet.find(molInfo.myAtoms[j]->getIndex()) == cutoffAtomSet.end()){
542 >          myCutoffGroup = new CutoffGroup();
543 >          myCutoffGroup->addAtom(molInfo.myAtoms[j]);
544 >          myCutoffGroup->setGlobalIndex(globalGroupIndex[j + groupOffset]);
545   #ifdef IS_MPI
546 <  strcpy( checkPointMsg,
547 <          "Successfully intialized the mixingRule for Fortran." );
548 <  MPIcheckPoint();
549 < #endif // is_mpi
550 < }
546 >          globalID = info[k].atoms[atomOffset + j]->getGlobalIndex()
547 > #else
548 >          globalID = info[k].atoms[atomOffset + j]->getIndex();
549 > #endif
550 >          globalGroupMembership[globalID] = globalGroupIndex[j+groupOffset];
551 >          molInfo.myCutoffGroups.push_back(myCutoffGroup);
552 >          groupOffset++;
553 >        }
554 >          
555 >      }
556  
557 < void SimSetup::makeAtoms( void ){
557 >      // After this is all set up, scan through the atoms to
558 >      // see if they can be added to the integrableObjects:
559  
560 <  int i, j, k, index;
561 <  double ux, uy, uz, uSqr, u;
678 <  AtomStamp* current_atom;
560 >      molInfo.myIntegrableObjects.clear();
561 >      
562  
563 <  DirectionalAtom* dAtom;
681 <  int molIndex, molStart, molEnd, nMemb, lMolIndex;
563 >      for (j = 0; j < molInfo.nAtoms; j++){
564  
683  lMolIndex = 0;
684  molIndex = 0;
685  index = 0;
686  for( i=0; i<n_components; i++ ){
687
688    for( j=0; j<components_nmol[i]; j++ ){
689
565   #ifdef IS_MPI
566 <      if( mpiSim->getMyMolStart() <= molIndex &&
567 <          molIndex <= mpiSim->getMyMolEnd() ){
568 < #endif // is_mpi        
569 <
695 <        molStart = index;
696 <        nMemb = comp_stamps[i]->getNAtoms();
697 <        for( k=0; k<comp_stamps[i]->getNAtoms(); k++ ){
698 <          
699 <          current_atom = comp_stamps[i]->getAtom( k );
700 <          if( current_atom->haveOrientation() ){
701 <            
702 <            dAtom = new DirectionalAtom(index);
703 <            simnfo->n_oriented++;
704 <            the_atoms[index] = dAtom;
705 <            
706 <            ux = current_atom->getOrntX();
707 <            uy = current_atom->getOrntY();
708 <            uz = current_atom->getOrntZ();
709 <            
710 <            uSqr = (ux * ux) + (uy * uy) + (uz * uz);
711 <            
712 <            u = sqrt( uSqr );
713 <            ux = ux / u;
714 <            uy = uy / u;
715 <            uz = uz / u;
716 <            
717 <            dAtom->setSUx( ux );
718 <            dAtom->setSUy( uy );
719 <            dAtom->setSUz( uz );
720 <          }
721 <          else{
722 <            the_atoms[index] = new GeneralAtom(index);
723 <          }
724 <          the_atoms[index]->setType( current_atom->getType() );
725 <          the_atoms[index]->setIndex( index );
726 <          
727 <          // increment the index and repeat;
728 <          index++;
729 <        }
730 <        
731 <        molEnd = index -1;
732 <        the_molecules[lMolIndex].setNMembers( nMemb );
733 <        the_molecules[lMolIndex].setStartAtom( molStart );
734 <        the_molecules[lMolIndex].setEndAtom( molEnd );
735 <        the_molecules[lMolIndex].setStampID( i );
736 <        lMolIndex++;
737 <
738 < #ifdef IS_MPI
739 <      }
740 < #endif //is_mpi
741 <      
742 <      molIndex++;
743 <    }
744 <  }
745 <
746 < #ifdef IS_MPI
747 <    for( i=0; i<mpiSim->getMyNlocal(); i++ ) the_atoms[i]->setGlobalIndex( globalIndex[i] );
748 <    
749 <    delete[] globalIndex;
566 >        slJ = molInfo.myAtoms[j]->getGlobalIndex();
567 > #else
568 >        slJ = j+atomOffset;
569 > #endif
570  
571 <    mpiSim->mpiRefresh();
752 < #endif //IS_MPI
753 <          
754 <  the_ff->initializeAtoms();
755 < }
571 >        // if they aren't on the skip list, then they can be integrated
572  
573 < void SimSetup::makeBonds( void ){
573 >        if (skipList.find(slJ) == skipList.end()) {
574 >          mySD = (StuntDouble *) molInfo.myAtoms[j];
575 >          info[k].integrableObjects.push_back(mySD);
576 >          molInfo.myIntegrableObjects.push_back(mySD);
577 >        }
578 >      }
579  
580 <  int i, j, k, index, offset, molIndex, exI, exJ, tempEx;
760 <  bond_pair* the_bonds;
761 <  BondStamp* current_bond;
580 >      // all rigid bodies are integrated:
581  
582 <  the_bonds = new bond_pair[tot_bonds];
583 <  index = 0;
584 <  offset = 0;
585 <  molIndex = 0;
582 >      for (j = 0; j < molInfo.nRigidBodies; j++) {
583 >        mySD = (StuntDouble *) molInfo.myRigidBodies[j];
584 >        info[k].integrableObjects.push_back(mySD);      
585 >        molInfo.myIntegrableObjects.push_back(mySD);
586 >      }
587  
768  for( i=0; i<n_components; i++ ){
588  
589 <    for( j=0; j<components_nmol[i]; j++ ){
589 >    /*
590  
591 < #ifdef IS_MPI
592 <      if( mpiSim->getMyMolStart() <= molIndex &&
593 <          molIndex <= mpiSim->getMyMolEnd() ){
594 < #endif // is_mpi        
776 <        
777 <        for( k=0; k<comp_stamps[i]->getNBonds(); k++ ){
778 <          
779 <          current_bond = comp_stamps[i]->getBond( k );
780 <          the_bonds[index].a = current_bond->getA() + offset;
781 <          the_bonds[index].b = current_bond->getB() + offset;
591 >      //creat ConstraintPair.
592 >      molInfo.myConstraintPair.clear();
593 >      
594 >      for (j = 0; j < molInfo.nBonds; j++){
595  
596 <          exI = the_bonds[index].a;
597 <          exJ = the_bonds[index].b;
596 >        //if both atoms are in the same rigid body, just skip it
597 >        currentBond = comp_stamps[stampID]->getBond(j);
598 >        if(!comp_stamps[stampID]->isBondInSameRigidBody(currentBond)){
599  
600 <          // exclude_I must always be the smaller of the pair
601 <          if( exI > exJ ){
602 <            tempEx = exI;
603 <            exI = exJ;
604 <            exJ = tempEx;
791 <          }
600 >          tempI = currentBond->getA() + atomOffset;
601 >          if( comp_stamps[stampID]->isAtomInRigidBody(currentBond->getA(), whichRigidBody, consAtomIndex))
602 >            consElement1 = new ConstraintRigidBody(molInfo.myRigidBodies[whichRigidBody], consAtomIndex);
603 >          else
604 >             consElement1 = new ConstraintAtom(info[k].atoms[tempI]);      
605  
606 <          
607 < #ifdef IS_MPI
606 >          tempJ =  currentBond->getB() + atomOffset;
607 >          if(comp_stamps[stampID]->isAtomInRigidBody(currentBond->getB(), whichRigidBody, consAtomIndex))
608 >            consElement2 = new ConstraintRigidBody(molInfo.myRigidBodies[whichRigidBody], consAtomIndex);
609 >          else
610 >             consElement2 = new ConstraintAtom(info[k].atoms[tempJ]);    
611  
612 <          the_excludes[index*2] =    
613 <            the_atoms[exI]->getGlobalIndex() + 1;
614 <          the_excludes[index*2 + 1] =
615 <            the_atoms[exJ]->getGlobalIndex() + 1;
800 <
801 < #else  // isn't MPI
802 <          
803 <          the_excludes[index*2] =     exI + 1;
804 <          the_excludes[index*2 + 1] = exJ + 1;
805 <          // fortran index from 1 (hence the +1 in the indexing)
806 < #endif  //is_mpi
807 <          
808 <          // increment the index and repeat;
809 <          index++;
810 <        }
811 <        offset += comp_stamps[i]->getNAtoms();
812 <        
813 < #ifdef IS_MPI
814 <      }
815 < #endif //is_mpi
612 >          consPair = new DistanceConstraintPair(consElement1, consElement2);
613 >          molInfo.myConstraintPairs.push_back(consPair);
614 >        }
615 >      }  
616        
617 <      molIndex++;
618 <    }      
619 <  }
617 >      //loop over rigid bodies, if two rigid bodies share same joint, creat a HingeConstraintPair
618 >      for (int rb1 = 0; rb1 < molInfo.nRigidBodies -1 ; rb1++){
619 >        for (int rb2 = rb1 + 1; rb2 < molInfo.nRigidBodies ; rb2++){
620 >          
621 >          jointAtoms = comp_stamps[stampID]->getJointAtoms(rb1, rb2);
622  
623 <  the_ff->initializeBonds( the_bonds );
624 < }
623 >          for(size_t m = 0; m < jointAtoms.size(); m++){          
624 >            consElement1 = new ConstraintRigidBody(molInfo.myRigidBodies[rb1], jointAtoms[m].first);
625 >            consElement2 = new ConstraintRigidBody(molInfo.myRigidBodies[rb2], jointAtoms[m].second);
626  
627 < void SimSetup::makeBends( void ){
627 >            consPair = new JointConstraintPair(consElement1, consElement2);  
628 >            molInfo.myConstraintPairs.push_back(consPair);            
629 >          }
630  
631 <  int i, j, k, index, offset, molIndex, exI, exJ, tempEx;
632 <  bend_set* the_bends;
633 <  BendStamp* current_bend;
634 <  LinkedAssign* extras;
635 <  LinkedAssign* current_extra;
636 <  
631 >        }
632 >      }
633 >      
634 > */      
635 >      // send the arrays off to the forceField for init.
636 >      
637 >      the_ff->initializeAtoms(molInfo.nAtoms, molInfo.myAtoms);
638 >      the_ff->initializeBonds(molInfo.nBonds, molInfo.myBonds, theBonds);
639 >      the_ff->initializeBends(molInfo.nBends, molInfo.myBends, theBends);
640 >      the_ff->initializeTorsions(molInfo.nTorsions, molInfo.myTorsions,
641 >                                 theTorsions);
642  
643 <  the_bends = new bend_set[tot_bends];
834 <  index = 0;
835 <  offset = 0;
836 <  molIndex = 0;
837 <  for( i=0; i<n_components; i++ ){
643 >      info[k].molecules[i].initialize(molInfo);
644  
839    for( j=0; j<components_nmol[i]; j++ ){
645  
646 < #ifdef IS_MPI
647 <      if( mpiSim->getMyMolStart() <= molIndex &&
648 <          molIndex <= mpiSim->getMyMolEnd() ){
649 < #endif // is_mpi        
650 <
846 <        for( k=0; k<comp_stamps[i]->getNBends(); k++ ){
847 <          
848 <          current_bend = comp_stamps[i]->getBend( k );
849 <          the_bends[index].a = current_bend->getA() + offset;
850 <          the_bends[index].b = current_bend->getB() + offset;
851 <          the_bends[index].c = current_bend->getC() + offset;
852 <          
853 <          if( current_bend->haveExtras() ){
854 <            
855 <            extras = current_bend->getExtras();
856 <            current_extra = extras;
857 <            
858 <            while( current_extra != NULL ){
859 <              if( !strcmp( current_extra->getlhs(), "ghostVectorSource" )){
860 <                
861 <                switch( current_extra->getType() ){
862 <                  
863 <                case 0:
864 <                  the_bends[index].ghost =
865 <                    current_extra->getInt() + offset;
866 <                  the_bends[index].isGhost = 1;
867 <                  break;
868 <                  
869 <                case 1:
870 <                  the_bends[index].ghost =
871 <                    (int)current_extra->getDouble() + offset;
872 <                  the_bends[index].isGhost = 1;
873 <                  break;
874 <                  
875 <                default:
876 <                  sprintf( painCave.errMsg,
877 <                           "SimSetup Error: ghostVectorSource was neiter a "
878 <                           "double nor an int.\n"
879 <                           "-->Bend[%d] in %s\n",
880 <                           k, comp_stamps[i]->getID() );
881 <                  painCave.isFatal = 1;
882 <                  simError();
883 <                }
884 <              }
885 <              
886 <              else{
887 <                
888 <                sprintf( painCave.errMsg,
889 <                         "SimSetup Error: unhandled bend assignment:\n"
890 <                         "    -->%s in Bend[%d] in %s\n",
891 <                         current_extra->getlhs(),
892 <                         k, comp_stamps[i]->getID() );
893 <                painCave.isFatal = 1;
894 <                simError();
895 <              }
896 <              
897 <              current_extra = current_extra->getNext();
898 <            }
899 <          }
900 <          
901 <          if( !the_bends[index].isGhost ){
902 <            
903 <            exI = the_bends[index].a;
904 <            exJ = the_bends[index].c;
905 <          }
906 <          else{
907 <            
908 <            exI = the_bends[index].a;
909 <            exJ = the_bends[index].b;
910 <          }
911 <          
912 <          // exclude_I must always be the smaller of the pair
913 <          if( exI > exJ ){
914 <            tempEx = exI;
915 <            exI = exJ;
916 <            exJ = tempEx;
917 <          }
918 <
919 <
920 < #ifdef IS_MPI
921 <
922 <          the_excludes[(index + tot_bonds)*2] =    
923 <            the_atoms[exI]->getGlobalIndex() + 1;
924 <          the_excludes[(index + tot_bonds)*2 + 1] =
925 <            the_atoms[exJ]->getGlobalIndex() + 1;
926 <          
927 < #else  // isn't MPI
928 <          
929 <          the_excludes[(index + tot_bonds)*2] =     exI + 1;
930 <          the_excludes[(index + tot_bonds)*2 + 1] = exJ + 1;
931 <          // fortran index from 1 (hence the +1 in the indexing)
932 < #endif  //is_mpi
933 <          
934 <          
935 <          // increment the index and repeat;
936 <          index++;
937 <        }
938 <        offset += comp_stamps[i]->getNAtoms();
939 <        
940 < #ifdef IS_MPI
941 <      }
942 < #endif //is_mpi
943 <
944 <      molIndex++;
945 <    }
646 >      atomOffset += molInfo.nAtoms;
647 >      delete[] theBonds;
648 >      delete[] theBends;
649 >      delete[] theTorsions;
650 >    }    
651    }
652  
653   #ifdef IS_MPI
654 <  sprintf( checkPointMsg,
950 <           "Successfully created the bends list.\n" );
654 >  sprintf(checkPointMsg, "all molecules initialized succesfully");
655    MPIcheckPoint();
656   #endif // is_mpi
953  
657  
955  the_ff->initializeBends( the_bends );
658   }
659  
660 < void SimSetup::makeTorsions( void ){
959 <
960 <  int i, j, k, index, offset, molIndex, exI, exJ, tempEx;
961 <  torsion_set* the_torsions;
962 <  TorsionStamp* current_torsion;
963 <
964 <  the_torsions = new torsion_set[tot_torsions];
965 <  index = 0;
966 <  offset = 0;
967 <  molIndex = 0;
968 <  for( i=0; i<n_components; i++ ){
969 <
970 <    for( j=0; j<components_nmol[i]; j++ ){
971 <
972 < #ifdef IS_MPI
973 <      if( mpiSim->getMyMolStart() <= molIndex &&
974 <          molIndex <= mpiSim->getMyMolEnd() ){
975 < #endif // is_mpi        
976 <
977 <      for( k=0; k<comp_stamps[i]->getNTorsions(); k++ ){
978 <
979 <        current_torsion = comp_stamps[i]->getTorsion( k );
980 <        the_torsions[index].a = current_torsion->getA() + offset;
981 <        the_torsions[index].b = current_torsion->getB() + offset;
982 <        the_torsions[index].c = current_torsion->getC() + offset;
983 <        the_torsions[index].d = current_torsion->getD() + offset;
984 <
985 <        exI = the_torsions[index].a;
986 <        exJ = the_torsions[index].d;
987 <
988 <        
989 <        // exclude_I must always be the smaller of the pair
990 <        if( exI > exJ ){
991 <          tempEx = exI;
992 <          exI = exJ;
993 <          exJ = tempEx;
994 <        }
995 <
996 <
997 < #ifdef IS_MPI
998 <        
999 <        the_excludes[(index + tot_bonds + tot_bends)*2] =    
1000 <          the_atoms[exI]->getGlobalIndex() + 1;
1001 <        the_excludes[(index + tot_bonds + tot_bends)*2 + 1] =
1002 <          the_atoms[exJ]->getGlobalIndex() + 1;
1003 <        
1004 < #else  // isn't MPI
1005 <        
1006 <        the_excludes[(index + tot_bonds + tot_bends)*2] =     exI + 1;
1007 <        the_excludes[(index + tot_bonds + tot_bends)*2 + 1] = exJ + 1;
1008 <        // fortran indexes from 1 (hence the +1 in the indexing)
1009 < #endif  //is_mpi
1010 <        
1011 <
1012 <        // increment the index and repeat;
1013 <        index++;
1014 <      }
1015 <      offset += comp_stamps[i]->getNAtoms();
1016 <
1017 < #ifdef IS_MPI
1018 <      }
1019 < #endif //is_mpi      
1020 <
1021 <      molIndex++;
1022 <    }
1023 <  }
1024 <
1025 <  the_ff->initializeTorsions( the_torsions );
1026 < }
1027 <
1028 < void SimSetup::initFromBass( void ){
1029 <
660 > void SimSetup::initFromBass(void){
661    int i, j, k;
662    int n_cells;
663    double cellx, celly, cellz;
# Line 1035 | Line 666 | void SimSetup::initFromBass( void ){
666    int n_extra;
667    int have_extra, done;
668  
669 <  temp1 = (double)tot_nmol / 4.0;
670 <  temp2 = pow( temp1, ( 1.0 / 3.0 ) );
671 <  temp3 = ceil( temp2 );
669 >  double vel[3];
670 >  vel[0] = 0.0;
671 >  vel[1] = 0.0;
672 >  vel[2] = 0.0;
673  
674 <  have_extra =0;
675 <  if( temp2 < temp3 ){ // we have a non-complete lattice
676 <    have_extra =1;
674 >  temp1 = (double) tot_nmol / 4.0;
675 >  temp2 = pow(temp1, (1.0 / 3.0));
676 >  temp3 = ceil(temp2);
677  
678 <    n_cells = (int)temp3 - 1;
679 <    cellx = simnfo->box_x / temp3;
680 <    celly = simnfo->box_y / temp3;
681 <    cellz = simnfo->box_z / temp3;
1050 <    n_extra = tot_nmol - ( 4 * n_cells * n_cells * n_cells );
1051 <    temp1 = ((double)n_extra) / ( pow( temp3, 3.0 ) - pow( n_cells, 3.0 ) );
1052 <    n_per_extra = (int)ceil( temp1 );
678 >  have_extra = 0;
679 >  if (temp2 < temp3){
680 >    // we have a non-complete lattice
681 >    have_extra = 1;
682  
683 <    if( n_per_extra > 4){
684 <      sprintf( painCave.errMsg,
685 <               "SimSetup error. There has been an error in constructing"
686 <               " the non-complete lattice.\n" );
683 >    n_cells = (int) temp3 - 1;
684 >    cellx = info[0].boxL[0] / temp3;
685 >    celly = info[0].boxL[1] / temp3;
686 >    cellz = info[0].boxL[2] / temp3;
687 >    n_extra = tot_nmol - (4 * n_cells * n_cells * n_cells);
688 >    temp1 = ((double) n_extra) / (pow(temp3, 3.0) - pow(n_cells, 3.0));
689 >    n_per_extra = (int) ceil(temp1);
690 >
691 >    if (n_per_extra > 4){
692 >      sprintf(painCave.errMsg,
693 >              "SimSetup error. There has been an error in constructing"
694 >              " the non-complete lattice.\n");
695        painCave.isFatal = 1;
696        simError();
697      }
698    }
699    else{
700 <    n_cells = (int)temp3;
701 <    cellx = simnfo->box_x / temp3;
702 <    celly = simnfo->box_y / temp3;
703 <    cellz = simnfo->box_z / temp3;
700 >    n_cells = (int) temp3;
701 >    cellx = info[0].boxL[0] / temp3;
702 >    celly = info[0].boxL[1] / temp3;
703 >    cellz = info[0].boxL[2] / temp3;
704    }
705  
706    current_mol = 0;
# Line 1071 | Line 708 | void SimSetup::initFromBass( void ){
708    current_comp = 0;
709    current_atom_ndx = 0;
710  
711 <  for( i=0; i < n_cells ; i++ ){
712 <    for( j=0; j < n_cells; j++ ){
713 <      for( k=0; k < n_cells; k++ ){
711 >  for (i = 0; i < n_cells ; i++){
712 >    for (j = 0; j < n_cells; j++){
713 >      for (k = 0; k < n_cells; k++){
714 >        makeElement(i * cellx, j * celly, k * cellz);
715  
716 <        makeElement( i * cellx,
1079 <                     j * celly,
1080 <                     k * cellz );
716 >        makeElement(i * cellx + 0.5 * cellx, j * celly + 0.5 * celly, k * cellz);
717  
718 <        makeElement( i * cellx + 0.5 * cellx,
1083 <                     j * celly + 0.5 * celly,
1084 <                     k * cellz );
718 >        makeElement(i * cellx, j * celly + 0.5 * celly, k * cellz + 0.5 * cellz);
719  
720 <        makeElement( i * cellx,
1087 <                     j * celly + 0.5 * celly,
1088 <                     k * cellz + 0.5 * cellz );
1089 <
1090 <        makeElement( i * cellx + 0.5 * cellx,
1091 <                     j * celly,
1092 <                     k * cellz + 0.5 * cellz );
720 >        makeElement(i * cellx + 0.5 * cellx, j * celly, k * cellz + 0.5 * cellz);
721        }
722      }
723    }
724  
725 <  if( have_extra ){
725 >  if (have_extra){
726      done = 0;
727  
728      int start_ndx;
729 <    for( i=0; i < (n_cells+1) && !done; i++ ){
730 <      for( j=0; j < (n_cells+1) && !done; j++ ){
729 >    for (i = 0; i < (n_cells + 1) && !done; i++){
730 >      for (j = 0; j < (n_cells + 1) && !done; j++){
731 >        if (i < n_cells){
732 >          if (j < n_cells){
733 >            start_ndx = n_cells;
734 >          }
735 >          else
736 >            start_ndx = 0;
737 >        }
738 >        else
739 >          start_ndx = 0;
740  
741 <        if( i < n_cells ){
741 >        for (k = start_ndx; k < (n_cells + 1) && !done; k++){
742 >          makeElement(i * cellx, j * celly, k * cellz);
743 >          done = (current_mol >= tot_nmol);
744  
745 <          if( j < n_cells ){
746 <            start_ndx = n_cells;
747 <          }
748 <          else start_ndx = 0;
749 <        }
1111 <        else start_ndx = 0;
745 >          if (!done && n_per_extra > 1){
746 >            makeElement(i * cellx + 0.5 * cellx, j * celly + 0.5 * celly,
747 >                        k * cellz);
748 >            done = (current_mol >= tot_nmol);
749 >          }
750  
751 <        for( k=start_ndx; k < (n_cells+1) && !done; k++ ){
751 >          if (!done && n_per_extra > 2){
752 >            makeElement(i * cellx, j * celly + 0.5 * celly,
753 >                        k * cellz + 0.5 * cellz);
754 >            done = (current_mol >= tot_nmol);
755 >          }
756  
757 <          makeElement( i * cellx,
758 <                       j * celly,
759 <                       k * cellz );
760 <          done = ( current_mol >= tot_nmol );
761 <
762 <          if( !done && n_per_extra > 1 ){
1121 <            makeElement( i * cellx + 0.5 * cellx,
1122 <                         j * celly + 0.5 * celly,
1123 <                         k * cellz );
1124 <            done = ( current_mol >= tot_nmol );
1125 <          }
1126 <
1127 <          if( !done && n_per_extra > 2){
1128 <            makeElement( i * cellx,
1129 <                         j * celly + 0.5 * celly,
1130 <                         k * cellz + 0.5 * cellz );
1131 <            done = ( current_mol >= tot_nmol );
1132 <          }
1133 <
1134 <          if( !done && n_per_extra > 3){
1135 <            makeElement( i * cellx + 0.5 * cellx,
1136 <                         j * celly,
1137 <                         k * cellz + 0.5 * cellz );
1138 <            done = ( current_mol >= tot_nmol );
1139 <          }
1140 <        }
757 >          if (!done && n_per_extra > 3){
758 >            makeElement(i * cellx + 0.5 * cellx, j * celly,
759 >                        k * cellz + 0.5 * cellz);
760 >            done = (current_mol >= tot_nmol);
761 >          }
762 >        }
763        }
764      }
765    }
766  
767 <
768 <  for( i=0; i<simnfo->n_atoms; i++ ){
1147 <    simnfo->atoms[i]->set_vx( 0.0 );
1148 <    simnfo->atoms[i]->set_vy( 0.0 );
1149 <    simnfo->atoms[i]->set_vz( 0.0 );
767 >  for (i = 0; i < info[0].n_atoms; i++){
768 >    info[0].atoms[i]->setVel(vel);
769    }
770   }
771  
772 < void SimSetup::makeElement( double x, double y, double z ){
1154 <
772 > void SimSetup::makeElement(double x, double y, double z){
773    int k;
774    AtomStamp* current_atom;
775    DirectionalAtom* dAtom;
776    double rotMat[3][3];
777 +  double pos[3];
778  
779 <  for( k=0; k<comp_stamps[current_comp]->getNAtoms(); k++ ){
780 <
781 <    current_atom = comp_stamps[current_comp]->getAtom( k );
782 <    if( !current_atom->havePosition() ){
783 <      sprintf( painCave.errMsg,
784 <               "SimSetup:initFromBass error.\n"
785 <               "\tComponent %s, atom %s does not have a position specified.\n"
786 <               "\tThe initialization routine is unable to give a start"
787 <               " position.\n",
1169 <               comp_stamps[current_comp]->getID(),
1170 <               current_atom->getType() );
779 >  for (k = 0; k < comp_stamps[current_comp]->getNAtoms(); k++){
780 >    current_atom = comp_stamps[current_comp]->getAtom(k);
781 >    if (!current_atom->havePosition()){
782 >      sprintf(painCave.errMsg,
783 >              "SimSetup:initFromBass error.\n"
784 >              "\tComponent %s, atom %s does not have a position specified.\n"
785 >              "\tThe initialization routine is unable to give a start"
786 >              " position.\n",
787 >              comp_stamps[current_comp]->getID(), current_atom->getType());
788        painCave.isFatal = 1;
789        simError();
790      }
791  
792 <    the_atoms[current_atom_ndx]->setX( x + current_atom->getPosX() );
793 <    the_atoms[current_atom_ndx]->setY( y + current_atom->getPosY() );
794 <    the_atoms[current_atom_ndx]->setZ( z + current_atom->getPosZ() );
792 >    pos[0] = x + current_atom->getPosX();
793 >    pos[1] = y + current_atom->getPosY();
794 >    pos[2] = z + current_atom->getPosZ();
795  
796 <    if( the_atoms[current_atom_ndx]->isDirectional() ){
796 >    info[0].atoms[current_atom_ndx]->setPos(pos);
797  
798 <      dAtom = (DirectionalAtom *)the_atoms[current_atom_ndx];
798 >    if (info[0].atoms[current_atom_ndx]->isDirectional()){
799 >      dAtom = (DirectionalAtom *) info[0].atoms[current_atom_ndx];
800  
801        rotMat[0][0] = 1.0;
802        rotMat[0][1] = 0.0;
# Line 1192 | Line 810 | void SimSetup::makeElement( double x, double y, double
810        rotMat[2][1] = 0.0;
811        rotMat[2][2] = 1.0;
812  
813 <      dAtom->setA( rotMat );
813 >      dAtom->setA(rotMat);
814      }
815  
816      current_atom_ndx++;
# Line 1201 | Line 819 | void SimSetup::makeElement( double x, double y, double
819    current_mol++;
820    current_comp_mol++;
821  
822 <  if( current_comp_mol >= components_nmol[current_comp] ){
1205 <
822 >  if (current_comp_mol >= components_nmol[current_comp]){
823      current_comp_mol = 0;
824      current_comp++;
825    }
826   }
827 +
828 +
829 + void SimSetup::gatherInfo(void){
830 +  int i;
831 +
832 +  ensembleCase = -1;
833 +  ffCase = -1;
834 +
835 +  // set the easy ones first
836 +
837 +  for (i = 0; i < nInfo; i++){
838 +    info[i].target_temp = globals->getTargetTemp();
839 +    info[i].dt = globals->getDt();
840 +    info[i].run_time = globals->getRunTime();
841 +  }
842 +  n_components = globals->getNComponents();
843 +
844 +
845 +  // get the forceField
846 +
847 +  strcpy(force_field, globals->getForceField());
848 +
849 +  if (!strcasecmp(force_field, "DUFF")){
850 +    ffCase = FF_DUFF;
851 +  }
852 +  else if (!strcasecmp(force_field, "LJ")){
853 +    ffCase = FF_LJ;
854 +  }
855 +  else if (!strcasecmp(force_field, "EAM")){
856 +    ffCase = FF_EAM;
857 +  }
858 +  else if (!strcasecmp(force_field, "WATER")){
859 +    ffCase = FF_H2O;
860 +  }
861 +  else{
862 +    sprintf(painCave.errMsg, "SimSetup Error. Unrecognized force field -> %s\n",
863 +            force_field);
864 +         painCave.isFatal = 1;
865 +         simError();
866 +  }
867 +
868 +    // get the ensemble
869 +
870 +  strcpy(ensemble, globals->getEnsemble());
871 +
872 +  if (!strcasecmp(ensemble, "NVE")){
873 +    ensembleCase = NVE_ENS;
874 +  }
875 +  else if (!strcasecmp(ensemble, "NVT")){
876 +    ensembleCase = NVT_ENS;
877 +  }
878 +  else if (!strcasecmp(ensemble, "NPTi") || !strcasecmp(ensemble, "NPT")){
879 +    ensembleCase = NPTi_ENS;
880 +  }
881 +  else if (!strcasecmp(ensemble, "NPTf")){
882 +    ensembleCase = NPTf_ENS;
883 +  }
884 +  else if (!strcasecmp(ensemble, "NPTxyz")){
885 +    ensembleCase = NPTxyz_ENS;
886 +  }
887 +  else{
888 +    sprintf(painCave.errMsg,
889 +            "SimSetup Warning. Unrecognized Ensemble -> %s \n"
890 +            "\treverting to NVE for this simulation.\n",
891 +            ensemble);
892 +         painCave.isFatal = 0;
893 +         simError();
894 +         strcpy(ensemble, "NVE");
895 +         ensembleCase = NVE_ENS;
896 +  }  
897 +
898 +  for (i = 0; i < nInfo; i++){
899 +    strcpy(info[i].ensemble, ensemble);
900 +
901 +    // get the mixing rule
902 +
903 +    strcpy(info[i].mixingRule, globals->getMixingRule());
904 +    info[i].usePBC = globals->getPBC();
905 +  }
906 +
907 +  // get the components and calculate the tot_nMol and indvidual n_mol
908 +
909 +  the_components = globals->getComponents();
910 +  components_nmol = new int[n_components];
911 +
912 +
913 +  if (!globals->haveNMol()){
914 +    // we don't have the total number of molecules, so we assume it is
915 +    // given in each component
916 +
917 +    tot_nmol = 0;
918 +    for (i = 0; i < n_components; i++){
919 +      if (!the_components[i]->haveNMol()){
920 +        // we have a problem
921 +        sprintf(painCave.errMsg,
922 +                "SimSetup Error. No global NMol or component NMol given.\n"
923 +                "\tCannot calculate the number of atoms.\n");
924 +        painCave.isFatal = 1;
925 +        simError();
926 +      }
927 +
928 +      tot_nmol += the_components[i]->getNMol();
929 +      components_nmol[i] = the_components[i]->getNMol();
930 +    }
931 +  }
932 +  else{
933 +    sprintf(painCave.errMsg,
934 +            "SimSetup error.\n"
935 +            "\tSorry, the ability to specify total"
936 +            " nMols and then give molfractions in the components\n"
937 +            "\tis not currently supported."
938 +            " Please give nMol in the components.\n");
939 +    painCave.isFatal = 1;
940 +    simError();
941 +  }
942 +
943 +  //check whether sample time, status time, thermal time and reset time are divisble by dt
944 +  if (globals->haveSampleTime() && !isDivisible(globals->getSampleTime(), globals->getDt())){
945 +    sprintf(painCave.errMsg,
946 +            "Sample time is not divisible by dt.\n"
947 +            "\tThis will result in samples that are not uniformly\n"
948 +            "\tdistributed in time.  If this is a problem, change\n"
949 +            "\tyour sampleTime variable.\n");
950 +    painCave.isFatal = 0;
951 +    simError();    
952 +  }
953 +
954 +  if (globals->haveStatusTime() && !isDivisible(globals->getStatusTime(), globals->getDt())){
955 +    sprintf(painCave.errMsg,
956 +            "Status time is not divisible by dt.\n"
957 +            "\tThis will result in status reports that are not uniformly\n"
958 +            "\tdistributed in time.  If this is a problem, change \n"
959 +            "\tyour statusTime variable.\n");
960 +    painCave.isFatal = 0;
961 +    simError();    
962 +  }
963 +
964 +  if (globals->haveThermalTime() && !isDivisible(globals->getThermalTime(), globals->getDt())){
965 +    sprintf(painCave.errMsg,
966 +            "Thermal time is not divisible by dt.\n"
967 +            "\tThis will result in thermalizations that are not uniformly\n"
968 +            "\tdistributed in time.  If this is a problem, change \n"
969 +            "\tyour thermalTime variable.\n");
970 +    painCave.isFatal = 0;
971 +    simError();    
972 +  }  
973 +
974 +  if (globals->haveResetTime() && !isDivisible(globals->getResetTime(), globals->getDt())){
975 +    sprintf(painCave.errMsg,
976 +            "Reset time is not divisible by dt.\n"
977 +            "\tThis will result in integrator resets that are not uniformly\n"
978 +            "\tdistributed in time.  If this is a problem, change\n"
979 +            "\tyour resetTime variable.\n");
980 +    painCave.isFatal = 0;
981 +    simError();    
982 +  }
983 +
984 +  // set the status, sample, and thermal kick times
985 +
986 +  for (i = 0; i < nInfo; i++){
987 +    if (globals->haveSampleTime()){
988 +      info[i].sampleTime = globals->getSampleTime();
989 +      info[i].statusTime = info[i].sampleTime;
990 +    }
991 +    else{
992 +      info[i].sampleTime = globals->getRunTime();
993 +      info[i].statusTime = info[i].sampleTime;
994 +    }
995 +
996 +    if (globals->haveStatusTime()){
997 +      info[i].statusTime = globals->getStatusTime();
998 +    }
999 +
1000 +    if (globals->haveThermalTime()){
1001 +      info[i].thermalTime = globals->getThermalTime();
1002 +    } else {
1003 +      info[i].thermalTime = globals->getRunTime();
1004 +    }
1005 +
1006 +    info[i].resetIntegrator = 0;
1007 +    if( globals->haveResetTime() ){
1008 +      info[i].resetTime = globals->getResetTime();
1009 +      info[i].resetIntegrator = 1;
1010 +    }
1011 +
1012 +    // check for the temperature set flag
1013 +    
1014 +    if (globals->haveTempSet())
1015 +      info[i].setTemp = globals->getTempSet();
1016 +
1017 +    // check for the extended State init
1018 +
1019 +    info[i].useInitXSstate = globals->getUseInitXSstate();
1020 +    info[i].orthoTolerance = globals->getOrthoBoxTolerance();
1021 +
1022 +    // check for thermodynamic integration
1023 +    if (globals->getUseSolidThermInt() && !globals->getUseLiquidThermInt()) {
1024 +      if (globals->haveThermIntLambda() && globals->haveThermIntK()) {
1025 +        info[i].useSolidThermInt = globals->getUseSolidThermInt();
1026 +        info[i].thermIntLambda = globals->getThermIntLambda();
1027 +        info[i].thermIntK = globals->getThermIntK();
1028 +        
1029 +        Restraints *myRestraint = new Restraints(tot_nmol, info[i].thermIntLambda, info[i].thermIntK);
1030 +        info[i].restraint = myRestraint;
1031 +      }
1032 +      else {
1033 +        sprintf(painCave.errMsg,
1034 +                "SimSetup Error:\n"
1035 +                "\tKeyword useSolidThermInt was set to 'true' but\n"
1036 +                "\tthermodynamicIntegrationLambda (and/or\n"
1037 +                "\tthermodynamicIntegrationK) was not specified.\n"
1038 +                "\tPlease provide a lambda value and k value in your .bass file.\n");
1039 +        painCave.isFatal = 1;
1040 +        simError();    
1041 +      }
1042 +    }
1043 +    else if(globals->getUseLiquidThermInt()) {
1044 +      if (globals->getUseSolidThermInt()) {
1045 +        sprintf( painCave.errMsg,
1046 +                 "SimSetup Warning: It appears that you have both solid and\n"
1047 +                 "\tliquid thermodynamic integration activated in your .bass\n"
1048 +                 "\tfile. To avoid confusion, specify only one technique in\n"
1049 +                 "\tyour .bass file. Liquid-state thermodynamic integration\n"
1050 +                 "\twill be assumed for the current simulation. If this is not\n"
1051 +                 "\twhat you desire, set useSolidThermInt to 'true' and\n"
1052 +                 "\tuseLiquidThermInt to 'false' in your .bass file.\n");
1053 +        painCave.isFatal = 0;
1054 +        simError();
1055 +      }
1056 +      if (globals->haveThermIntLambda() && globals->haveThermIntK()) {
1057 +        info[i].useLiquidThermInt = globals->getUseLiquidThermInt();
1058 +        info[i].thermIntLambda = globals->getThermIntLambda();
1059 +        info[i].thermIntK = globals->getThermIntK();
1060 +      }
1061 +      else {
1062 +        sprintf(painCave.errMsg,
1063 +                "SimSetup Error:\n"
1064 +                "\tKeyword useLiquidThermInt was set to 'true' but\n"
1065 +                "\tthermodynamicIntegrationLambda (and/or\n"
1066 +                "\tthermodynamicIntegrationK) was not specified.\n"
1067 +                "\tPlease provide a lambda value and k value in your .bass file.\n");
1068 +        painCave.isFatal = 1;
1069 +        simError();    
1070 +      }
1071 +    }
1072 +    else if(globals->haveThermIntLambda() || globals->haveThermIntK()){
1073 +        sprintf(painCave.errMsg,
1074 +                "SimSetup Warning: If you want to use Thermodynamic\n"
1075 +                "\tIntegration, set useSolidThermInt or useLiquidThermInt to\n"
1076 +                "\t'true' in your .bass file.  These keywords are set to\n"
1077 +                "\t'false' by default, so your lambda and/or k values are\n"
1078 +                "\tbeing ignored.\n");
1079 +        painCave.isFatal = 0;
1080 +        simError();  
1081 +    }
1082 +  }
1083 +  
1084 +  //setup seed for random number generator
1085 +  int seedValue;
1086 +
1087 +  if (globals->haveSeed()){
1088 +    seedValue = globals->getSeed();
1089 +
1090 +    if(seedValue / 1E9 == 0){
1091 +      sprintf(painCave.errMsg,
1092 +              "Seed for sprng library should contain at least 9 digits\n"
1093 +              "OOPSE will generate a seed for user\n");
1094 +      painCave.isFatal = 0;
1095 +      simError();
1096 +
1097 +      //using seed generated by system instead of invalid seed set by user
1098 + #ifndef IS_MPI
1099 +      seedValue = make_sprng_seed();
1100 + #else
1101 +      if (worldRank == 0){
1102 +        seedValue = make_sprng_seed();
1103 +      }
1104 +      MPI_Bcast(&seedValue, 1, MPI_INT, 0, MPI_COMM_WORLD);  
1105 + #endif      
1106 +    }
1107 +  }//end of if branch of globals->haveSeed()
1108 +  else{
1109 +    
1110 + #ifndef IS_MPI
1111 +    seedValue = make_sprng_seed();
1112 + #else
1113 +    if (worldRank == 0){
1114 +      seedValue = make_sprng_seed();
1115 +    }
1116 +    MPI_Bcast(&seedValue, 1, MPI_INT, 0, MPI_COMM_WORLD);  
1117 + #endif
1118 +  }//end of globals->haveSeed()
1119 +
1120 +  for (int i = 0; i < nInfo; i++){
1121 +    info[i].setSeed(seedValue);
1122 +  }
1123 +  
1124 + #ifdef IS_MPI
1125 +  strcpy(checkPointMsg, "Successfully gathered all information from Bass\n");
1126 +  MPIcheckPoint();
1127 + #endif // is_mpi
1128 + }
1129 +
1130 +
1131 + void SimSetup::finalInfoCheck(void){
1132 +  int index;
1133 +  int usesDipoles;
1134 +  int usesCharges;
1135 +  int i;
1136 +
1137 +  for (i = 0; i < nInfo; i++){
1138 +    // check electrostatic parameters
1139 +
1140 +    index = 0;
1141 +    usesDipoles = 0;
1142 +    while ((index < info[i].n_atoms) && !usesDipoles){
1143 +      usesDipoles = (info[i].atoms[index])->hasDipole();
1144 +      index++;
1145 +    }
1146 +    index = 0;
1147 +    usesCharges = 0;
1148 +    while ((index < info[i].n_atoms) && !usesCharges){
1149 +      usesCharges= (info[i].atoms[index])->hasCharge();
1150 +      index++;
1151 +    }
1152 + #ifdef IS_MPI
1153 +    int myUse = usesDipoles;
1154 +    MPI_Allreduce(&myUse, &usesDipoles, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
1155 + #endif //is_mpi
1156 +
1157 +    double theRcut, theRsw;
1158 +
1159 +    if (globals->haveRcut()) {
1160 +      theRcut = globals->getRcut();
1161 +
1162 +      if (globals->haveRsw())
1163 +        theRsw = globals->getRsw();
1164 +      else
1165 +        theRsw = theRcut;
1166 +      
1167 +      info[i].setDefaultRcut(theRcut, theRsw);
1168 +
1169 +    } else {
1170 +      
1171 +      the_ff->calcRcut();
1172 +      theRcut = info[i].getRcut();
1173 +
1174 +      if (globals->haveRsw())
1175 +        theRsw = globals->getRsw();
1176 +      else
1177 +        theRsw = theRcut;
1178 +      
1179 +      info[i].setDefaultRcut(theRcut, theRsw);
1180 +    }
1181 +
1182 +    if (globals->getUseRF()){
1183 +      info[i].useReactionField = 1;
1184 +      
1185 +      if (!globals->haveRcut()){
1186 +        sprintf(painCave.errMsg,
1187 +                "SimSetup Warning: No value was set for the cutoffRadius.\n"
1188 +                "\tOOPSE will use a default value of 15.0 angstroms"
1189 +                "\tfor the cutoffRadius.\n");
1190 +        painCave.isFatal = 0;
1191 +        simError();
1192 +        theRcut = 15.0;
1193 +      }
1194 +      else{
1195 +        theRcut = globals->getRcut();
1196 +      }
1197 +
1198 +      if (!globals->haveRsw()){
1199 +        sprintf(painCave.errMsg,
1200 +                "SimSetup Warning: No value was set for switchingRadius.\n"
1201 +                "\tOOPSE will use a default value of\n"
1202 +                "\t0.95 * cutoffRadius for the switchingRadius\n");
1203 +        painCave.isFatal = 0;
1204 +        simError();
1205 +        theRsw = 0.95 * theRcut;
1206 +      }
1207 +      else{
1208 +        theRsw = globals->getRsw();
1209 +      }
1210 +
1211 +      info[i].setDefaultRcut(theRcut, theRsw);
1212 +
1213 +      if (!globals->haveDielectric()){
1214 +        sprintf(painCave.errMsg,
1215 +                "SimSetup Error: No Dielectric constant was set.\n"
1216 +                "\tYou are trying to use Reaction Field without"
1217 +                "\tsetting a dielectric constant!\n");
1218 +        painCave.isFatal = 1;
1219 +        simError();
1220 +      }
1221 +      info[i].dielectric = globals->getDielectric();
1222 +    }
1223 +    else{
1224 +      if (usesDipoles || usesCharges){
1225 +
1226 +        if (!globals->haveRcut()){
1227 +          sprintf(painCave.errMsg,
1228 +                  "SimSetup Warning: No value was set for the cutoffRadius.\n"
1229 +                  "\tOOPSE will use a default value of 15.0 angstroms"
1230 +                  "\tfor the cutoffRadius.\n");
1231 +          painCave.isFatal = 0;
1232 +          simError();
1233 +          theRcut = 15.0;
1234 +      }
1235 +        else{
1236 +          theRcut = globals->getRcut();
1237 +        }
1238 +        
1239 +        if (!globals->haveRsw()){
1240 +          sprintf(painCave.errMsg,
1241 +                  "SimSetup Warning: No value was set for switchingRadius.\n"
1242 +                  "\tOOPSE will use a default value of\n"
1243 +                  "\t0.95 * cutoffRadius for the switchingRadius\n");
1244 +          painCave.isFatal = 0;
1245 +          simError();
1246 +          theRsw = 0.95 * theRcut;
1247 +        }
1248 +        else{
1249 +          theRsw = globals->getRsw();
1250 +        }
1251 +        
1252 +        info[i].setDefaultRcut(theRcut, theRsw);
1253 +        
1254 +      }
1255 +    }
1256 +  }
1257 + #ifdef IS_MPI
1258 +  strcpy(checkPointMsg, "post processing checks out");
1259 +  MPIcheckPoint();
1260 + #endif // is_mpi
1261 +
1262 +  // clean up the forcefield
1263 +  the_ff->cleanMe();
1264 + }
1265 +  
1266 + void SimSetup::initSystemCoords(void){
1267 +  int i;
1268 +
1269 +  char* inName;
1270 +
1271 +  (info[0].getConfiguration())->createArrays(info[0].n_atoms);
1272 +
1273 +  for (i = 0; i < info[0].n_atoms; i++)
1274 +    info[0].atoms[i]->setCoords();
1275 +
1276 +  if (globals->haveInitialConfig()){
1277 +    InitializeFromFile* fileInit;
1278 + #ifdef IS_MPI // is_mpi
1279 +    if (worldRank == 0){
1280 + #endif //is_mpi
1281 +      inName = globals->getInitialConfig();
1282 +      fileInit = new InitializeFromFile(inName);
1283 + #ifdef IS_MPI
1284 +    }
1285 +    else
1286 +      fileInit = new InitializeFromFile(NULL);
1287 + #endif
1288 +    fileInit->readInit(info); // default velocities on
1289 +
1290 +    delete fileInit;
1291 +  }
1292 +  else{
1293 +    
1294 +    // no init from bass
1295 +    
1296 +    sprintf(painCave.errMsg,
1297 +            "Cannot intialize a simulation without an initial configuration file.\n");
1298 +    painCave.isFatal = 1;;
1299 +    simError();
1300 +    
1301 +  }
1302 +
1303 + #ifdef IS_MPI
1304 +  strcpy(checkPointMsg, "Successfully read in the initial configuration");
1305 +  MPIcheckPoint();
1306 + #endif // is_mpi
1307 + }
1308 +
1309 +
1310 + void SimSetup::makeOutNames(void){
1311 +  int k;
1312 +
1313 +
1314 +  for (k = 0; k < nInfo; k++){
1315 + #ifdef IS_MPI
1316 +    if (worldRank == 0){
1317 + #endif // is_mpi
1318 +
1319 +      if (globals->haveFinalConfig()){
1320 +        strcpy(info[k].finalName, globals->getFinalConfig());
1321 +      }
1322 +      else{
1323 +        strcpy(info[k].finalName, inFileName);
1324 +        char* endTest;
1325 +        int nameLength = strlen(info[k].finalName);
1326 +        endTest = &(info[k].finalName[nameLength - 5]);
1327 +        if (!strcmp(endTest, ".bass")){
1328 +          strcpy(endTest, ".eor");
1329 +        }
1330 +        else if (!strcmp(endTest, ".BASS")){
1331 +          strcpy(endTest, ".eor");
1332 +        }
1333 +        else{
1334 +          endTest = &(info[k].finalName[nameLength - 4]);
1335 +          if (!strcmp(endTest, ".bss")){
1336 +            strcpy(endTest, ".eor");
1337 +          }
1338 +          else if (!strcmp(endTest, ".mdl")){
1339 +            strcpy(endTest, ".eor");
1340 +          }
1341 +          else{
1342 +            strcat(info[k].finalName, ".eor");
1343 +          }
1344 +        }
1345 +      }
1346 +
1347 +      // make the sample and status out names
1348 +
1349 +      strcpy(info[k].sampleName, inFileName);
1350 +      char* endTest;
1351 +      int nameLength = strlen(info[k].sampleName);
1352 +      endTest = &(info[k].sampleName[nameLength - 5]);
1353 +      if (!strcmp(endTest, ".bass")){
1354 +        strcpy(endTest, ".dump");
1355 +      }
1356 +      else if (!strcmp(endTest, ".BASS")){
1357 +        strcpy(endTest, ".dump");
1358 +      }
1359 +      else{
1360 +        endTest = &(info[k].sampleName[nameLength - 4]);
1361 +        if (!strcmp(endTest, ".bss")){
1362 +          strcpy(endTest, ".dump");
1363 +        }
1364 +        else if (!strcmp(endTest, ".mdl")){
1365 +          strcpy(endTest, ".dump");
1366 +        }
1367 +        else{
1368 +          strcat(info[k].sampleName, ".dump");
1369 +        }
1370 +      }
1371 +
1372 +      strcpy(info[k].statusName, inFileName);
1373 +      nameLength = strlen(info[k].statusName);
1374 +      endTest = &(info[k].statusName[nameLength - 5]);
1375 +      if (!strcmp(endTest, ".bass")){
1376 +        strcpy(endTest, ".stat");
1377 +      }
1378 +      else if (!strcmp(endTest, ".BASS")){
1379 +        strcpy(endTest, ".stat");
1380 +      }
1381 +      else{
1382 +        endTest = &(info[k].statusName[nameLength - 4]);
1383 +        if (!strcmp(endTest, ".bss")){
1384 +          strcpy(endTest, ".stat");
1385 +        }
1386 +        else if (!strcmp(endTest, ".mdl")){
1387 +          strcpy(endTest, ".stat");
1388 +        }
1389 +        else{
1390 +          strcat(info[k].statusName, ".stat");
1391 +        }
1392 +      }
1393 +
1394 +      strcpy(info[k].rawPotName, inFileName);
1395 +      nameLength = strlen(info[k].rawPotName);
1396 +      endTest = &(info[k].rawPotName[nameLength - 5]);
1397 +      if (!strcmp(endTest, ".bass")){
1398 +        strcpy(endTest, ".raw");
1399 +      }
1400 +      else if (!strcmp(endTest, ".BASS")){
1401 +        strcpy(endTest, ".raw");
1402 +      }
1403 +      else{
1404 +        endTest = &(info[k].rawPotName[nameLength - 4]);
1405 +        if (!strcmp(endTest, ".bss")){
1406 +          strcpy(endTest, ".raw");
1407 +        }
1408 +        else if (!strcmp(endTest, ".mdl")){
1409 +          strcpy(endTest, ".raw");
1410 +        }
1411 +        else{
1412 +          strcat(info[k].rawPotName, ".raw");
1413 +        }
1414 +      }
1415 +
1416 + #ifdef IS_MPI
1417 +
1418 +    }
1419 + #endif // is_mpi
1420 +  }
1421 + }
1422 +
1423 +
1424 + void SimSetup::sysObjectsCreation(void){
1425 +  int i, k;
1426 +
1427 +  // create the forceField
1428 +
1429 +  createFF();
1430 +
1431 +  // extract componentList
1432 +
1433 +  compList();
1434 +
1435 +  // calc the number of atoms, bond, bends, and torsions
1436 +
1437 +  calcSysValues();
1438 +
1439 + #ifdef IS_MPI
1440 +  // divide the molecules among the processors
1441 +
1442 +  mpiMolDivide();
1443 + #endif //is_mpi
1444 +
1445 +  // create the atom and SRI arrays. Also initialize Molecule Stamp ID's
1446 +
1447 +  makeSysArrays();
1448 +
1449 +  // make and initialize the molecules (all but atomic coordinates)
1450 +
1451 +  makeMolecules();
1452 +
1453 +  for (k = 0; k < nInfo; k++){
1454 +    info[k].identArray = new int[info[k].n_atoms];
1455 +    for (i = 0; i < info[k].n_atoms; i++){
1456 +      info[k].identArray[i] = info[k].atoms[i]->getIdent();
1457 +    }
1458 +  }
1459 + }
1460 +
1461 +
1462 + void SimSetup::createFF(void){
1463 +  switch (ffCase){
1464 +    case FF_DUFF:
1465 +      the_ff = new DUFF();
1466 +      break;
1467 +
1468 +    case FF_LJ:
1469 +      the_ff = new LJFF();
1470 +      break;
1471 +
1472 +    case FF_EAM:
1473 +      the_ff = new EAM_FF();
1474 +      break;
1475 +
1476 +    case FF_H2O:
1477 +      the_ff = new WATER();
1478 +      break;
1479 +
1480 +    default:
1481 +      sprintf(painCave.errMsg,
1482 +              "SimSetup Error. Unrecognized force field in case statement.\n");
1483 +      painCave.isFatal = 1;
1484 +      simError();
1485 +  }
1486 +
1487 + #ifdef IS_MPI
1488 +  strcpy(checkPointMsg, "ForceField creation successful");
1489 +  MPIcheckPoint();
1490 + #endif // is_mpi
1491 + }
1492 +
1493 +
1494 + void SimSetup::compList(void){
1495 +  int i;
1496 +  char* id;
1497 +  LinkedMolStamp* headStamp = new LinkedMolStamp();
1498 +  LinkedMolStamp* currentStamp = NULL;
1499 +  comp_stamps = new MoleculeStamp * [n_components];
1500 +  bool haveCutoffGroups;
1501 +
1502 +  haveCutoffGroups = false;
1503 +  
1504 +  // make an array of molecule stamps that match the components used.
1505 +  // also extract the used stamps out into a separate linked list
1506 +
1507 +  for (i = 0; i < nInfo; i++){
1508 +    info[i].nComponents = n_components;
1509 +    info[i].componentsNmol = components_nmol;
1510 +    info[i].compStamps = comp_stamps;
1511 +    info[i].headStamp = headStamp;
1512 +  }
1513 +
1514 +
1515 +  for (i = 0; i < n_components; i++){
1516 +    id = the_components[i]->getType();
1517 +    comp_stamps[i] = NULL;
1518 +
1519 +    // check to make sure the component isn't already in the list
1520 +
1521 +    comp_stamps[i] = headStamp->match(id);
1522 +    if (comp_stamps[i] == NULL){
1523 +      // extract the component from the list;
1524 +
1525 +      currentStamp = stamps->extractMolStamp(id);
1526 +      if (currentStamp == NULL){
1527 +        sprintf(painCave.errMsg,
1528 +                "SimSetup error: Component \"%s\" was not found in the "
1529 +                "list of declared molecules\n",
1530 +                id);
1531 +        painCave.isFatal = 1;
1532 +        simError();
1533 +      }
1534 +
1535 +      headStamp->add(currentStamp);
1536 +      comp_stamps[i] = headStamp->match(id);
1537 +    }
1538 +
1539 +    if(comp_stamps[i]->getNCutoffGroups() > 0)
1540 +      haveCutoffGroups = true;    
1541 +  }
1542 +    
1543 +  for (i = 0; i < nInfo; i++)
1544 +    info[i].haveCutoffGroups = haveCutoffGroups;
1545 +
1546 + #ifdef IS_MPI
1547 +  strcpy(checkPointMsg, "Component stamps successfully extracted\n");
1548 +  MPIcheckPoint();
1549 + #endif // is_mpi
1550 + }
1551 +
1552 + void SimSetup::calcSysValues(void){
1553 +  int i, j;
1554 +  int ncutgroups, atomsingroups, ngroupsinstamp;
1555 +
1556 +  int* molMembershipArray;
1557 +  CutoffGroupStamp* cg;
1558 +
1559 +  tot_atoms = 0;
1560 +  tot_bonds = 0;
1561 +  tot_bends = 0;
1562 +  tot_torsions = 0;
1563 +  tot_rigid = 0;
1564 +  tot_groups = 0;
1565 +  for (i = 0; i < n_components; i++){
1566 +    tot_atoms += components_nmol[i] * comp_stamps[i]->getNAtoms();
1567 +    tot_bonds += components_nmol[i] * comp_stamps[i]->getNBonds();
1568 +    tot_bends += components_nmol[i] * comp_stamps[i]->getNBends();
1569 +    tot_torsions += components_nmol[i] * comp_stamps[i]->getNTorsions();
1570 +    tot_rigid += components_nmol[i] * comp_stamps[i]->getNRigidBodies();
1571 +
1572 +    ncutgroups = comp_stamps[i]->getNCutoffGroups();
1573 +    atomsingroups = 0;
1574 +    for (j=0; j < ncutgroups; j++) {
1575 +      cg = comp_stamps[i]->getCutoffGroup(j);
1576 +      atomsingroups += cg->getNMembers();
1577 +    }
1578 +    ngroupsinstamp = comp_stamps[i]->getNAtoms() - atomsingroups + ncutgroups;
1579 +    tot_groups += components_nmol[i] * ngroupsinstamp;    
1580 +  }
1581 +  
1582 +  tot_SRI = tot_bonds + tot_bends + tot_torsions;
1583 +  molMembershipArray = new int[tot_atoms];
1584 +
1585 +  for (i = 0; i < nInfo; i++){
1586 +    info[i].n_atoms = tot_atoms;
1587 +    info[i].n_bonds = tot_bonds;
1588 +    info[i].n_bends = tot_bends;
1589 +    info[i].n_torsions = tot_torsions;
1590 +    info[i].n_SRI = tot_SRI;
1591 +    info[i].n_mol = tot_nmol;
1592 +    info[i].ngroup = tot_groups;
1593 +    info[i].molMembershipArray = molMembershipArray;
1594 +  }
1595 + }
1596 +
1597 + #ifdef IS_MPI
1598 +
1599 + void SimSetup::mpiMolDivide(void){
1600 +  int i, j, k;
1601 +  int localMol, allMol;
1602 +  int local_atoms, local_bonds, local_bends, local_torsions, local_SRI;
1603 +  int local_rigid, local_groups;
1604 +  vector<int> globalMolIndex;
1605 +  int ncutgroups, atomsingroups, ngroupsinstamp;
1606 +  CutoffGroupStamp* cg;
1607 +
1608 +  mpiSim = new mpiSimulation(info);
1609 +
1610 +  mpiSim->divideLabor();
1611 +  globalAtomIndex = mpiSim->getGlobalAtomIndex();
1612 +  //globalMolIndex = mpiSim->getGlobalMolIndex();
1613 +
1614 +  // set up the local variables
1615 +
1616 +  mol2proc = mpiSim->getMolToProcMap();
1617 +  molCompType = mpiSim->getMolComponentType();
1618 +
1619 +  allMol = 0;
1620 +  localMol = 0;
1621 +  local_atoms = 0;
1622 +  local_bonds = 0;
1623 +  local_bends = 0;
1624 +  local_torsions = 0;
1625 +  local_rigid = 0;
1626 +  local_groups = 0;
1627 +  globalAtomCounter = 0;
1628 +
1629 +  for (i = 0; i < n_components; i++){
1630 +    for (j = 0; j < components_nmol[i]; j++){
1631 +      if (mol2proc[allMol] == worldRank){
1632 +        local_atoms += comp_stamps[i]->getNAtoms();
1633 +        local_bonds += comp_stamps[i]->getNBonds();
1634 +        local_bends += comp_stamps[i]->getNBends();
1635 +        local_torsions += comp_stamps[i]->getNTorsions();
1636 +        local_rigid += comp_stamps[i]->getNRigidBodies();
1637 +
1638 +        ncutgroups = comp_stamps[i]->getNCutoffGroups();
1639 +        atomsingroups = 0;
1640 +        for (k=0; k < ncutgroups; k++) {
1641 +          cg = comp_stamps[i]->getCutoffGroup(k);
1642 +          atomsingroups += cg->getNMembers();
1643 +        }
1644 +        ngroupsinstamp = comp_stamps[i]->getNAtoms() - atomsingroups +
1645 +          ncutgroups;
1646 +        local_groups += ngroupsinstamp;    
1647 +
1648 +        localMol++;
1649 +      }      
1650 +      for (k = 0; k < comp_stamps[i]->getNAtoms(); k++){
1651 +        info[0].molMembershipArray[globalAtomCounter] = allMol;
1652 +        globalAtomCounter++;
1653 +      }
1654 +
1655 +      allMol++;
1656 +    }
1657 +  }
1658 +  local_SRI = local_bonds + local_bends + local_torsions;
1659 +
1660 +  info[0].n_atoms = mpiSim->getNAtomsLocal();  
1661 +  
1662 +  if (local_atoms != info[0].n_atoms){
1663 +    sprintf(painCave.errMsg,
1664 +            "SimSetup error: mpiSim's localAtom (%d) and SimSetup's\n"
1665 +            "\tlocalAtom (%d) are not equal.\n",
1666 +            info[0].n_atoms, local_atoms);
1667 +    painCave.isFatal = 1;
1668 +    simError();
1669 +  }
1670 +
1671 +  info[0].ngroup = mpiSim->getNGroupsLocal();  
1672 +  if (local_groups != info[0].ngroup){
1673 +    sprintf(painCave.errMsg,
1674 +            "SimSetup error: mpiSim's localGroups (%d) and SimSetup's\n"
1675 +            "\tlocalGroups (%d) are not equal.\n",
1676 +            info[0].ngroup, local_groups);
1677 +    painCave.isFatal = 1;
1678 +    simError();
1679 +  }
1680 +  
1681 +  info[0].n_bonds = local_bonds;
1682 +  info[0].n_bends = local_bends;
1683 +  info[0].n_torsions = local_torsions;
1684 +  info[0].n_SRI = local_SRI;
1685 +  info[0].n_mol = localMol;
1686 +
1687 +  strcpy(checkPointMsg, "Passed nlocal consistency check.");
1688 +  MPIcheckPoint();
1689 + }
1690 +
1691 + #endif // is_mpi
1692 +
1693 +
1694 + void SimSetup::makeSysArrays(void){
1695 +
1696 + #ifndef IS_MPI
1697 +  int k, j;
1698 + #endif // is_mpi
1699 +  int i, l;
1700 +
1701 +  Atom** the_atoms;
1702 +  Molecule* the_molecules;
1703 +
1704 +  for (l = 0; l < nInfo; l++){
1705 +    // create the atom and short range interaction arrays
1706 +
1707 +    the_atoms = new Atom * [info[l].n_atoms];
1708 +    the_molecules = new Molecule[info[l].n_mol];
1709 +    int molIndex;
1710 +
1711 +    // initialize the molecule's stampID's
1712 +
1713 + #ifdef IS_MPI
1714 +
1715 +
1716 +    molIndex = 0;
1717 +    for (i = 0; i < mpiSim->getNMolGlobal(); i++){
1718 +      if (mol2proc[i] == worldRank){
1719 +        the_molecules[molIndex].setStampID(molCompType[i]);
1720 +        the_molecules[molIndex].setMyIndex(molIndex);
1721 +        the_molecules[molIndex].setGlobalIndex(i);
1722 +        molIndex++;
1723 +      }
1724 +    }
1725 +
1726 + #else // is_mpi
1727 +
1728 +    molIndex = 0;
1729 +    globalAtomCounter = 0;
1730 +    for (i = 0; i < n_components; i++){
1731 +      for (j = 0; j < components_nmol[i]; j++){
1732 +        the_molecules[molIndex].setStampID(i);
1733 +        the_molecules[molIndex].setMyIndex(molIndex);
1734 +        the_molecules[molIndex].setGlobalIndex(molIndex);
1735 +        for (k = 0; k < comp_stamps[i]->getNAtoms(); k++){
1736 +          info[l].molMembershipArray[globalAtomCounter] = molIndex;
1737 +          globalAtomCounter++;
1738 +        }
1739 +        molIndex++;
1740 +      }
1741 +    }
1742 +
1743 +
1744 + #endif // is_mpi
1745 +
1746 +    info[l].globalExcludes = new int;
1747 +    info[l].globalExcludes[0] = 0;
1748 +    
1749 +    // set the arrays into the SimInfo object
1750 +
1751 +    info[l].atoms = the_atoms;
1752 +    info[l].molecules = the_molecules;
1753 +    info[l].nGlobalExcludes = 0;
1754 +    
1755 +    the_ff->setSimInfo(info);
1756 +  }
1757 + }
1758 +
1759 + void SimSetup::makeIntegrator(void){
1760 +  int k;
1761 +
1762 +  NVE<RealIntegrator>* myNVE = NULL;
1763 +  NVT<RealIntegrator>* myNVT = NULL;
1764 +  NPTi<NPT<RealIntegrator> >* myNPTi = NULL;
1765 +  NPTf<NPT<RealIntegrator> >* myNPTf = NULL;
1766 +  NPTxyz<NPT<RealIntegrator> >* myNPTxyz = NULL;
1767 +  
1768 +  for (k = 0; k < nInfo; k++){
1769 +    switch (ensembleCase){
1770 +      case NVE_ENS:
1771 +        if (globals->haveZconstraints()){
1772 +          setupZConstraint(info[k]);
1773 +          myNVE = new ZConstraint<NVE<RealIntegrator> >(&(info[k]), the_ff);
1774 +        }
1775 +        else{
1776 +          myNVE = new NVE<RealIntegrator>(&(info[k]), the_ff);
1777 +        }
1778 +        
1779 +        info->the_integrator = myNVE;
1780 +        break;
1781 +
1782 +      case NVT_ENS:
1783 +        if (globals->haveZconstraints()){
1784 +          setupZConstraint(info[k]);
1785 +          myNVT = new ZConstraint<NVT<RealIntegrator> >(&(info[k]), the_ff);
1786 +        }
1787 +        else
1788 +          myNVT = new NVT<RealIntegrator>(&(info[k]), the_ff);
1789 +
1790 +        myNVT->setTargetTemp(globals->getTargetTemp());
1791 +
1792 +        if (globals->haveTauThermostat())
1793 +          myNVT->setTauThermostat(globals->getTauThermostat());
1794 +        else{
1795 +          sprintf(painCave.errMsg,
1796 +                  "SimSetup error: If you use the NVT\n"
1797 +                  "\tensemble, you must set tauThermostat.\n");
1798 +          painCave.isFatal = 1;
1799 +          simError();
1800 +        }
1801 +
1802 +        info->the_integrator = myNVT;
1803 +        break;
1804 +
1805 +      case NPTi_ENS:
1806 +        if (globals->haveZconstraints()){
1807 +          setupZConstraint(info[k]);
1808 +          myNPTi = new ZConstraint<NPTi<NPT <RealIntegrator> > >(&(info[k]), the_ff);
1809 +        }
1810 +        else
1811 +          myNPTi = new NPTi<NPT<RealIntegrator> >(&(info[k]), the_ff);
1812 +
1813 +        myNPTi->setTargetTemp(globals->getTargetTemp());
1814 +
1815 +        if (globals->haveTargetPressure())
1816 +          myNPTi->setTargetPressure(globals->getTargetPressure());
1817 +        else{
1818 +          sprintf(painCave.errMsg,
1819 +                  "SimSetup error: If you use a constant pressure\n"
1820 +                  "\tensemble, you must set targetPressure in the BASS file.\n");
1821 +          painCave.isFatal = 1;
1822 +          simError();
1823 +        }
1824 +
1825 +        if (globals->haveTauThermostat())
1826 +          myNPTi->setTauThermostat(globals->getTauThermostat());
1827 +        else{
1828 +          sprintf(painCave.errMsg,
1829 +                  "SimSetup error: If you use an NPT\n"
1830 +                  "\tensemble, you must set tauThermostat.\n");
1831 +          painCave.isFatal = 1;
1832 +          simError();
1833 +        }
1834 +
1835 +        if (globals->haveTauBarostat())
1836 +          myNPTi->setTauBarostat(globals->getTauBarostat());
1837 +        else{
1838 +          sprintf(painCave.errMsg,
1839 +                  "SimSetup error: If you use an NPT\n"
1840 +                  "\tensemble, you must set tauBarostat.\n");
1841 +          painCave.isFatal = 1;
1842 +          simError();
1843 +        }
1844 +
1845 +        info->the_integrator = myNPTi;
1846 +        break;
1847 +
1848 +      case NPTf_ENS:
1849 +        if (globals->haveZconstraints()){
1850 +          setupZConstraint(info[k]);
1851 +          myNPTf = new ZConstraint<NPTf<NPT <RealIntegrator> > >(&(info[k]), the_ff);
1852 +        }
1853 +        else
1854 +          myNPTf = new NPTf<NPT <RealIntegrator> >(&(info[k]), the_ff);
1855 +
1856 +        myNPTf->setTargetTemp(globals->getTargetTemp());
1857 +
1858 +        if (globals->haveTargetPressure())
1859 +          myNPTf->setTargetPressure(globals->getTargetPressure());
1860 +        else{
1861 +          sprintf(painCave.errMsg,
1862 +                  "SimSetup error: If you use a constant pressure\n"
1863 +                  "\tensemble, you must set targetPressure in the BASS file.\n");
1864 +          painCave.isFatal = 1;
1865 +          simError();
1866 +        }    
1867 +
1868 +        if (globals->haveTauThermostat())
1869 +          myNPTf->setTauThermostat(globals->getTauThermostat());
1870 +
1871 +        else{
1872 +          sprintf(painCave.errMsg,
1873 +                  "SimSetup error: If you use an NPT\n"
1874 +                  "\tensemble, you must set tauThermostat.\n");
1875 +          painCave.isFatal = 1;
1876 +          simError();
1877 +        }
1878 +
1879 +        if (globals->haveTauBarostat())
1880 +          myNPTf->setTauBarostat(globals->getTauBarostat());
1881 +
1882 +        else{
1883 +          sprintf(painCave.errMsg,
1884 +                  "SimSetup error: If you use an NPT\n"
1885 +                  "\tensemble, you must set tauBarostat.\n");
1886 +          painCave.isFatal = 1;
1887 +          simError();
1888 +        }
1889 +
1890 +        info->the_integrator = myNPTf;
1891 +        break;
1892 +
1893 +      case NPTxyz_ENS:
1894 +        if (globals->haveZconstraints()){
1895 +          setupZConstraint(info[k]);
1896 +          myNPTxyz = new ZConstraint<NPTxyz<NPT <RealIntegrator> > >(&(info[k]), the_ff);
1897 +        }
1898 +        else
1899 +          myNPTxyz = new NPTxyz<NPT <RealIntegrator> >(&(info[k]), the_ff);
1900 +
1901 +        myNPTxyz->setTargetTemp(globals->getTargetTemp());
1902 +
1903 +        if (globals->haveTargetPressure())
1904 +          myNPTxyz->setTargetPressure(globals->getTargetPressure());
1905 +        else{
1906 +          sprintf(painCave.errMsg,
1907 +                  "SimSetup error: If you use a constant pressure\n"
1908 +                  "\tensemble, you must set targetPressure in the BASS file.\n");
1909 +          painCave.isFatal = 1;
1910 +          simError();
1911 +        }    
1912 +
1913 +        if (globals->haveTauThermostat())
1914 +          myNPTxyz->setTauThermostat(globals->getTauThermostat());
1915 +        else{
1916 +          sprintf(painCave.errMsg,
1917 +                  "SimSetup error: If you use an NPT\n"
1918 +                  "\tensemble, you must set tauThermostat.\n");
1919 +          painCave.isFatal = 1;
1920 +          simError();
1921 +        }
1922 +
1923 +        if (globals->haveTauBarostat())
1924 +          myNPTxyz->setTauBarostat(globals->getTauBarostat());
1925 +        else{
1926 +          sprintf(painCave.errMsg,
1927 +                  "SimSetup error: If you use an NPT\n"
1928 +                  "\tensemble, you must set tauBarostat.\n");
1929 +          painCave.isFatal = 1;
1930 +          simError();
1931 +        }
1932 +
1933 +        info->the_integrator = myNPTxyz;
1934 +        break;
1935 +
1936 +      default:
1937 +        sprintf(painCave.errMsg,
1938 +                "SimSetup Error. Unrecognized ensemble in case statement.\n");
1939 +        painCave.isFatal = 1;
1940 +        simError();
1941 +    }
1942 +  }
1943 + }
1944 +
1945 + void SimSetup::initFortran(void){
1946 +  info[0].refreshSim();
1947 +
1948 +  if (!strcmp(info[0].mixingRule, "standard")){
1949 +    the_ff->initForceField(LB_MIXING_RULE);
1950 +  }
1951 +  else if (!strcmp(info[0].mixingRule, "explicit")){
1952 +    the_ff->initForceField(EXPLICIT_MIXING_RULE);
1953 +  }
1954 +  else{
1955 +    sprintf(painCave.errMsg, "SimSetup Error: unknown mixing rule -> \"%s\"\n",
1956 +            info[0].mixingRule);
1957 +    painCave.isFatal = 1;
1958 +    simError();
1959 +  }
1960 +
1961 +
1962 + #ifdef IS_MPI
1963 +  strcpy(checkPointMsg, "Successfully intialized the mixingRule for Fortran.");
1964 +  MPIcheckPoint();
1965 + #endif // is_mpi
1966 + }
1967 +
1968 + void SimSetup::setupZConstraint(SimInfo& theInfo){
1969 +  int nZConstraints;
1970 +  ZconStamp** zconStamp;
1971 +
1972 +  if (globals->haveZconstraintTime()){
1973 +    //add sample time of z-constraint  into SimInfo's property list                    
1974 +    DoubleData* zconsTimeProp = new DoubleData();
1975 +    zconsTimeProp->setID(ZCONSTIME_ID);
1976 +    zconsTimeProp->setData(globals->getZconsTime());
1977 +    theInfo.addProperty(zconsTimeProp);
1978 +  }
1979 +  else{
1980 +    sprintf(painCave.errMsg,
1981 +            "ZConstraint error: If you use a ZConstraint,\n"
1982 +            "\tyou must set zconsTime.\n");
1983 +    painCave.isFatal = 1;
1984 +    simError();
1985 +  }
1986 +
1987 +  //push zconsTol into siminfo, if user does not specify
1988 +  //value for zconsTol, a default value will be used
1989 +  DoubleData* zconsTol = new DoubleData();
1990 +  zconsTol->setID(ZCONSTOL_ID);
1991 +  if (globals->haveZconsTol()){
1992 +    zconsTol->setData(globals->getZconsTol());
1993 +  }
1994 +  else{
1995 +    double defaultZConsTol = 0.01;
1996 +    sprintf(painCave.errMsg,
1997 +            "ZConstraint Warning: Tolerance for z-constraint method is not specified.\n"
1998 +            "\tOOPSE will use a default value of %f.\n"
1999 +            "\tTo set the tolerance, use the zconsTol variable.\n",
2000 +            defaultZConsTol);
2001 +    painCave.isFatal = 0;
2002 +    simError();      
2003 +
2004 +    zconsTol->setData(defaultZConsTol);
2005 +  }
2006 +  theInfo.addProperty(zconsTol);
2007 +
2008 +  //set Force Subtraction Policy
2009 +  StringData* zconsForcePolicy = new StringData();
2010 +  zconsForcePolicy->setID(ZCONSFORCEPOLICY_ID);
2011 +
2012 +  if (globals->haveZconsForcePolicy()){
2013 +    zconsForcePolicy->setData(globals->getZconsForcePolicy());
2014 +  }
2015 +  else{
2016 +    sprintf(painCave.errMsg,
2017 +            "ZConstraint Warning: No force subtraction policy was set.\n"
2018 +            "\tOOPSE will use PolicyByMass.\n"
2019 +            "\tTo set the policy, use the zconsForcePolicy variable.\n");
2020 +    painCave.isFatal = 0;
2021 +    simError();
2022 +    zconsForcePolicy->setData("BYMASS");
2023 +  }
2024 +
2025 +  theInfo.addProperty(zconsForcePolicy);
2026 +
2027 +  //set zcons gap
2028 +  DoubleData* zconsGap = new DoubleData();
2029 +  zconsGap->setID(ZCONSGAP_ID);
2030 +
2031 +  if (globals->haveZConsGap()){
2032 +    zconsGap->setData(globals->getZconsGap());
2033 +    theInfo.addProperty(zconsGap);  
2034 +  }
2035 +
2036 +  //set zcons fixtime
2037 +  DoubleData* zconsFixtime = new DoubleData();
2038 +  zconsFixtime->setID(ZCONSFIXTIME_ID);
2039 +
2040 +  if (globals->haveZConsFixTime()){
2041 +    zconsFixtime->setData(globals->getZconsFixtime());
2042 +    theInfo.addProperty(zconsFixtime);  
2043 +  }
2044 +
2045 +  //set zconsUsingSMD
2046 +  IntData* zconsUsingSMD = new IntData();
2047 +  zconsUsingSMD->setID(ZCONSUSINGSMD_ID);
2048 +
2049 +  if (globals->haveZConsUsingSMD()){
2050 +    zconsUsingSMD->setData(globals->getZconsUsingSMD());
2051 +    theInfo.addProperty(zconsUsingSMD);  
2052 +  }
2053 +
2054 +  //Determine the name of ouput file and add it into SimInfo's property list
2055 +  //Be careful, do not use inFileName, since it is a pointer which
2056 +  //point to a string at master node, and slave nodes do not contain that string
2057 +
2058 +  string zconsOutput(theInfo.finalName);
2059 +
2060 +  zconsOutput = zconsOutput.substr(0, zconsOutput.rfind(".")) + ".fz";
2061 +
2062 +  StringData* zconsFilename = new StringData();
2063 +  zconsFilename->setID(ZCONSFILENAME_ID);
2064 +  zconsFilename->setData(zconsOutput);
2065 +
2066 +  theInfo.addProperty(zconsFilename);
2067 +
2068 +  //setup index, pos and other parameters of z-constraint molecules
2069 +  nZConstraints = globals->getNzConstraints();
2070 +  theInfo.nZconstraints = nZConstraints;
2071 +
2072 +  zconStamp = globals->getZconStamp();
2073 +  ZConsParaItem tempParaItem;
2074 +
2075 +  ZConsParaData* zconsParaData = new ZConsParaData();
2076 +  zconsParaData->setID(ZCONSPARADATA_ID);
2077 +
2078 +  for (int i = 0; i < nZConstraints; i++){
2079 +    tempParaItem.havingZPos = zconStamp[i]->haveZpos();
2080 +    tempParaItem.zPos = zconStamp[i]->getZpos();
2081 +    tempParaItem.zconsIndex = zconStamp[i]->getMolIndex();
2082 +    tempParaItem.kRatio = zconStamp[i]->getKratio();
2083 +    tempParaItem.havingCantVel = zconStamp[i]->haveCantVel();
2084 +    tempParaItem.cantVel = zconStamp[i]->getCantVel();    
2085 +    zconsParaData->addItem(tempParaItem);
2086 +  }
2087 +
2088 +  //check the uniqueness of index  
2089 +  if(!zconsParaData->isIndexUnique()){
2090 +    sprintf(painCave.errMsg,
2091 +            "ZConstraint Error: molIndex is not unique!\n");
2092 +    painCave.isFatal = 1;
2093 +    simError();
2094 +  }
2095 +
2096 +  //sort the parameters by index of molecules
2097 +  zconsParaData->sortByIndex();
2098 +  
2099 +  //push data into siminfo, therefore, we can retrieve later
2100 +  theInfo.addProperty(zconsParaData);
2101 + }
2102 +
2103 + void SimSetup::makeMinimizer(){
2104 +
2105 +  OOPSEMinimizer* myOOPSEMinimizer;
2106 +  MinimizerParameterSet* param;
2107 +  char minimizerName[100];
2108 +  
2109 +  for (int i = 0; i < nInfo; i++){
2110 +    
2111 +    //prepare parameter set for minimizer
2112 +    param = new MinimizerParameterSet();
2113 +    param->setDefaultParameter();
2114 +
2115 +    if (globals->haveMinimizer()){
2116 +      param->setFTol(globals->getMinFTol());
2117 +    }
2118 +
2119 +    if (globals->haveMinGTol()){
2120 +      param->setGTol(globals->getMinGTol());
2121 +    }
2122 +
2123 +    if (globals->haveMinMaxIter()){
2124 +      param->setMaxIteration(globals->getMinMaxIter());
2125 +    }
2126 +
2127 +    if (globals->haveMinWriteFrq()){
2128 +      param->setMaxIteration(globals->getMinMaxIter());
2129 +    }
2130 +
2131 +    if (globals->haveMinWriteFrq()){
2132 +      param->setWriteFrq(globals->getMinWriteFrq());
2133 +    }
2134 +    
2135 +    if (globals->haveMinStepSize()){
2136 +      param->setStepSize(globals->getMinStepSize());
2137 +    }
2138 +
2139 +    if (globals->haveMinLSMaxIter()){
2140 +      param->setLineSearchMaxIteration(globals->getMinLSMaxIter());
2141 +    }    
2142 +
2143 +    if (globals->haveMinLSTol()){
2144 +      param->setLineSearchTol(globals->getMinLSTol());
2145 +    }    
2146 +
2147 +    strcpy(minimizerName, globals->getMinimizer());
2148 +
2149 +    if (!strcasecmp(minimizerName, "CG")){
2150 +      myOOPSEMinimizer = new PRCGMinimizer(&(info[i]), the_ff, param);
2151 +    }
2152 +    else if (!strcasecmp(minimizerName, "SD")){
2153 +    //myOOPSEMinimizer = MinimizerFactory.creatMinimizer("", &(info[i]), the_ff, param);
2154 +      myOOPSEMinimizer = new SDMinimizer(&(info[i]), the_ff, param);
2155 +    }
2156 +    else{
2157 +          sprintf(painCave.errMsg,
2158 +                  "SimSetup error: Unrecognized Minimizer, use Conjugate Gradient \n");
2159 +          painCave.isFatal = 0;
2160 +          simError();
2161 +
2162 +      myOOPSEMinimizer = new PRCGMinimizer(&(info[i]), the_ff, param);          
2163 +    }
2164 +     info[i].the_integrator = myOOPSEMinimizer;
2165 +
2166 +     //store the minimizer into simInfo
2167 +     info[i].the_minimizer = myOOPSEMinimizer;
2168 +     info[i].has_minimizer = true;
2169 +  }
2170 +
2171 + }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines