ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/SimSetup.cpp
(Generate patch)

Comparing trunk/OOPSE/libmdtools/SimSetup.cpp (file contents):
Revision 407 by mmeineke, Wed Mar 26 20:22:02 2003 UTC vs.
Revision 1211 by tim, Tue Jun 1 15:57:30 2004 UTC

# Line 1 | Line 1
1 < #include <cstdlib>
1 > #include <algorithm>
2 > #include <stdlib.h>
3   #include <iostream>
4 < #include <cmath>
5 <
4 > #include <math.h>
5 > #include <string>
6 > #include <sprng.h>
7   #include "SimSetup.hpp"
8 + #include "ReadWrite.hpp"
9   #include "parse_me.h"
10   #include "Integrator.hpp"
11   #include "simError.h"
12 + #include "RigidBody.hpp"
13 + #include "OOPSEMinimizer.hpp"
14 + //#include "ConstraintElement.hpp"
15 + //#include "ConstraintPair.hpp"
16  
17   #ifdef IS_MPI
18   #include "mpiBASS.h"
19   #include "mpiSimulation.hpp"
20   #endif
21  
22 + // some defines for ensemble and Forcefield  cases
23 +
24 + #define NVE_ENS        0
25 + #define NVT_ENS        1
26 + #define NPTi_ENS       2
27 + #define NPTf_ENS       3
28 + #define NPTxyz_ENS     4
29 +
30 +
31 + #define FF_DUFF  0
32 + #define FF_LJ    1
33 + #define FF_EAM   2
34 + #define FF_H2O   3
35 +
36 + using namespace std;
37 +
38 + /**
39 + * Check whether dividend is divisble by divisor or not
40 + */
41 + bool isDivisible(double dividend, double divisor){
42 +  double tolerance = 0.000001;
43 +  double quotient;
44 +  double diff;
45 +  int intQuotient;
46 +  
47 +  quotient = dividend / divisor;
48 +
49 +  if (quotient < 0)
50 +    quotient = -quotient;
51 +
52 +  intQuotient = int (quotient + tolerance);
53 +
54 +  diff = fabs(fabs(dividend) - intQuotient  * fabs(divisor));
55 +
56 +  if (diff <= tolerance)
57 +    return true;
58 +  else
59 +    return false;  
60 + }
61 +
62   SimSetup::SimSetup(){
63 +  
64 +  initSuspend = false;
65 +  isInfoArray = 0;
66 +  nInfo = 1;
67 +
68    stamps = new MakeStamps();
69    globals = new Globals();
70 <  
70 >
71 >
72   #ifdef IS_MPI
73 <  strcpy( checkPointMsg, "SimSetup creation successful" );
73 >  strcpy(checkPointMsg, "SimSetup creation successful");
74    MPIcheckPoint();
75   #endif // IS_MPI
76   }
# Line 27 | Line 80 | SimSetup::~SimSetup(){
80    delete globals;
81   }
82  
83 < void SimSetup::parseFile( char* fileName ){
83 > void SimSetup::setSimInfo(SimInfo* the_info, int theNinfo){
84 >  info = the_info;
85 >  nInfo = theNinfo;
86 >  isInfoArray = 1;
87 >  initSuspend = true;
88 > }
89  
90 +
91 + void SimSetup::parseFile(char* fileName){
92   #ifdef IS_MPI
93 <  if( worldRank == 0 ){
93 >  if (worldRank == 0){
94   #endif // is_mpi
95 <    
95 >
96      inFileName = fileName;
97 <    set_interface_stamps( stamps, globals );
98 <    
97 >    set_interface_stamps(stamps, globals);
98 >
99   #ifdef IS_MPI
100      mpiEventInit();
101   #endif
102  
103 <    yacc_BASS( fileName );
103 >    yacc_BASS(fileName);
104  
105   #ifdef IS_MPI
106      throwMPIEvent(NULL);
107    }
108 <  else receiveParse();
108 >  else{
109 >    receiveParse();
110 >  }
111   #endif
112  
113   }
114  
115   #ifdef IS_MPI
116   void SimSetup::receiveParse(void){
117 <
118 <    set_interface_stamps( stamps, globals );
119 <    mpiEventInit();
120 <    MPIcheckPoint();
59 <    mpiEventLoop();
60 <
117 >  set_interface_stamps(stamps, globals);
118 >  mpiEventInit();
119 >  MPIcheckPoint();
120 >  mpiEventLoop();
121   }
122  
123   #endif // is_mpi
124  
125 < void SimSetup::createSim( void ){
125 > void SimSetup::createSim(void){
126  
127 <  MakeStamps *the_stamps;
68 <  Globals* the_globals;
69 <  int i, j;
127 >  // gather all of the information from the Bass file
128  
129 <  // get the stamps and globals;
72 <  the_stamps = stamps;
73 <  the_globals = globals;
129 >  gatherInfo();
130  
131 <  // set the easy ones first
76 <  simnfo->target_temp = the_globals->getTargetTemp();
77 <  simnfo->dt = the_globals->getDt();
78 <  simnfo->run_time = the_globals->getRunTime();
131 >  // creation of complex system objects
132  
133 <  // get the ones we know are there, yet still may need some work.
81 <  n_components = the_globals->getNComponents();
82 <  strcpy( force_field, the_globals->getForceField() );
83 <  strcpy( ensemble, the_globals->getEnsemble() );
84 <  strcpy( simnfo->ensemble, ensemble );
133 >  sysObjectsCreation();
134  
135 <  strcpy( simnfo->mixingRule, the_globals->getMixingRule() );
87 <  simnfo->usePBC = the_globals->getPBC();
88 <          
135 >  // check on the post processing info
136  
137 +  finalInfoCheck();
138  
139 <  if( !strcmp( force_field, "TraPPE" ) ) the_ff = new TraPPEFF();
92 <  else if( !strcmp( force_field, "DipoleTest" ) ) the_ff = new DipoleTestFF();
93 <  else if( !strcmp( force_field, "TraPPE_Ex" ) ) the_ff = new TraPPE_ExFF();
94 <  else if( !strcmp( force_field, "LJ" ) ) the_ff = new LJ_FF();
95 <  else{
96 <    sprintf( painCave.errMsg,
97 <             "SimSetup Error. Unrecognized force field -> %s\n",
98 <             force_field );
99 <    painCave.isFatal = 1;
100 <    simError();
101 <  }
139 >  // initialize the system coordinates
140  
141 < #ifdef IS_MPI
142 <  strcpy( checkPointMsg, "ForceField creation successful" );
105 <  MPIcheckPoint();
106 < #endif // is_mpi
141 >  if ( !initSuspend ){
142 >    initSystemCoords();
143  
144 <  
144 >    if( !(globals->getUseInitTime()) )
145 >      info[0].currentTime = 0.0;
146 >  }  
147  
148 <  // get the components and calculate the tot_nMol and indvidual n_mol
111 <  the_components = the_globals->getComponents();
112 <  components_nmol = new int[n_components];
113 <  comp_stamps = new MoleculeStamp*[n_components];
148 >  // make the output filenames
149  
150 <  if( !the_globals->haveNMol() ){
151 <    // we don't have the total number of molecules, so we assume it is
152 <    // given in each component
150 >  makeOutNames();
151 >  
152 > #ifdef IS_MPI
153 >  mpiSim->mpiRefresh();
154 > #endif
155  
156 <    tot_nmol = 0;
120 <    for( i=0; i<n_components; i++ ){
156 >  // initialize the Fortran
157  
158 <      if( !the_components[i]->haveNMol() ){
123 <        // we have a problem
124 <        sprintf( painCave.errMsg,
125 <                 "SimSetup Error. No global NMol or component NMol"
126 <                 " given. Cannot calculate the number of atoms.\n" );
127 <        painCave.isFatal = 1;
128 <        simError();
129 <      }
158 >  initFortran();
159  
160 <      tot_nmol += the_components[i]->getNMol();
161 <      components_nmol[i] = the_components[i]->getNMol();
162 <    }
163 <  }
164 <  else{
165 <    sprintf( painCave.errMsg,
137 <             "SimSetup error.\n"
138 <             "\tSorry, the ability to specify total"
139 <             " nMols and then give molfractions in the components\n"
140 <             "\tis not currently supported."
141 <             " Please give nMol in the components.\n" );
142 <    painCave.isFatal = 1;
143 <    simError();
144 <    
145 <    
146 <    //     tot_nmol = the_globals->getNMol();
147 <    
148 <    //   //we have the total number of molecules, now we check for molfractions
149 <    //     for( i=0; i<n_components; i++ ){
150 <    
151 <    //       if( !the_components[i]->haveMolFraction() ){
152 <    
153 <    //  if( !the_components[i]->haveNMol() ){
154 <    //    //we have a problem
155 <    //    std::cerr << "SimSetup error. Neither molFraction nor "
156 <    //              << " nMol was given in component
157 <    
158 <  }
160 >  if (globals->haveMinimizer())
161 >    // make minimizer
162 >    makeMinimizer();
163 >  else
164 >    // make the integrator
165 >    makeIntegrator();
166  
167 < #ifdef IS_MPI
161 <  strcpy( checkPointMsg, "Have the number of components" );
162 <  MPIcheckPoint();
163 < #endif // is_mpi
167 > }
168  
165  // make an array of molecule stamps that match the components used.
166  // also extract the used stamps out into a separate linked list
169  
170 <  simnfo->nComponents = n_components;
171 <  simnfo->componentsNmol = components_nmol;
172 <  simnfo->compStamps = comp_stamps;
173 <  simnfo->headStamp = new LinkedMolStamp();
174 <  
175 <  char* id;
176 <  LinkedMolStamp* headStamp = simnfo->headStamp;
177 <  LinkedMolStamp* currentStamp = NULL;
178 <  for( i=0; i<n_components; i++ ){
170 > void SimSetup::makeMolecules(void){
171 >  int i, j, k;
172 >  int exI, exJ, exK, exL, slI, slJ;
173 >  int tempI, tempJ, tempK, tempL;
174 >  int molI;
175 >  int stampID, atomOffset, rbOffset;
176 >  molInit molInfo;
177 >  DirectionalAtom* dAtom;
178 >  RigidBody* myRB;
179 >  StuntDouble* mySD;
180 >  LinkedAssign* extras;
181 >  LinkedAssign* current_extra;
182 >  AtomStamp* currentAtom;
183 >  BondStamp* currentBond;
184 >  BendStamp* currentBend;
185 >  TorsionStamp* currentTorsion;
186 >  RigidBodyStamp* currentRigidBody;
187 >  CutoffGroupStamp* currentCutoffGroup;
188 >  CutoffGroup* myCutoffGroup;
189 >  int nCutoffGroups;// number of cutoff group of a molecule defined in mdl file
190 >  set<int> cutoffAtomSet; //atoms belong to  cutoffgroup defined at mdl file
191  
192 <    id = the_components[i]->getType();
193 <    comp_stamps[i] = NULL;
194 <    
181 <    // check to make sure the component isn't already in the list
192 >  bond_pair* theBonds;
193 >  bend_set* theBends;
194 >  torsion_set* theTorsions;
195  
196 <    comp_stamps[i] = headStamp->match( id );
184 <    if( comp_stamps[i] == NULL ){
185 <      
186 <      // extract the component from the list;
187 <      
188 <      currentStamp = the_stamps->extractMolStamp( id );
189 <      if( currentStamp == NULL ){
190 <        sprintf( painCave.errMsg,
191 <                 "SimSetup error: Component \"%s\" was not found in the "
192 <                 "list of declared molecules\n",
193 <                 id );
194 <        painCave.isFatal = 1;
195 <        simError();
196 <      }
197 <      
198 <      headStamp->add( currentStamp );
199 <      comp_stamps[i] = headStamp->match( id );
200 <    }
201 <  }
196 >  set<int> skipList;
197  
198 < #ifdef IS_MPI
199 <  strcpy( checkPointMsg, "Component stamps successfully extracted\n" );
200 <  MPIcheckPoint();
206 < #endif // is_mpi
207 <  
198 >  double phi, theta, psi;
199 >  char* molName;
200 >  char rbName[100];
201  
202 +  //ConstraintPair* consPair; //constraint pair
203 +  //ConstraintElement* consElement1;  //first element of constraint pair
204 +  //ConstraintElement* consElement2;  //second element of constraint pair
205 +  //int whichRigidBody;
206 +  //int consAtomIndex;  //index of constraint atom in rigid body's atom array
207 +  //vector<pair<int, int> > jointAtoms;
208 +  //init the forceField paramters
209  
210 +  the_ff->readParams();
211  
212 <  // caclulate the number of atoms, bonds, bends and torsions
212 >  // init the atoms
213  
214 <  tot_atoms = 0;
214 <  tot_bonds = 0;
215 <  tot_bends = 0;
216 <  tot_torsions = 0;
217 <  for( i=0; i<n_components; i++ ){
218 <    
219 <    tot_atoms +=    components_nmol[i] * comp_stamps[i]->getNAtoms();
220 <    tot_bonds +=    components_nmol[i] * comp_stamps[i]->getNBonds();
221 <    tot_bends +=    components_nmol[i] * comp_stamps[i]->getNBends();
222 <    tot_torsions += components_nmol[i] * comp_stamps[i]->getNTorsions();
223 <  }
214 >  int nMembers, nNew, rb1, rb2;
215  
216 <  tot_SRI = tot_bonds + tot_bends + tot_torsions;
216 >  for (k = 0; k < nInfo; k++){
217 >    the_ff->setSimInfo(&(info[k]));
218 >
219 >    atomOffset = 0;
220 >    groupOffset = 0;
221  
222 <  simnfo->n_atoms = tot_atoms;
223 <  simnfo->n_bonds = tot_bonds;
224 <  simnfo->n_bends = tot_bends;
230 <  simnfo->n_torsions = tot_torsions;
231 <  simnfo->n_SRI = tot_SRI;
232 <  simnfo->n_mol = tot_nmol;
222 >    for (i = 0; i < info[k].n_mol; i++){
223 >      stampID = info[k].molecules[i].getStampID();
224 >      molName = comp_stamps[stampID]->getID();
225  
226 <  
227 < #ifdef IS_MPI
226 >      molInfo.nAtoms = comp_stamps[stampID]->getNAtoms();
227 >      molInfo.nBonds = comp_stamps[stampID]->getNBonds();
228 >      molInfo.nBends = comp_stamps[stampID]->getNBends();
229 >      molInfo.nTorsions = comp_stamps[stampID]->getNTorsions();
230 >      molInfo.nRigidBodies = comp_stamps[stampID]->getNRigidBodies();
231  
232 <  // divide the molecules among processors here.
233 <  
234 <  mpiSim = new mpiSimulation( simnfo );
240 <  
241 <  
232 >      nCutoffGroups = comp_stamps[stampID]->getNCutoffGroups();
233 >      
234 >      molInfo.myAtoms = &(info[k].atoms[atomOffset]);
235  
236 <  globalIndex = mpiSim->divideLabor();
236 >      if (molInfo.nBonds > 0)
237 >        molInfo.myBonds = new Bond*[molInfo.nBonds];
238 >      else
239 >        molInfo.myBonds = NULL;
240  
241 +      if (molInfo.nBends > 0)
242 +        molInfo.myBends = new Bend*[molInfo.nBends];
243 +      else
244 +        molInfo.myBends = NULL;
245  
246 +      if (molInfo.nTorsions > 0)
247 +        molInfo.myTorsions = new Torsion *[molInfo.nTorsions];
248 +      else
249 +        molInfo.myTorsions = NULL;
250  
251 <  // set up the local variables
252 <  
253 <  int localMol, allMol;
250 <  int local_atoms, local_bonds, local_bends, local_torsions, local_SRI;
251 <  
252 <  allMol = 0;
253 <  localMol = 0;
254 <  local_atoms = 0;
255 <  local_bonds = 0;
256 <  local_bends = 0;
257 <  local_torsions = 0;
258 <  for( i=0; i<n_components; i++ ){
259 <
260 <    for( j=0; j<components_nmol[i]; j++ ){
251 >      theBonds = new bond_pair[molInfo.nBonds];
252 >      theBends = new bend_set[molInfo.nBends];
253 >      theTorsions = new torsion_set[molInfo.nTorsions];
254        
255 <      if( mpiSim->getMyMolStart() <= allMol &&
263 <          allMol <= mpiSim->getMyMolEnd() ){
264 <        
265 <        local_atoms +=    comp_stamps[i]->getNAtoms();
266 <        local_bonds +=    comp_stamps[i]->getNBonds();
267 <        local_bends +=    comp_stamps[i]->getNBends();
268 <        local_torsions += comp_stamps[i]->getNTorsions();
269 <        localMol++;
270 <      }      
271 <      allMol++;
272 <    }
273 <  }
274 <  local_SRI = local_bonds + local_bends + local_torsions;
275 <  
255 >      // make the Atoms
256  
257 <  simnfo->n_atoms = mpiSim->getMyNlocal();  
258 <  
279 <  if( local_atoms != simnfo->n_atoms ){
280 <    sprintf( painCave.errMsg,
281 <             "SimSetup error: mpiSim's localAtom (%d) and SimSetup's"
282 <             " localAtom (%d) are note equal.\n",
283 <             simnfo->n_atoms,
284 <             local_atoms );
285 <    painCave.isFatal = 1;
286 <    simError();
287 <  }
257 >      for (j = 0; j < molInfo.nAtoms; j++){
258 >        currentAtom = comp_stamps[stampID]->getAtom(j);
259  
260 <  simnfo->n_bonds = local_bonds;
261 <  simnfo->n_bends = local_bends;
262 <  simnfo->n_torsions = local_torsions;
263 <  simnfo->n_SRI = local_SRI;
264 <  simnfo->n_mol = localMol;
260 >        if (currentAtom->haveOrientation()){
261 >          dAtom = new DirectionalAtom((j + atomOffset),
262 >                                      info[k].getConfiguration());
263 >          info[k].n_oriented++;
264 >          molInfo.myAtoms[j] = dAtom;
265  
266 <  strcpy( checkPointMsg, "Passed nlocal consistency check." );
267 <  MPIcheckPoint();
268 <  
298 <  
299 < #endif // is_mpi
300 <  
266 >          // Directional Atoms have standard unit vectors which are oriented
267 >          // in space using the three Euler angles.  We assume the standard
268 >          // unit vector was originally along the z axis below.
269  
270 <  // create the atom and short range interaction arrays
270 >          phi = currentAtom->getEulerPhi() * M_PI / 180.0;
271 >          theta = currentAtom->getEulerTheta() * M_PI / 180.0;
272 >          psi = currentAtom->getEulerPsi()* M_PI / 180.0;
273  
274 <  Atom::createArrays(simnfo->n_atoms);
275 <  the_atoms = new Atom*[simnfo->n_atoms];
276 <  the_molecules = new Molecule[simnfo->n_mol];
274 >          dAtom->setUnitFrameFromEuler(phi, theta, psi);
275 >            
276 >        }
277 >        else{
278  
279 +          molInfo.myAtoms[j] = new Atom((j + atomOffset), info[k].getConfiguration());
280  
281 <  if( simnfo->n_SRI ){
310 <    the_sris = new SRI*[simnfo->n_SRI];
311 <    the_excludes = new int[2 * simnfo->n_SRI];
312 <    simnfo->globalExcludes = new int;
313 <    simnfo->n_exclude = tot_SRI;
314 <  }
315 <  else{
316 <    
317 <    the_excludes = new int[2];
318 <    the_excludes[0] = 0;
319 <    the_excludes[1] = 0;
320 <    simnfo->globalExcludes = new int;
321 <    simnfo->globalExcludes[0] = 0;
281 >        }
282  
283 <    simnfo->n_exclude = 1;
284 <  }
283 >        molInfo.myAtoms[j]->setType(currentAtom->getType());
284 > #ifdef IS_MPI
285  
286 <  // set the arrays into the SimInfo object
286 >        molInfo.myAtoms[j]->setGlobalIndex(globalAtomIndex[j + atomOffset]);
287  
288 <  simnfo->atoms = the_atoms;
289 <  simnfo->sr_interactions = the_sris;
330 <  simnfo->nGlobalExcludes = 0;
331 <  simnfo->excludes = the_excludes;
288 > #endif // is_mpi
289 >      }
290  
291 +      // make the bonds
292 +      for (j = 0; j < molInfo.nBonds; j++){
293 +        currentBond = comp_stamps[stampID]->getBond(j);
294 +        theBonds[j].a = currentBond->getA() + atomOffset;
295 +        theBonds[j].b = currentBond->getB() + atomOffset;
296  
297 <  // get some of the tricky things that may still be in the globals
297 >        tempI = theBonds[j].a;
298 >        tempJ = theBonds[j].b;
299  
336  
337  if( the_globals->haveBox() ){
338    simnfo->box_x = the_globals->getBox();
339    simnfo->box_y = the_globals->getBox();
340    simnfo->box_z = the_globals->getBox();
341  }
342  else if( the_globals->haveDensity() ){
343
344    double vol;
345    vol = (double)tot_nmol / the_globals->getDensity();
346    simnfo->box_x = pow( vol, ( 1.0 / 3.0 ) );
347    simnfo->box_y = simnfo->box_x;
348    simnfo->box_z = simnfo->box_x;
349  }
350  else{
351    if( !the_globals->haveBoxX() ){
352      sprintf( painCave.errMsg,
353               "SimSetup error, no periodic BoxX size given.\n" );
354      painCave.isFatal = 1;
355      simError();
356    }
357    simnfo->box_x = the_globals->getBoxX();
358
359    if( !the_globals->haveBoxY() ){
360      sprintf( painCave.errMsg,
361               "SimSetup error, no periodic BoxY size given.\n" );
362      painCave.isFatal = 1;
363      simError();
364    }
365    simnfo->box_y = the_globals->getBoxY();
366
367    if( !the_globals->haveBoxZ() ){
368      sprintf( painCave.errMsg,
369               "SimSetup error, no periodic BoxZ size given.\n" );
370      painCave.isFatal = 1;
371      simError();
372    }
373    simnfo->box_z = the_globals->getBoxZ();
374  }
375
300   #ifdef IS_MPI
301 <  strcpy( checkPointMsg, "Box size set up" );
302 <  MPIcheckPoint();
303 < #endif // is_mpi
301 >        exI = info[k].atoms[tempI]->getGlobalIndex() + 1;
302 >        exJ = info[k].atoms[tempJ]->getGlobalIndex() + 1;
303 > #else
304 >        exI = tempI + 1;
305 >        exJ = tempJ + 1;
306 > #endif
307  
308 +        info[k].excludes->addPair(exI, exJ);
309 +      }
310  
311 <  // initialize the arrays
311 >      //make the bends
312 >      for (j = 0; j < molInfo.nBends; j++){
313 >        currentBend = comp_stamps[stampID]->getBend(j);
314 >        theBends[j].a = currentBend->getA() + atomOffset;
315 >        theBends[j].b = currentBend->getB() + atomOffset;
316 >        theBends[j].c = currentBend->getC() + atomOffset;
317  
318 <  the_ff->setSimInfo( simnfo );
318 >        if (currentBend->haveExtras()){
319 >          extras = currentBend->getExtras();
320 >          current_extra = extras;
321  
322 <  makeAtoms();
323 <  simnfo->identArray = new int[simnfo->n_atoms];
324 <  for(i=0; i<simnfo->n_atoms; i++){
325 <    simnfo->identArray[i] = the_atoms[i]->getIdent();
326 <  }
327 <  
328 <  if( tot_bonds ){
393 <    makeBonds();
394 <  }
322 >          while (current_extra != NULL){
323 >            if (!strcmp(current_extra->getlhs(), "ghostVectorSource")){
324 >              switch (current_extra->getType()){
325 >                case 0:
326 >                  theBends[j].ghost = current_extra->getInt() + atomOffset;
327 >                  theBends[j].isGhost = 1;
328 >                  break;
329  
330 <  if( tot_bends ){
331 <    makeBends();
332 <  }
330 >                case 1:
331 >                  theBends[j].ghost = (int) current_extra->getDouble() +
332 >                                      atomOffset;
333 >                  theBends[j].isGhost = 1;
334 >                  break;
335  
336 <  if( tot_torsions ){
337 <    makeTorsions();
338 <  }
336 >                default:
337 >                  sprintf(painCave.errMsg,
338 >                          "SimSetup Error: ghostVectorSource was neither a "
339 >                          "double nor an int.\n"
340 >                          "-->Bend[%d] in %s\n",
341 >                          j, comp_stamps[stampID]->getID());
342 >                  painCave.isFatal = 1;
343 >                  simError();
344 >              }
345 >            }
346 >            else{
347 >              sprintf(painCave.errMsg,
348 >                      "SimSetup Error: unhandled bend assignment:\n"
349 >                      "    -->%s in Bend[%d] in %s\n",
350 >                      current_extra->getlhs(), j, comp_stamps[stampID]->getID());
351 >              painCave.isFatal = 1;
352 >              simError();
353 >            }
354  
355 +            current_extra = current_extra->getNext();
356 +          }
357 +        }
358  
359 <  if (the_globals->getUseRF() ) {
360 <    simnfo->useReactionField = 1;
361 <  
362 <    if( !the_globals->haveECR() ){
363 <      sprintf( painCave.errMsg,
364 <               "SimSetup Warning: using default value of 1/2 the smallest "
365 <               "box length for the electrostaticCutoffRadius.\n"
366 <               "I hope you have a very fast processor!\n");
367 <      painCave.isFatal = 0;
368 <      simError();
369 <      double smallest;
370 <      smallest = simnfo->box_x;
371 <      if (simnfo->box_y <= smallest) smallest = simnfo->box_y;
418 <      if (simnfo->box_z <= smallest) smallest = simnfo->box_z;
419 <      simnfo->ecr = 0.5 * smallest;
420 <    } else {
421 <      simnfo->ecr        = the_globals->getECR();
422 <    }
359 >        if (theBends[j].isGhost) {
360 >          
361 >          tempI = theBends[j].a;
362 >          tempJ = theBends[j].b;
363 >          
364 > #ifdef IS_MPI
365 >          exI = info[k].atoms[tempI]->getGlobalIndex() + 1;
366 >          exJ = info[k].atoms[tempJ]->getGlobalIndex() + 1;
367 > #else
368 >          exI = tempI + 1;
369 >          exJ = tempJ + 1;
370 > #endif          
371 >          info[k].excludes->addPair(exI, exJ);
372  
373 <    if( !the_globals->haveEST() ){
425 <      sprintf( painCave.errMsg,
426 <               "SimSetup Warning: using default value of 0.05 * the "
427 <               "electrostaticCutoffRadius for the electrostaticSkinThickness\n"
428 <               );
429 <      painCave.isFatal = 0;
430 <      simError();
431 <      simnfo->est = 0.05 * simnfo->ecr;
432 <    } else {
433 <      simnfo->est        = the_globals->getEST();
434 <    }
435 <    
436 <    if(!the_globals->haveDielectric() ){
437 <      sprintf( painCave.errMsg,
438 <               "SimSetup Error: You are trying to use Reaction Field without"
439 <               "setting a dielectric constant!\n"
440 <               );
441 <      painCave.isFatal = 1;
442 <      simError();
443 <    }
444 <    simnfo->dielectric = the_globals->getDielectric();  
445 <  } else {
446 <    if (simnfo->n_dipoles) {
447 <      
448 <      if( !the_globals->haveECR() ){
449 <        sprintf( painCave.errMsg,
450 <                 "SimSetup Warning: using default value of 1/2 the smallest"
451 <                 "box length for the electrostaticCutoffRadius.\n"
452 <                 "I hope you have a very fast processor!\n");
453 <        painCave.isFatal = 0;
454 <        simError();
455 <        double smallest;
456 <        smallest = simnfo->box_x;
457 <        if (simnfo->box_y <= smallest) smallest = simnfo->box_y;
458 <        if (simnfo->box_z <= smallest) smallest = simnfo->box_z;
459 <        simnfo->ecr = 0.5 * smallest;
460 <      } else {
461 <        simnfo->ecr        = the_globals->getECR();
462 <      }
463 <      
464 <      if( !the_globals->haveEST() ){
465 <        sprintf( painCave.errMsg,
466 <                 "SimSetup Warning: using default value of 5% of the"
467 <                 "electrostaticCutoffRadius for the "
468 <                 "electrostaticSkinThickness\n"
469 <                 );
470 <        painCave.isFatal = 0;
471 <        simError();
472 <        simnfo->est = 0.05 * simnfo->ecr;
473 <      } else {
474 <        simnfo->est        = the_globals->getEST();
475 <      }
476 <    }
477 <  }  
373 >        } else {
374  
375 +          tempI = theBends[j].a;
376 +          tempJ = theBends[j].b;
377 +          tempK = theBends[j].c;
378 +          
379   #ifdef IS_MPI
380 <  strcpy( checkPointMsg, "electrostatic parameters check out" );
381 <  MPIcheckPoint();
382 < #endif // is_mpi
380 >          exI = info[k].atoms[tempI]->getGlobalIndex() + 1;
381 >          exJ = info[k].atoms[tempJ]->getGlobalIndex() + 1;
382 >          exK = info[k].atoms[tempK]->getGlobalIndex() + 1;
383 > #else
384 >          exI = tempI + 1;
385 >          exJ = tempJ + 1;
386 >          exK = tempK + 1;
387 > #endif
388 >          
389 >          info[k].excludes->addPair(exI, exK);
390 >          info[k].excludes->addPair(exI, exJ);
391 >          info[k].excludes->addPair(exJ, exK);
392 >        }
393 >      }
394  
395 < if( the_globals->haveInitialConfig() ){
396 <
397 <     InitializeFromFile* fileInit;
398 < #ifdef IS_MPI // is_mpi
399 <     if( worldRank == 0 ){
400 < #endif //is_mpi
401 <   fileInit = new InitializeFromFile( the_globals->getInitialConfig() );
395 >      for (j = 0; j < molInfo.nTorsions; j++){
396 >        currentTorsion = comp_stamps[stampID]->getTorsion(j);
397 >        theTorsions[j].a = currentTorsion->getA() + atomOffset;
398 >        theTorsions[j].b = currentTorsion->getB() + atomOffset;
399 >        theTorsions[j].c = currentTorsion->getC() + atomOffset;
400 >        theTorsions[j].d = currentTorsion->getD() + atomOffset;
401 >
402 >        tempI = theTorsions[j].a;      
403 >        tempJ = theTorsions[j].b;
404 >        tempK = theTorsions[j].c;
405 >        tempL = theTorsions[j].d;
406 >
407   #ifdef IS_MPI
408 <     }else fileInit = new InitializeFromFile( NULL );
408 >        exI = info[k].atoms[tempI]->getGlobalIndex() + 1;
409 >        exJ = info[k].atoms[tempJ]->getGlobalIndex() + 1;
410 >        exK = info[k].atoms[tempK]->getGlobalIndex() + 1;
411 >        exL = info[k].atoms[tempL]->getGlobalIndex() + 1;
412 > #else
413 >        exI = tempI + 1;
414 >        exJ = tempJ + 1;
415 >        exK = tempK + 1;
416 >        exL = tempL + 1;
417   #endif
494   fileInit->read_xyz( simnfo ); // default velocities on
418  
419 <   delete fileInit;
420 < }
421 < else{
419 >        info[k].excludes->addPair(exI, exJ);
420 >        info[k].excludes->addPair(exI, exK);
421 >        info[k].excludes->addPair(exI, exL);        
422 >        info[k].excludes->addPair(exJ, exK);
423 >        info[k].excludes->addPair(exJ, exL);
424 >        info[k].excludes->addPair(exK, exL);
425 >      }
426  
427 < #ifdef IS_MPI
427 >      
428 >      molInfo.myRigidBodies.clear();
429 >      
430 >      for (j = 0; j < molInfo.nRigidBodies; j++){
431  
432 <  // no init from bass
433 <  
504 <  sprintf( painCave.errMsg,
505 <           "Cannot intialize a parallel simulation without an initial configuration file.\n" );
506 <  painCave.isFatal;
507 <  simError();
508 <  
509 < #else
432 >        currentRigidBody = comp_stamps[stampID]->getRigidBody(j);
433 >        nMembers = currentRigidBody->getNMembers();
434  
435 <  initFromBass();
435 >        // Create the Rigid Body:
436  
437 +        myRB = new RigidBody();
438  
439 < #endif
440 < }
439 >        sprintf(rbName,"%s_RB_%d", molName, j);
440 >        myRB->setType(rbName);
441 >        
442 >        for (rb1 = 0; rb1 < nMembers; rb1++) {
443  
444 < #ifdef IS_MPI
445 <  strcpy( checkPointMsg, "Successfully read in the initial configuration" );
519 <  MPIcheckPoint();
520 < #endif // is_mpi
444 >          // molI is atom numbering inside this molecule
445 >          molI = currentRigidBody->getMember(rb1);    
446  
447 +          // tempI is atom numbering on local processor
448 +          tempI = molI + atomOffset;
449  
450 <  
451 <
452 <  
450 >          // currentAtom is the AtomStamp (which we need for
451 >          // rigid body reference positions)
452 >          currentAtom = comp_stamps[stampID]->getAtom(molI);
453  
454 <  
454 >          // When we add to the rigid body, add the atom itself and
455 >          // the stamp info:
456 >
457 >          myRB->addAtom(info[k].atoms[tempI], currentAtom);
458 >          
459 >          // Add this atom to the Skip List for the integrators
460   #ifdef IS_MPI
461 <  if( worldRank == 0 ){
462 < #endif // is_mpi
463 <    
464 <    if( the_globals->haveFinalConfig() ){
465 <      strcpy( simnfo->finalName, the_globals->getFinalConfig() );
466 <    }
467 <    else{
468 <      strcpy( simnfo->finalName, inFileName );
469 <      char* endTest;
470 <      int nameLength = strlen( simnfo->finalName );
471 <      endTest = &(simnfo->finalName[nameLength - 5]);
472 <      if( !strcmp( endTest, ".bass" ) ){
473 <        strcpy( endTest, ".eor" );
461 >          slI = info[k].atoms[tempI]->getGlobalIndex();
462 > #else
463 >          slI = tempI;
464 > #endif
465 >          skipList.insert(slI);
466 >          
467 >        }
468 >        
469 >        for(rb1 = 0; rb1 < nMembers - 1; rb1++) {
470 >          for(rb2 = rb1+1; rb2 < nMembers; rb2++) {
471 >            
472 >            tempI = currentRigidBody->getMember(rb1);
473 >            tempJ = currentRigidBody->getMember(rb2);
474 >            
475 >            // Some explanation is required here.
476 >            // Fortran indexing starts at 1, while c indexing starts at 0
477 >            // Also, in parallel computations, the GlobalIndex is
478 >            // used for the exclude list:
479 >            
480 > #ifdef IS_MPI
481 >            exI = molInfo.myAtoms[tempI]->getGlobalIndex() + 1;
482 >            exJ = molInfo.myAtoms[tempJ]->getGlobalIndex() + 1;
483 > #else
484 >            exI = molInfo.myAtoms[tempI]->getIndex() + 1;
485 >            exJ = molInfo.myAtoms[tempJ]->getIndex() + 1;
486 > #endif
487 >            
488 >            info[k].excludes->addPair(exI, exJ);
489 >            
490 >          }
491 >        }
492 >
493 >        molInfo.myRigidBodies.push_back(myRB);
494 >        info[k].rigidBodies.push_back(myRB);
495        }
496 <      else if( !strcmp( endTest, ".BASS" ) ){
497 <        strcpy( endTest, ".eor" );
498 <      }
499 <      else{
500 <        endTest = &(simnfo->finalName[nameLength - 4]);
501 <        if( !strcmp( endTest, ".bss" ) ){
502 <          strcpy( endTest, ".eor" );
503 <        }
551 <        else if( !strcmp( endTest, ".mdl" ) ){
552 <          strcpy( endTest, ".eor" );
553 <        }
554 <        else{
555 <          strcat( simnfo->finalName, ".eor" );
556 <        }
557 <      }
558 <    }
559 <    
560 <    // make the sample and status out names
561 <    
562 <    strcpy( simnfo->sampleName, inFileName );
563 <    char* endTest;
564 <    int nameLength = strlen( simnfo->sampleName );
565 <    endTest = &(simnfo->sampleName[nameLength - 5]);
566 <    if( !strcmp( endTest, ".bass" ) ){
567 <      strcpy( endTest, ".dump" );
568 <    }
569 <    else if( !strcmp( endTest, ".BASS" ) ){
570 <      strcpy( endTest, ".dump" );
571 <    }
572 <    else{
573 <      endTest = &(simnfo->sampleName[nameLength - 4]);
574 <      if( !strcmp( endTest, ".bss" ) ){
575 <        strcpy( endTest, ".dump" );
576 <      }
577 <      else if( !strcmp( endTest, ".mdl" ) ){
578 <        strcpy( endTest, ".dump" );
579 <      }
580 <      else{
581 <        strcat( simnfo->sampleName, ".dump" );
582 <      }
583 <    }
584 <    
585 <    strcpy( simnfo->statusName, inFileName );
586 <    nameLength = strlen( simnfo->statusName );
587 <    endTest = &(simnfo->statusName[nameLength - 5]);
588 <    if( !strcmp( endTest, ".bass" ) ){
589 <      strcpy( endTest, ".stat" );
590 <    }
591 <    else if( !strcmp( endTest, ".BASS" ) ){
592 <      strcpy( endTest, ".stat" );
593 <    }
594 <    else{
595 <      endTest = &(simnfo->statusName[nameLength - 4]);
596 <      if( !strcmp( endTest, ".bss" ) ){
597 <        strcpy( endTest, ".stat" );
598 <      }
599 <      else if( !strcmp( endTest, ".mdl" ) ){
600 <        strcpy( endTest, ".stat" );
601 <      }
602 <      else{
603 <        strcat( simnfo->statusName, ".stat" );
604 <      }
605 <    }
606 <    
607 < #ifdef IS_MPI
608 <  }
609 < #endif // is_mpi
610 <  
611 <  // set the status, sample, and themal kick times
612 <  
613 <  if( the_globals->haveSampleTime() ){
614 <    simnfo->sampleTime = the_globals->getSampleTime();
615 <    simnfo->statusTime = simnfo->sampleTime;
616 <    simnfo->thermalTime = simnfo->sampleTime;
617 <  }
618 <  else{
619 <    simnfo->sampleTime = the_globals->getRunTime();
620 <    simnfo->statusTime = simnfo->sampleTime;
621 <    simnfo->thermalTime = simnfo->sampleTime;
622 <  }
496 >      
497 >
498 >      //create cutoff group for molecule
499 >
500 >      cutoffAtomSet.clear();
501 >      molInfo.myCutoffGroups.clear();
502 >      
503 >      for (j = 0; j < nCutoffGroups; j++){
504  
505 <  if( the_globals->haveStatusTime() ){
506 <    simnfo->statusTime = the_globals->getStatusTime();
626 <  }
505 >        currentCutoffGroup = comp_stamps[stampID]->getCutoffGroup(j);
506 >        nMembers = currentCutoffGroup->getNMembers();
507  
508 <  if( the_globals->haveThermalTime() ){
509 <    simnfo->thermalTime = the_globals->getThermalTime();
510 <  }
508 >        myCutoffGroup = new CutoffGroup();
509 >        myCutoffGroup->setGlobalIndex(globalGroupIndex[j + groupOffset]);
510 >        
511 >        for (int cg = 0; cg < nMembers; cg++) {
512  
513 <  // check for the temperature set flag
513 >          // molI is atom numbering inside this molecule
514 >          molI = currentCutoffGroup->getMember(cg);    
515  
516 <  if( the_globals->haveTempSet() ) simnfo->setTemp = the_globals->getTempSet();
516 >          // tempI is atom numbering on local processor
517 >          tempI = molI + atomOffset;
518  
519 + #ifdef IS_MPI
520 +          globalID = info[k].atoms[tempI]->getGlobalIndex()
521 + #else
522 +          globalID = info[k].atoms[tempI]->getIndex();
523 + #endif
524  
525 < //   // make the longe range forces and the integrator
525 >          globalGroupMembership[globalID] = globalGroupIndex[j+groupOffset];
526  
527 < //   new AllLong( simnfo );
527 >          myCutoffGroup->addAtom(info[k].atoms[tempI]);          
528  
529 <  if( !strcmp( force_field, "TraPPE" ) ) new Verlet( *simnfo, the_ff );
530 <  if( !strcmp( force_field, "DipoleTest" ) ) new Symplectic( simnfo, the_ff );
531 <  if( !strcmp( force_field, "TraPPE_Ex" ) ) new Symplectic( simnfo, the_ff );
532 <  if( !strcmp( force_field, "LJ" ) ) new Verlet( *simnfo, the_ff );
529 >          cutoffAtomSet.insert(tempI);
530 >        }
531 >      
532 >        molInfo.myCutoffGroups.push_back(myCutoffGroup);
533 >        groupOffset++;
534  
535 +      }//end for (j = 0; j < molInfo.nCutoffGroups; j++)
536  
537 +      //creat a cutoff group for every atom  in current molecule which does not belong to cutoffgroup defined at mdl file
538  
539 <  // initialize the Fortran
649 <  
650 <  simnfo->refreshSim();
651 <  
652 <  if( !strcmp( simnfo->mixingRule, "standard") ){
653 <    the_ff->initForceField( LB_MIXING_RULE );
654 <  }
655 <  else if( !strcmp( simnfo->mixingRule, "explicit") ){
656 <    the_ff->initForceField( EXPLICIT_MIXING_RULE );
657 <  }
658 <  else{
659 <    sprintf( painCave.errMsg,
660 <             "SimSetup Error: unknown mixing rule -> \"%s\"\n",
661 <             simnfo->mixingRule );
662 <    painCave.isFatal = 1;
663 <    simError();
664 <  }
539 >      for(j = 0; j < molInfo.nAtoms; j++){
540  
541 <
541 >        if(cutoffAtomSet.find(molInfo.myAtoms[j]->getIndex()) == cutoffAtomSet.end()){
542 >          myCutoffGroup = new CutoffGroup();
543 >          myCutoffGroup->addAtom(molInfo.myAtoms[j]);
544 >          myCutoffGroup->setGlobalIndex(globalGroupIndex[j + groupOffset]);
545   #ifdef IS_MPI
546 <  strcpy( checkPointMsg,
547 <          "Successfully intialized the mixingRule for Fortran." );
548 <  MPIcheckPoint();
549 < #endif // is_mpi
550 < }
546 >          globalID = info[k].atoms[atomOffset + j]->getGlobalIndex()
547 > #else
548 >          globalID = info[k].atoms[atomOffset + j]->getIndex();
549 > #endif
550 >          globalGroupMembership[globalID] = globalGroupIndex[j+groupOffset];
551 >          molInfo.myCutoffGroups.push_back(myCutoffGroup);
552 >          groupOffset++;
553 >        }
554 >          
555 >      }
556  
557 +      // After this is all set up, scan through the atoms to
558 +      // see if they can be added to the integrableObjects:
559  
560 < void SimSetup::makeMolecules( void ){
560 >      molInfo.myIntegrableObjects.clear();
561 >      
562  
563 <  int i, j, exI, exJ, tempEx, stampID, atomOffset;
678 <  molInit info;
679 <  DirectionalAtom* dAtom;
680 <  AtomStamp* currentAtom;
681 <  BondStamp* currentBond;
682 <  BendStamp* currentBend;
683 <  TorsionStamp* currentTorsion;
684 <  
685 <  //init the forceField paramters
563 >      for (j = 0; j < molInfo.nAtoms; j++){
564  
565 <  the_ff->readParams();
565 > #ifdef IS_MPI
566 >        slJ = molInfo.myAtoms[j]->getGlobalIndex();
567 > #else
568 >        slJ = j+atomOffset;
569 > #endif
570  
571 <  
690 <  // init the molecules
571 >        // if they aren't on the skip list, then they can be integrated
572  
573 <  atomOffset = 0;
574 <  for(i=0; i<simnfo->n_mol; i++){
575 <    
576 <    stampID = the_molecules[i].getStampID();
573 >        if (skipList.find(slJ) == skipList.end()) {
574 >          mySD = (StuntDouble *) molInfo.myAtoms[j];
575 >          info[k].integrableObjects.push_back(mySD);
576 >          molInfo.myIntegrableObjects.push_back(mySD);
577 >        }
578 >      }
579  
580 <    info.nAtoms    = comp_stamps[stampID]->getNAtoms();
698 <    info.nBonds    = comp_stamps[stampID]->getNBonds();
699 <    info.nBends    = comp_stamps[stampID]->getNBends();
700 <    info.nTorsions = comp_stamps[stampID]->getNTorsions();
701 <    
702 <    info.myAtoms = &the_atoms[atomOffset];
703 <    info.myBonds = new Bond*[info.nBonds];
704 <    info.myBends = new Bend*[info.nBends];
705 <    info.myTorsions = new Torsions*[info.nTorsions];
580 >      // all rigid bodies are integrated:
581  
582 <    theBonds = new bond_pair[info.nBonds];
583 <    theBends = new bend_set[info.nBends];
584 <    theTorsions = new torsion_set[info.nTorsions];
585 <    
586 <    // make the Atoms
587 <    
588 <    for(j=0; j<info.nAtoms; j++){
582 >      for (j = 0; j < molInfo.nRigidBodies; j++) {
583 >        mySD = (StuntDouble *) molInfo.myRigidBodies[j];
584 >        info[k].integrableObjects.push_back(mySD);      
585 >        molInfo.myIntegrableObjects.push_back(mySD);
586 >      }
587 >
588 >
589 >    /*
590 >
591 >      //creat ConstraintPair.
592 >      molInfo.myConstraintPair.clear();
593        
594 <      currentAtom = theComponents[stampID]->getAtom( j );
716 <      if( currentAtom->haveOrientation() ){
717 <        
718 <        dAtom = new DirectionalAtom(j + atomOffset);
719 <        simnfo->n_oriented++;
720 <        info.myAtoms[j] = dAtom;
721 <        
722 <        ux = currentAtom->getOrntX();
723 <        uy = currentAtom->getOrntY();
724 <        uz = currentAtom->getOrntZ();
725 <        
726 <        uSqr = (ux * ux) + (uy * uy) + (uz * uz);
727 <        
728 <        u = sqrt( uSqr );
729 <        ux = ux / u;
730 <        uy = uy / u;
731 <        uz = uz / u;
732 <        
733 <        dAtom->setSUx( ux );
734 <        dAtom->setSUy( uy );
735 <        dAtom->setSUz( uz );
736 <      }
737 <      else{
738 <        info.myAtoms[j] = new GeneralAtom(j + atomOffset);
739 <      }
740 <      info.myAtoms[j]->setType( currentAtom->getType() );
741 <    
742 < #ifdef IS_MPI
743 <      
744 <      info.myAtoms[j]->setGlobalIndex( globalIndex[j+atomOffset] );
745 <      
746 < #endif // is_mpi
747 <    }
748 <    
749 <    // make the bonds
750 <    for(j=0; j<nBonds; j++){
751 <      
752 <      currentBond = comp_stamps[stampID]->getBond( j );
753 <      theBonds[j].a = currentBond->getA() + atomOffset;
754 <      theBonds[j].b = currentBond->getB() + atomOffset;
594 >      for (j = 0; j < molInfo.nBonds; j++){
595  
596 <      exI = theBonds[i].a;
597 <      exJ = theBonds[i].b;
596 >        //if both atoms are in the same rigid body, just skip it
597 >        currentBond = comp_stamps[stampID]->getBond(j);
598 >        if(!comp_stamps[stampID]->isBondInSameRigidBody(currentBond)){
599  
600 <      // exclude_I must always be the smaller of the pair
601 <      if( exI > exJ ){
602 <        tempEx = exI;
603 <        exI = exJ;
604 <        exJ = tempEx;
764 <      }
765 < #ifdef IS_MPI
766 <      
767 <      the_excludes[index*2] =    
768 <        the_atoms[exI]->getGlobalIndex() + 1;
769 <      the_excludes[index*2 + 1] =
770 <        the_atoms[exJ]->getGlobalIndex() + 1;
771 <      
772 < #else  // isn't MPI
773 <      
774 <      the_excludes[index*2] =     exI + 1;
775 <      the_excludes[index*2 + 1] = exJ + 1;
776 <      // fortran index from 1 (hence the +1 in the indexing)
600 >          tempI = currentBond->getA() + atomOffset;
601 >          if( comp_stamps[stampID]->isAtomInRigidBody(currentBond->getA(), whichRigidBody, consAtomIndex))
602 >            consElement1 = new ConstraintRigidBody(molInfo.myRigidBodies[whichRigidBody], consAtomIndex);
603 >          else
604 >             consElement1 = new ConstraintAtom(info[k].atoms[tempI]);      
605  
606 < #endif  //is_mpi
607 <    
608 <  }
606 >          tempJ =  currentBond->getB() + atomOffset;
607 >          if(comp_stamps[stampID]->isAtomInRigidBody(currentBond->getB(), whichRigidBody, consAtomIndex))
608 >            consElement2 = new ConstraintRigidBody(molInfo.myRigidBodies[whichRigidBody], consAtomIndex);
609 >          else
610 >             consElement2 = new ConstraintAtom(info[k].atoms[tempJ]);    
611  
612 <
613 <
614 <
615 <
786 <
787 <
788 <
789 <
790 <
791 <
792 <
793 <
794 <
795 <
796 < void SimSetup::makeAtoms( void ){
797 <
798 <  int i, j, k, index;
799 <  double ux, uy, uz, uSqr, u;
800 <  AtomStamp* current_atom;
801 <
802 <  DirectionalAtom* dAtom;
803 <  int molIndex, molStart, molEnd, nMemb, lMolIndex;
804 <
805 <  lMolIndex = 0;
806 <  molIndex = 0;
807 <  index = 0;
808 <  for( i=0; i<n_components; i++ ){
809 <
810 <    for( j=0; j<components_nmol[i]; j++ ){
811 <
812 < #ifdef IS_MPI
813 <      if( mpiSim->getMyMolStart() <= molIndex &&
814 <          molIndex <= mpiSim->getMyMolEnd() ){
815 < #endif // is_mpi        
816 <
817 <        molStart = index;
818 <        nMemb = comp_stamps[i]->getNAtoms();
819 <        for( k=0; k<comp_stamps[i]->getNAtoms(); k++ ){
820 <          
821 <          current_atom = comp_stamps[i]->getAtom( k );
822 <          if( current_atom->haveOrientation() ){
823 <            
824 <            dAtom = new DirectionalAtom(index);
825 <            simnfo->n_oriented++;
826 <            the_atoms[index] = dAtom;
827 <            
828 <            ux = current_atom->getOrntX();
829 <            uy = current_atom->getOrntY();
830 <            uz = current_atom->getOrntZ();
831 <            
832 <            uSqr = (ux * ux) + (uy * uy) + (uz * uz);
833 <            
834 <            u = sqrt( uSqr );
835 <            ux = ux / u;
836 <            uy = uy / u;
837 <            uz = uz / u;
838 <            
839 <            dAtom->setSUx( ux );
840 <            dAtom->setSUy( uy );
841 <            dAtom->setSUz( uz );
842 <          }
843 <          else{
844 <            the_atoms[index] = new GeneralAtom(index);
845 <          }
846 <          the_atoms[index]->setType( current_atom->getType() );
847 <          the_atoms[index]->setIndex( index );
848 <          
849 <          // increment the index and repeat;
850 <          index++;
851 <        }
852 <        
853 <        molEnd = index -1;
854 <        the_molecules[lMolIndex].setNMembers( nMemb );
855 <        the_molecules[lMolIndex].setStartAtom( molStart );
856 <        the_molecules[lMolIndex].setEndAtom( molEnd );
857 <        the_molecules[lMolIndex].setStampID( i );
858 <        lMolIndex++;
859 <
860 < #ifdef IS_MPI
861 <      }
862 < #endif //is_mpi
612 >          consPair = new DistanceConstraintPair(consElement1, consElement2);
613 >          molInfo.myConstraintPairs.push_back(consPair);
614 >        }
615 >      }  
616        
617 <      molIndex++;
618 <    }
619 <  }
617 >      //loop over rigid bodies, if two rigid bodies share same joint, creat a HingeConstraintPair
618 >      for (int rb1 = 0; rb1 < molInfo.nRigidBodies -1 ; rb1++){
619 >        for (int rb2 = rb1 + 1; rb2 < molInfo.nRigidBodies ; rb2++){
620 >          
621 >          jointAtoms = comp_stamps[stampID]->getJointAtoms(rb1, rb2);
622  
623 < #ifdef IS_MPI
624 <    for( i=0; i<mpiSim->getMyNlocal(); i++ ) the_atoms[i]->setGlobalIndex( globalIndex[i] );
625 <    
871 <    delete[] globalIndex;
623 >          for(size_t m = 0; m < jointAtoms.size(); m++){          
624 >            consElement1 = new ConstraintRigidBody(molInfo.myRigidBodies[rb1], jointAtoms[m].first);
625 >            consElement2 = new ConstraintRigidBody(molInfo.myRigidBodies[rb2], jointAtoms[m].second);
626  
627 <    mpiSim->mpiRefresh();
628 < #endif //IS_MPI
629 <          
876 <  the_ff->initializeAtoms();
877 < }
627 >            consPair = new JointConstraintPair(consElement1, consElement2);  
628 >            molInfo.myConstraintPairs.push_back(consPair);            
629 >          }
630  
631 < void SimSetup::makeBonds( void ){
880 <
881 <  int i, j, k, index, offset, molIndex, exI, exJ, tempEx;
882 <  bond_pair* the_bonds;
883 <  BondStamp* current_bond;
884 <
885 <  the_bonds = new bond_pair[tot_bonds];
886 <  index = 0;
887 <  offset = 0;
888 <  molIndex = 0;
889 <
890 <  for( i=0; i<n_components; i++ ){
891 <
892 <    for( j=0; j<components_nmol[i]; j++ ){
893 <
894 < #ifdef IS_MPI
895 <      if( mpiSim->getMyMolStart() <= molIndex &&
896 <          molIndex <= mpiSim->getMyMolEnd() ){
897 < #endif // is_mpi        
898 <        
899 <        for( k=0; k<comp_stamps[i]->getNBonds(); k++ ){
900 <          
901 <          current_bond = comp_stamps[i]->getBond( k );
902 <          the_bonds[index].a = current_bond->getA() + offset;
903 <          the_bonds[index].b = current_bond->getB() + offset;
904 <
905 <          exI = the_bonds[index].a;
906 <          exJ = the_bonds[index].b;
907 <
908 <          // exclude_I must always be the smaller of the pair
909 <          if( exI > exJ ){
910 <            tempEx = exI;
911 <            exI = exJ;
912 <            exJ = tempEx;
913 <          }
914 <
915 <          
916 < #ifdef IS_MPI
917 <
918 <          the_excludes[index*2] =    
919 <            the_atoms[exI]->getGlobalIndex() + 1;
920 <          the_excludes[index*2 + 1] =
921 <            the_atoms[exJ]->getGlobalIndex() + 1;
922 <
923 < #else  // isn't MPI
924 <          
925 <          the_excludes[index*2] =     exI + 1;
926 <          the_excludes[index*2 + 1] = exJ + 1;
927 <          // fortran index from 1 (hence the +1 in the indexing)
928 < #endif  //is_mpi
929 <          
930 <          // increment the index and repeat;
931 <          index++;
932 <        }
933 <        offset += comp_stamps[i]->getNAtoms();
934 <        
935 < #ifdef IS_MPI
631 >        }
632        }
937 #endif //is_mpi
633        
634 <      molIndex++;
635 <    }      
636 <  }
637 <
638 <  the_ff->initializeBonds( the_bonds );
639 < }
640 <
641 < void SimSetup::makeBends( void ){
947 <
948 <  int i, j, k, index, offset, molIndex, exI, exJ, tempEx;
949 <  bend_set* the_bends;
950 <  BendStamp* current_bend;
951 <  LinkedAssign* extras;
952 <  LinkedAssign* current_extra;
953 <  
634 > */      
635 >      // send the arrays off to the forceField for init.
636 >      
637 >      the_ff->initializeAtoms(molInfo.nAtoms, molInfo.myAtoms);
638 >      the_ff->initializeBonds(molInfo.nBonds, molInfo.myBonds, theBonds);
639 >      the_ff->initializeBends(molInfo.nBends, molInfo.myBends, theBends);
640 >      the_ff->initializeTorsions(molInfo.nTorsions, molInfo.myTorsions,
641 >                                 theTorsions);
642  
643 <  the_bends = new bend_set[tot_bends];
956 <  index = 0;
957 <  offset = 0;
958 <  molIndex = 0;
959 <  for( i=0; i<n_components; i++ ){
643 >      info[k].molecules[i].initialize(molInfo);
644  
961    for( j=0; j<components_nmol[i]; j++ ){
645  
646 < #ifdef IS_MPI
647 <      if( mpiSim->getMyMolStart() <= molIndex &&
648 <          molIndex <= mpiSim->getMyMolEnd() ){
649 < #endif // is_mpi        
650 <
968 <        for( k=0; k<comp_stamps[i]->getNBends(); k++ ){
969 <          
970 <          current_bend = comp_stamps[i]->getBend( k );
971 <          the_bends[index].a = current_bend->getA() + offset;
972 <          the_bends[index].b = current_bend->getB() + offset;
973 <          the_bends[index].c = current_bend->getC() + offset;
974 <          
975 <          if( current_bend->haveExtras() ){
976 <            
977 <            extras = current_bend->getExtras();
978 <            current_extra = extras;
979 <            
980 <            while( current_extra != NULL ){
981 <              if( !strcmp( current_extra->getlhs(), "ghostVectorSource" )){
982 <                
983 <                switch( current_extra->getType() ){
984 <                  
985 <                case 0:
986 <                  the_bends[index].ghost =
987 <                    current_extra->getInt() + offset;
988 <                  the_bends[index].isGhost = 1;
989 <                  break;
990 <                  
991 <                case 1:
992 <                  the_bends[index].ghost =
993 <                    (int)current_extra->getDouble() + offset;
994 <                  the_bends[index].isGhost = 1;
995 <                  break;
996 <                  
997 <                default:
998 <                  sprintf( painCave.errMsg,
999 <                           "SimSetup Error: ghostVectorSource was neiter a "
1000 <                           "double nor an int.\n"
1001 <                           "-->Bend[%d] in %s\n",
1002 <                           k, comp_stamps[i]->getID() );
1003 <                  painCave.isFatal = 1;
1004 <                  simError();
1005 <                }
1006 <              }
1007 <              
1008 <              else{
1009 <                
1010 <                sprintf( painCave.errMsg,
1011 <                         "SimSetup Error: unhandled bend assignment:\n"
1012 <                         "    -->%s in Bend[%d] in %s\n",
1013 <                         current_extra->getlhs(),
1014 <                         k, comp_stamps[i]->getID() );
1015 <                painCave.isFatal = 1;
1016 <                simError();
1017 <              }
1018 <              
1019 <              current_extra = current_extra->getNext();
1020 <            }
1021 <          }
1022 <          
1023 <          if( !the_bends[index].isGhost ){
1024 <            
1025 <            exI = the_bends[index].a;
1026 <            exJ = the_bends[index].c;
1027 <          }
1028 <          else{
1029 <            
1030 <            exI = the_bends[index].a;
1031 <            exJ = the_bends[index].b;
1032 <          }
1033 <          
1034 <          // exclude_I must always be the smaller of the pair
1035 <          if( exI > exJ ){
1036 <            tempEx = exI;
1037 <            exI = exJ;
1038 <            exJ = tempEx;
1039 <          }
1040 <
1041 <
1042 < #ifdef IS_MPI
1043 <
1044 <          the_excludes[(index + tot_bonds)*2] =    
1045 <            the_atoms[exI]->getGlobalIndex() + 1;
1046 <          the_excludes[(index + tot_bonds)*2 + 1] =
1047 <            the_atoms[exJ]->getGlobalIndex() + 1;
1048 <          
1049 < #else  // isn't MPI
1050 <          
1051 <          the_excludes[(index + tot_bonds)*2] =     exI + 1;
1052 <          the_excludes[(index + tot_bonds)*2 + 1] = exJ + 1;
1053 <          // fortran index from 1 (hence the +1 in the indexing)
1054 < #endif  //is_mpi
1055 <          
1056 <          
1057 <          // increment the index and repeat;
1058 <          index++;
1059 <        }
1060 <        offset += comp_stamps[i]->getNAtoms();
1061 <        
1062 < #ifdef IS_MPI
1063 <      }
1064 < #endif //is_mpi
1065 <
1066 <      molIndex++;
1067 <    }
646 >      atomOffset += molInfo.nAtoms;
647 >      delete[] theBonds;
648 >      delete[] theBends;
649 >      delete[] theTorsions;
650 >    }    
651    }
652  
653   #ifdef IS_MPI
654 <  sprintf( checkPointMsg,
1072 <           "Successfully created the bends list.\n" );
654 >  sprintf(checkPointMsg, "all molecules initialized succesfully");
655    MPIcheckPoint();
656   #endif // is_mpi
1075  
657  
1077  the_ff->initializeBends( the_bends );
658   }
659  
660 < void SimSetup::makeTorsions( void ){
1081 <
1082 <  int i, j, k, index, offset, molIndex, exI, exJ, tempEx;
1083 <  torsion_set* the_torsions;
1084 <  TorsionStamp* current_torsion;
1085 <
1086 <  the_torsions = new torsion_set[tot_torsions];
1087 <  index = 0;
1088 <  offset = 0;
1089 <  molIndex = 0;
1090 <  for( i=0; i<n_components; i++ ){
1091 <
1092 <    for( j=0; j<components_nmol[i]; j++ ){
1093 <
1094 < #ifdef IS_MPI
1095 <      if( mpiSim->getMyMolStart() <= molIndex &&
1096 <          molIndex <= mpiSim->getMyMolEnd() ){
1097 < #endif // is_mpi        
1098 <
1099 <      for( k=0; k<comp_stamps[i]->getNTorsions(); k++ ){
1100 <
1101 <        current_torsion = comp_stamps[i]->getTorsion( k );
1102 <        the_torsions[index].a = current_torsion->getA() + offset;
1103 <        the_torsions[index].b = current_torsion->getB() + offset;
1104 <        the_torsions[index].c = current_torsion->getC() + offset;
1105 <        the_torsions[index].d = current_torsion->getD() + offset;
1106 <
1107 <        exI = the_torsions[index].a;
1108 <        exJ = the_torsions[index].d;
1109 <
1110 <        
1111 <        // exclude_I must always be the smaller of the pair
1112 <        if( exI > exJ ){
1113 <          tempEx = exI;
1114 <          exI = exJ;
1115 <          exJ = tempEx;
1116 <        }
1117 <
1118 <
1119 < #ifdef IS_MPI
1120 <        
1121 <        the_excludes[(index + tot_bonds + tot_bends)*2] =    
1122 <          the_atoms[exI]->getGlobalIndex() + 1;
1123 <        the_excludes[(index + tot_bonds + tot_bends)*2 + 1] =
1124 <          the_atoms[exJ]->getGlobalIndex() + 1;
1125 <        
1126 < #else  // isn't MPI
1127 <        
1128 <        the_excludes[(index + tot_bonds + tot_bends)*2] =     exI + 1;
1129 <        the_excludes[(index + tot_bonds + tot_bends)*2 + 1] = exJ + 1;
1130 <        // fortran indexes from 1 (hence the +1 in the indexing)
1131 < #endif  //is_mpi
1132 <        
1133 <
1134 <        // increment the index and repeat;
1135 <        index++;
1136 <      }
1137 <      offset += comp_stamps[i]->getNAtoms();
1138 <
1139 < #ifdef IS_MPI
1140 <      }
1141 < #endif //is_mpi      
1142 <
1143 <      molIndex++;
1144 <    }
1145 <  }
1146 <
1147 <  the_ff->initializeTorsions( the_torsions );
1148 < }
1149 <
1150 < void SimSetup::initFromBass( void ){
1151 <
660 > void SimSetup::initFromBass(void){
661    int i, j, k;
662    int n_cells;
663    double cellx, celly, cellz;
# Line 1157 | Line 666 | void SimSetup::initFromBass( void ){
666    int n_extra;
667    int have_extra, done;
668  
669 <  temp1 = (double)tot_nmol / 4.0;
670 <  temp2 = pow( temp1, ( 1.0 / 3.0 ) );
671 <  temp3 = ceil( temp2 );
669 >  double vel[3];
670 >  vel[0] = 0.0;
671 >  vel[1] = 0.0;
672 >  vel[2] = 0.0;
673  
674 <  have_extra =0;
675 <  if( temp2 < temp3 ){ // we have a non-complete lattice
676 <    have_extra =1;
674 >  temp1 = (double) tot_nmol / 4.0;
675 >  temp2 = pow(temp1, (1.0 / 3.0));
676 >  temp3 = ceil(temp2);
677  
678 <    n_cells = (int)temp3 - 1;
679 <    cellx = simnfo->box_x / temp3;
680 <    celly = simnfo->box_y / temp3;
681 <    cellz = simnfo->box_z / temp3;
1172 <    n_extra = tot_nmol - ( 4 * n_cells * n_cells * n_cells );
1173 <    temp1 = ((double)n_extra) / ( pow( temp3, 3.0 ) - pow( n_cells, 3.0 ) );
1174 <    n_per_extra = (int)ceil( temp1 );
678 >  have_extra = 0;
679 >  if (temp2 < temp3){
680 >    // we have a non-complete lattice
681 >    have_extra = 1;
682  
683 <    if( n_per_extra > 4){
684 <      sprintf( painCave.errMsg,
685 <               "SimSetup error. There has been an error in constructing"
686 <               " the non-complete lattice.\n" );
683 >    n_cells = (int) temp3 - 1;
684 >    cellx = info[0].boxL[0] / temp3;
685 >    celly = info[0].boxL[1] / temp3;
686 >    cellz = info[0].boxL[2] / temp3;
687 >    n_extra = tot_nmol - (4 * n_cells * n_cells * n_cells);
688 >    temp1 = ((double) n_extra) / (pow(temp3, 3.0) - pow(n_cells, 3.0));
689 >    n_per_extra = (int) ceil(temp1);
690 >
691 >    if (n_per_extra > 4){
692 >      sprintf(painCave.errMsg,
693 >              "SimSetup error. There has been an error in constructing"
694 >              " the non-complete lattice.\n");
695        painCave.isFatal = 1;
696        simError();
697      }
698    }
699    else{
700 <    n_cells = (int)temp3;
701 <    cellx = simnfo->box_x / temp3;
702 <    celly = simnfo->box_y / temp3;
703 <    cellz = simnfo->box_z / temp3;
700 >    n_cells = (int) temp3;
701 >    cellx = info[0].boxL[0] / temp3;
702 >    celly = info[0].boxL[1] / temp3;
703 >    cellz = info[0].boxL[2] / temp3;
704    }
705  
706    current_mol = 0;
# Line 1193 | Line 708 | void SimSetup::initFromBass( void ){
708    current_comp = 0;
709    current_atom_ndx = 0;
710  
711 <  for( i=0; i < n_cells ; i++ ){
712 <    for( j=0; j < n_cells; j++ ){
713 <      for( k=0; k < n_cells; k++ ){
711 >  for (i = 0; i < n_cells ; i++){
712 >    for (j = 0; j < n_cells; j++){
713 >      for (k = 0; k < n_cells; k++){
714 >        makeElement(i * cellx, j * celly, k * cellz);
715  
716 <        makeElement( i * cellx,
1201 <                     j * celly,
1202 <                     k * cellz );
716 >        makeElement(i * cellx + 0.5 * cellx, j * celly + 0.5 * celly, k * cellz);
717  
718 <        makeElement( i * cellx + 0.5 * cellx,
1205 <                     j * celly + 0.5 * celly,
1206 <                     k * cellz );
718 >        makeElement(i * cellx, j * celly + 0.5 * celly, k * cellz + 0.5 * cellz);
719  
720 <        makeElement( i * cellx,
1209 <                     j * celly + 0.5 * celly,
1210 <                     k * cellz + 0.5 * cellz );
1211 <
1212 <        makeElement( i * cellx + 0.5 * cellx,
1213 <                     j * celly,
1214 <                     k * cellz + 0.5 * cellz );
720 >        makeElement(i * cellx + 0.5 * cellx, j * celly, k * cellz + 0.5 * cellz);
721        }
722      }
723    }
724  
725 <  if( have_extra ){
725 >  if (have_extra){
726      done = 0;
727  
728      int start_ndx;
729 <    for( i=0; i < (n_cells+1) && !done; i++ ){
730 <      for( j=0; j < (n_cells+1) && !done; j++ ){
729 >    for (i = 0; i < (n_cells + 1) && !done; i++){
730 >      for (j = 0; j < (n_cells + 1) && !done; j++){
731 >        if (i < n_cells){
732 >          if (j < n_cells){
733 >            start_ndx = n_cells;
734 >          }
735 >          else
736 >            start_ndx = 0;
737 >        }
738 >        else
739 >          start_ndx = 0;
740  
741 <        if( i < n_cells ){
741 >        for (k = start_ndx; k < (n_cells + 1) && !done; k++){
742 >          makeElement(i * cellx, j * celly, k * cellz);
743 >          done = (current_mol >= tot_nmol);
744  
745 <          if( j < n_cells ){
746 <            start_ndx = n_cells;
747 <          }
748 <          else start_ndx = 0;
749 <        }
1233 <        else start_ndx = 0;
745 >          if (!done && n_per_extra > 1){
746 >            makeElement(i * cellx + 0.5 * cellx, j * celly + 0.5 * celly,
747 >                        k * cellz);
748 >            done = (current_mol >= tot_nmol);
749 >          }
750  
751 <        for( k=start_ndx; k < (n_cells+1) && !done; k++ ){
751 >          if (!done && n_per_extra > 2){
752 >            makeElement(i * cellx, j * celly + 0.5 * celly,
753 >                        k * cellz + 0.5 * cellz);
754 >            done = (current_mol >= tot_nmol);
755 >          }
756  
757 <          makeElement( i * cellx,
758 <                       j * celly,
759 <                       k * cellz );
760 <          done = ( current_mol >= tot_nmol );
761 <
762 <          if( !done && n_per_extra > 1 ){
1243 <            makeElement( i * cellx + 0.5 * cellx,
1244 <                         j * celly + 0.5 * celly,
1245 <                         k * cellz );
1246 <            done = ( current_mol >= tot_nmol );
1247 <          }
1248 <
1249 <          if( !done && n_per_extra > 2){
1250 <            makeElement( i * cellx,
1251 <                         j * celly + 0.5 * celly,
1252 <                         k * cellz + 0.5 * cellz );
1253 <            done = ( current_mol >= tot_nmol );
1254 <          }
1255 <
1256 <          if( !done && n_per_extra > 3){
1257 <            makeElement( i * cellx + 0.5 * cellx,
1258 <                         j * celly,
1259 <                         k * cellz + 0.5 * cellz );
1260 <            done = ( current_mol >= tot_nmol );
1261 <          }
1262 <        }
757 >          if (!done && n_per_extra > 3){
758 >            makeElement(i * cellx + 0.5 * cellx, j * celly,
759 >                        k * cellz + 0.5 * cellz);
760 >            done = (current_mol >= tot_nmol);
761 >          }
762 >        }
763        }
764      }
765    }
766  
767 <
768 <  for( i=0; i<simnfo->n_atoms; i++ ){
1269 <    simnfo->atoms[i]->set_vx( 0.0 );
1270 <    simnfo->atoms[i]->set_vy( 0.0 );
1271 <    simnfo->atoms[i]->set_vz( 0.0 );
767 >  for (i = 0; i < info[0].n_atoms; i++){
768 >    info[0].atoms[i]->setVel(vel);
769    }
770   }
771  
772 < void SimSetup::makeElement( double x, double y, double z ){
1276 <
772 > void SimSetup::makeElement(double x, double y, double z){
773    int k;
774    AtomStamp* current_atom;
775    DirectionalAtom* dAtom;
776    double rotMat[3][3];
777 +  double pos[3];
778  
779 <  for( k=0; k<comp_stamps[current_comp]->getNAtoms(); k++ ){
780 <
781 <    current_atom = comp_stamps[current_comp]->getAtom( k );
782 <    if( !current_atom->havePosition() ){
783 <      sprintf( painCave.errMsg,
784 <               "SimSetup:initFromBass error.\n"
785 <               "\tComponent %s, atom %s does not have a position specified.\n"
786 <               "\tThe initialization routine is unable to give a start"
787 <               " position.\n",
1291 <               comp_stamps[current_comp]->getID(),
1292 <               current_atom->getType() );
779 >  for (k = 0; k < comp_stamps[current_comp]->getNAtoms(); k++){
780 >    current_atom = comp_stamps[current_comp]->getAtom(k);
781 >    if (!current_atom->havePosition()){
782 >      sprintf(painCave.errMsg,
783 >              "SimSetup:initFromBass error.\n"
784 >              "\tComponent %s, atom %s does not have a position specified.\n"
785 >              "\tThe initialization routine is unable to give a start"
786 >              " position.\n",
787 >              comp_stamps[current_comp]->getID(), current_atom->getType());
788        painCave.isFatal = 1;
789        simError();
790      }
791  
792 <    the_atoms[current_atom_ndx]->setX( x + current_atom->getPosX() );
793 <    the_atoms[current_atom_ndx]->setY( y + current_atom->getPosY() );
794 <    the_atoms[current_atom_ndx]->setZ( z + current_atom->getPosZ() );
792 >    pos[0] = x + current_atom->getPosX();
793 >    pos[1] = y + current_atom->getPosY();
794 >    pos[2] = z + current_atom->getPosZ();
795  
796 <    if( the_atoms[current_atom_ndx]->isDirectional() ){
796 >    info[0].atoms[current_atom_ndx]->setPos(pos);
797  
798 <      dAtom = (DirectionalAtom *)the_atoms[current_atom_ndx];
798 >    if (info[0].atoms[current_atom_ndx]->isDirectional()){
799 >      dAtom = (DirectionalAtom *) info[0].atoms[current_atom_ndx];
800  
801        rotMat[0][0] = 1.0;
802        rotMat[0][1] = 0.0;
# Line 1314 | Line 810 | void SimSetup::makeElement( double x, double y, double
810        rotMat[2][1] = 0.0;
811        rotMat[2][2] = 1.0;
812  
813 <      dAtom->setA( rotMat );
813 >      dAtom->setA(rotMat);
814 >    }
815 >
816 >    current_atom_ndx++;
817 >  }
818 >
819 >  current_mol++;
820 >  current_comp_mol++;
821 >
822 >  if (current_comp_mol >= components_nmol[current_comp]){
823 >    current_comp_mol = 0;
824 >    current_comp++;
825 >  }
826 > }
827 >
828 >
829 > void SimSetup::gatherInfo(void){
830 >  int i;
831 >
832 >  ensembleCase = -1;
833 >  ffCase = -1;
834 >
835 >  // set the easy ones first
836 >
837 >  for (i = 0; i < nInfo; i++){
838 >    info[i].target_temp = globals->getTargetTemp();
839 >    info[i].dt = globals->getDt();
840 >    info[i].run_time = globals->getRunTime();
841 >  }
842 >  n_components = globals->getNComponents();
843 >
844 >
845 >  // get the forceField
846 >
847 >  strcpy(force_field, globals->getForceField());
848 >
849 >  if (!strcasecmp(force_field, "DUFF")){
850 >    ffCase = FF_DUFF;
851 >  }
852 >  else if (!strcasecmp(force_field, "LJ")){
853 >    ffCase = FF_LJ;
854 >  }
855 >  else if (!strcasecmp(force_field, "EAM")){
856 >    ffCase = FF_EAM;
857 >  }
858 >  else if (!strcasecmp(force_field, "WATER")){
859 >    ffCase = FF_H2O;
860 >  }
861 >  else{
862 >    sprintf(painCave.errMsg, "SimSetup Error. Unrecognized force field -> %s\n",
863 >            force_field);
864 >         painCave.isFatal = 1;
865 >         simError();
866 >  }
867 >
868 >    // get the ensemble
869 >
870 >  strcpy(ensemble, globals->getEnsemble());
871 >
872 >  if (!strcasecmp(ensemble, "NVE")){
873 >    ensembleCase = NVE_ENS;
874 >  }
875 >  else if (!strcasecmp(ensemble, "NVT")){
876 >    ensembleCase = NVT_ENS;
877 >  }
878 >  else if (!strcasecmp(ensemble, "NPTi") || !strcasecmp(ensemble, "NPT")){
879 >    ensembleCase = NPTi_ENS;
880 >  }
881 >  else if (!strcasecmp(ensemble, "NPTf")){
882 >    ensembleCase = NPTf_ENS;
883 >  }
884 >  else if (!strcasecmp(ensemble, "NPTxyz")){
885 >    ensembleCase = NPTxyz_ENS;
886 >  }
887 >  else{
888 >    sprintf(painCave.errMsg,
889 >            "SimSetup Warning. Unrecognized Ensemble -> %s \n"
890 >            "\treverting to NVE for this simulation.\n",
891 >            ensemble);
892 >         painCave.isFatal = 0;
893 >         simError();
894 >         strcpy(ensemble, "NVE");
895 >         ensembleCase = NVE_ENS;
896 >  }  
897 >
898 >  for (i = 0; i < nInfo; i++){
899 >    strcpy(info[i].ensemble, ensemble);
900 >
901 >    // get the mixing rule
902 >
903 >    strcpy(info[i].mixingRule, globals->getMixingRule());
904 >    info[i].usePBC = globals->getPBC();
905 >  }
906 >
907 >  // get the components and calculate the tot_nMol and indvidual n_mol
908 >
909 >  the_components = globals->getComponents();
910 >  components_nmol = new int[n_components];
911 >
912 >
913 >  if (!globals->haveNMol()){
914 >    // we don't have the total number of molecules, so we assume it is
915 >    // given in each component
916 >
917 >    tot_nmol = 0;
918 >    for (i = 0; i < n_components; i++){
919 >      if (!the_components[i]->haveNMol()){
920 >        // we have a problem
921 >        sprintf(painCave.errMsg,
922 >                "SimSetup Error. No global NMol or component NMol given.\n"
923 >                "\tCannot calculate the number of atoms.\n");
924 >        painCave.isFatal = 1;
925 >        simError();
926 >      }
927 >
928 >      tot_nmol += the_components[i]->getNMol();
929 >      components_nmol[i] = the_components[i]->getNMol();
930 >    }
931 >  }
932 >  else{
933 >    sprintf(painCave.errMsg,
934 >            "SimSetup error.\n"
935 >            "\tSorry, the ability to specify total"
936 >            " nMols and then give molfractions in the components\n"
937 >            "\tis not currently supported."
938 >            " Please give nMol in the components.\n");
939 >    painCave.isFatal = 1;
940 >    simError();
941 >  }
942 >
943 >  //check whether sample time, status time, thermal time and reset time are divisble by dt
944 >  if (globals->haveSampleTime() && !isDivisible(globals->getSampleTime(), globals->getDt())){
945 >    sprintf(painCave.errMsg,
946 >            "Sample time is not divisible by dt.\n"
947 >            "\tThis will result in samples that are not uniformly\n"
948 >            "\tdistributed in time.  If this is a problem, change\n"
949 >            "\tyour sampleTime variable.\n");
950 >    painCave.isFatal = 0;
951 >    simError();    
952 >  }
953 >
954 >  if (globals->haveStatusTime() && !isDivisible(globals->getStatusTime(), globals->getDt())){
955 >    sprintf(painCave.errMsg,
956 >            "Status time is not divisible by dt.\n"
957 >            "\tThis will result in status reports that are not uniformly\n"
958 >            "\tdistributed in time.  If this is a problem, change \n"
959 >            "\tyour statusTime variable.\n");
960 >    painCave.isFatal = 0;
961 >    simError();    
962 >  }
963 >
964 >  if (globals->haveThermalTime() && !isDivisible(globals->getThermalTime(), globals->getDt())){
965 >    sprintf(painCave.errMsg,
966 >            "Thermal time is not divisible by dt.\n"
967 >            "\tThis will result in thermalizations that are not uniformly\n"
968 >            "\tdistributed in time.  If this is a problem, change \n"
969 >            "\tyour thermalTime variable.\n");
970 >    painCave.isFatal = 0;
971 >    simError();    
972 >  }  
973 >
974 >  if (globals->haveResetTime() && !isDivisible(globals->getResetTime(), globals->getDt())){
975 >    sprintf(painCave.errMsg,
976 >            "Reset time is not divisible by dt.\n"
977 >            "\tThis will result in integrator resets that are not uniformly\n"
978 >            "\tdistributed in time.  If this is a problem, change\n"
979 >            "\tyour resetTime variable.\n");
980 >    painCave.isFatal = 0;
981 >    simError();    
982 >  }
983 >
984 >  // set the status, sample, and thermal kick times
985 >
986 >  for (i = 0; i < nInfo; i++){
987 >    if (globals->haveSampleTime()){
988 >      info[i].sampleTime = globals->getSampleTime();
989 >      info[i].statusTime = info[i].sampleTime;
990 >    }
991 >    else{
992 >      info[i].sampleTime = globals->getRunTime();
993 >      info[i].statusTime = info[i].sampleTime;
994 >    }
995 >
996 >    if (globals->haveStatusTime()){
997 >      info[i].statusTime = globals->getStatusTime();
998 >    }
999 >
1000 >    if (globals->haveThermalTime()){
1001 >      info[i].thermalTime = globals->getThermalTime();
1002 >    } else {
1003 >      info[i].thermalTime = globals->getRunTime();
1004 >    }
1005 >
1006 >    info[i].resetIntegrator = 0;
1007 >    if( globals->haveResetTime() ){
1008 >      info[i].resetTime = globals->getResetTime();
1009 >      info[i].resetIntegrator = 1;
1010 >    }
1011 >
1012 >    // check for the temperature set flag
1013 >    
1014 >    if (globals->haveTempSet())
1015 >      info[i].setTemp = globals->getTempSet();
1016 >
1017 >    // check for the extended State init
1018 >
1019 >    info[i].useInitXSstate = globals->getUseInitXSstate();
1020 >    info[i].orthoTolerance = globals->getOrthoBoxTolerance();
1021 >
1022 >    // check for thermodynamic integration
1023 >    if (globals->getUseThermInt()) {
1024 >      if (globals->haveThermIntLambda() && globals->haveThermIntK()) {
1025 >        info[i].useThermInt = globals->getUseThermInt();
1026 >        info[i].thermIntLambda = globals->getThermIntLambda();
1027 >        info[i].thermIntK = globals->getThermIntK();
1028 >        
1029 >        Restraints *myRestraint = new Restraints(tot_nmol, info[i].thermIntLambda, info[i].thermIntK);
1030 >        info[i].restraint = myRestraint;
1031 >      }
1032 >      else {
1033 >        sprintf(painCave.errMsg,
1034 >                "SimSetup Error:\n"
1035 >                "\tKeyword useThermInt was set to 'true' but\n"
1036 >                "\tthermodynamicIntegrationLambda (and/or\n"
1037 >                "\tthermodynamicIntegrationK) was not specified.\n"
1038 >                "\tPlease provide a lambda value and k value in your .bass file.\n");
1039 >        painCave.isFatal = 1;
1040 >        simError();    
1041 >      }
1042 >    }
1043 >    else if(globals->haveThermIntLambda() || globals->haveThermIntK()){
1044 >        sprintf(painCave.errMsg,
1045 >                "SimSetup Warning: If you want to use Thermodynamic\n"
1046 >                "\tIntegration, set useThermInt to 'true' in your .bass file.\n"
1047 >                "\tThe useThermInt keyword is 'false' by default, so your\n"
1048 >                "\tlambda and/or k values are being ignored.\n");
1049 >        painCave.isFatal = 0;
1050 >        simError();  
1051 >    }
1052 >  }
1053 >  
1054 >  //setup seed for random number generator
1055 >  int seedValue;
1056 >
1057 >  if (globals->haveSeed()){
1058 >    seedValue = globals->getSeed();
1059 >
1060 >    if(seedValue / 1E9 == 0){
1061 >      sprintf(painCave.errMsg,
1062 >              "Seed for sprng library should contain at least 9 digits\n"
1063 >              "OOPSE will generate a seed for user\n");
1064 >      painCave.isFatal = 0;
1065 >      simError();
1066 >
1067 >      //using seed generated by system instead of invalid seed set by user
1068 > #ifndef IS_MPI
1069 >      seedValue = make_sprng_seed();
1070 > #else
1071 >      if (worldRank == 0){
1072 >        seedValue = make_sprng_seed();
1073 >      }
1074 >      MPI_Bcast(&seedValue, 1, MPI_INT, 0, MPI_COMM_WORLD);  
1075 > #endif      
1076 >    }
1077 >  }//end of if branch of globals->haveSeed()
1078 >  else{
1079 >    
1080 > #ifndef IS_MPI
1081 >    seedValue = make_sprng_seed();
1082 > #else
1083 >    if (worldRank == 0){
1084 >      seedValue = make_sprng_seed();
1085 >    }
1086 >    MPI_Bcast(&seedValue, 1, MPI_INT, 0, MPI_COMM_WORLD);  
1087 > #endif
1088 >  }//end of globals->haveSeed()
1089 >
1090 >  for (int i = 0; i < nInfo; i++){
1091 >    info[i].setSeed(seedValue);
1092 >  }
1093 >  
1094 > #ifdef IS_MPI
1095 >  strcpy(checkPointMsg, "Successfully gathered all information from Bass\n");
1096 >  MPIcheckPoint();
1097 > #endif // is_mpi
1098 > }
1099 >
1100 >
1101 > void SimSetup::finalInfoCheck(void){
1102 >  int index;
1103 >  int usesDipoles;
1104 >  int usesCharges;
1105 >  int i;
1106 >
1107 >  for (i = 0; i < nInfo; i++){
1108 >    // check electrostatic parameters
1109 >
1110 >    index = 0;
1111 >    usesDipoles = 0;
1112 >    while ((index < info[i].n_atoms) && !usesDipoles){
1113 >      usesDipoles = (info[i].atoms[index])->hasDipole();
1114 >      index++;
1115 >    }
1116 >    index = 0;
1117 >    usesCharges = 0;
1118 >    while ((index < info[i].n_atoms) && !usesCharges){
1119 >      usesCharges= (info[i].atoms[index])->hasCharge();
1120 >      index++;
1121 >    }
1122 > #ifdef IS_MPI
1123 >    int myUse = usesDipoles;
1124 >    MPI_Allreduce(&myUse, &usesDipoles, 1, MPI_INT, MPI_LOR, MPI_COMM_WORLD);
1125 > #endif //is_mpi
1126 >
1127 >    double theRcut, theRsw;
1128 >
1129 >    if (globals->haveRcut()) {
1130 >      theRcut = globals->getRcut();
1131 >
1132 >      if (globals->haveRsw())
1133 >        theRsw = globals->getRsw();
1134 >      else
1135 >        theRsw = theRcut;
1136 >      
1137 >      info[i].setDefaultRcut(theRcut, theRsw);
1138 >
1139 >    } else {
1140 >      
1141 >      the_ff->calcRcut();
1142 >      theRcut = info[i].getRcut();
1143 >
1144 >      if (globals->haveRsw())
1145 >        theRsw = globals->getRsw();
1146 >      else
1147 >        theRsw = theRcut;
1148 >      
1149 >      info[i].setDefaultRcut(theRcut, theRsw);
1150 >    }
1151 >
1152 >    if (globals->getUseRF()){
1153 >      info[i].useReactionField = 1;
1154 >      
1155 >      if (!globals->haveRcut()){
1156 >        sprintf(painCave.errMsg,
1157 >                "SimSetup Warning: No value was set for the cutoffRadius.\n"
1158 >                "\tOOPSE will use a default value of 15.0 angstroms"
1159 >                "\tfor the cutoffRadius.\n");
1160 >        painCave.isFatal = 0;
1161 >        simError();
1162 >        theRcut = 15.0;
1163 >      }
1164 >      else{
1165 >        theRcut = globals->getRcut();
1166 >      }
1167 >
1168 >      if (!globals->haveRsw()){
1169 >        sprintf(painCave.errMsg,
1170 >                "SimSetup Warning: No value was set for switchingRadius.\n"
1171 >                "\tOOPSE will use a default value of\n"
1172 >                "\t0.95 * cutoffRadius for the switchingRadius\n");
1173 >        painCave.isFatal = 0;
1174 >        simError();
1175 >        theRsw = 0.95 * theRcut;
1176 >      }
1177 >      else{
1178 >        theRsw = globals->getRsw();
1179 >      }
1180 >
1181 >      info[i].setDefaultRcut(theRcut, theRsw);
1182 >
1183 >      if (!globals->haveDielectric()){
1184 >        sprintf(painCave.errMsg,
1185 >                "SimSetup Error: No Dielectric constant was set.\n"
1186 >                "\tYou are trying to use Reaction Field without"
1187 >                "\tsetting a dielectric constant!\n");
1188 >        painCave.isFatal = 1;
1189 >        simError();
1190 >      }
1191 >      info[i].dielectric = globals->getDielectric();
1192      }
1193 +    else{
1194 +      if (usesDipoles || usesCharges){
1195  
1196 <    current_atom_ndx++;
1196 >        if (!globals->haveRcut()){
1197 >          sprintf(painCave.errMsg,
1198 >                  "SimSetup Warning: No value was set for the cutoffRadius.\n"
1199 >                  "\tOOPSE will use a default value of 15.0 angstroms"
1200 >                  "\tfor the cutoffRadius.\n");
1201 >          painCave.isFatal = 0;
1202 >          simError();
1203 >          theRcut = 15.0;
1204 >      }
1205 >        else{
1206 >          theRcut = globals->getRcut();
1207 >        }
1208 >        
1209 >        if (!globals->haveRsw()){
1210 >          sprintf(painCave.errMsg,
1211 >                  "SimSetup Warning: No value was set for switchingRadius.\n"
1212 >                  "\tOOPSE will use a default value of\n"
1213 >                  "\t0.95 * cutoffRadius for the switchingRadius\n");
1214 >          painCave.isFatal = 0;
1215 >          simError();
1216 >          theRsw = 0.95 * theRcut;
1217 >        }
1218 >        else{
1219 >          theRsw = globals->getRsw();
1220 >        }
1221 >        
1222 >        info[i].setDefaultRcut(theRcut, theRsw);
1223 >        
1224 >      }
1225 >    }
1226    }
1227 + #ifdef IS_MPI
1228 +  strcpy(checkPointMsg, "post processing checks out");
1229 +  MPIcheckPoint();
1230 + #endif // is_mpi
1231  
1232 <  current_mol++;
1233 <  current_comp_mol++;
1232 >  // clean up the forcefield
1233 >  the_ff->cleanMe();
1234 > }
1235 >  
1236 > void SimSetup::initSystemCoords(void){
1237 >  int i;
1238  
1239 <  if( current_comp_mol >= components_nmol[current_comp] ){
1239 >  char* inName;
1240  
1241 <    current_comp_mol = 0;
1242 <    current_comp++;
1241 >  (info[0].getConfiguration())->createArrays(info[0].n_atoms);
1242 >
1243 >  for (i = 0; i < info[0].n_atoms; i++)
1244 >    info[0].atoms[i]->setCoords();
1245 >
1246 >  if (globals->haveInitialConfig()){
1247 >    InitializeFromFile* fileInit;
1248 > #ifdef IS_MPI // is_mpi
1249 >    if (worldRank == 0){
1250 > #endif //is_mpi
1251 >      inName = globals->getInitialConfig();
1252 >      fileInit = new InitializeFromFile(inName);
1253 > #ifdef IS_MPI
1254 >    }
1255 >    else
1256 >      fileInit = new InitializeFromFile(NULL);
1257 > #endif
1258 >    fileInit->readInit(info); // default velocities on
1259 >
1260 >    delete fileInit;
1261 >  }
1262 >  else{
1263 >    
1264 >    // no init from bass
1265 >    
1266 >    sprintf(painCave.errMsg,
1267 >            "Cannot intialize a simulation without an initial configuration file.\n");
1268 >    painCave.isFatal = 1;;
1269 >    simError();
1270 >    
1271 >  }
1272 >
1273 > #ifdef IS_MPI
1274 >  strcpy(checkPointMsg, "Successfully read in the initial configuration");
1275 >  MPIcheckPoint();
1276 > #endif // is_mpi
1277 > }
1278 >
1279 >
1280 > void SimSetup::makeOutNames(void){
1281 >  int k;
1282 >
1283 >
1284 >  for (k = 0; k < nInfo; k++){
1285 > #ifdef IS_MPI
1286 >    if (worldRank == 0){
1287 > #endif // is_mpi
1288 >
1289 >      if (globals->haveFinalConfig()){
1290 >        strcpy(info[k].finalName, globals->getFinalConfig());
1291 >      }
1292 >      else{
1293 >        strcpy(info[k].finalName, inFileName);
1294 >        char* endTest;
1295 >        int nameLength = strlen(info[k].finalName);
1296 >        endTest = &(info[k].finalName[nameLength - 5]);
1297 >        if (!strcmp(endTest, ".bass")){
1298 >          strcpy(endTest, ".eor");
1299 >        }
1300 >        else if (!strcmp(endTest, ".BASS")){
1301 >          strcpy(endTest, ".eor");
1302 >        }
1303 >        else{
1304 >          endTest = &(info[k].finalName[nameLength - 4]);
1305 >          if (!strcmp(endTest, ".bss")){
1306 >            strcpy(endTest, ".eor");
1307 >          }
1308 >          else if (!strcmp(endTest, ".mdl")){
1309 >            strcpy(endTest, ".eor");
1310 >          }
1311 >          else{
1312 >            strcat(info[k].finalName, ".eor");
1313 >          }
1314 >        }
1315 >      }
1316 >
1317 >      // make the sample and status out names
1318 >
1319 >      strcpy(info[k].sampleName, inFileName);
1320 >      char* endTest;
1321 >      int nameLength = strlen(info[k].sampleName);
1322 >      endTest = &(info[k].sampleName[nameLength - 5]);
1323 >      if (!strcmp(endTest, ".bass")){
1324 >        strcpy(endTest, ".dump");
1325 >      }
1326 >      else if (!strcmp(endTest, ".BASS")){
1327 >        strcpy(endTest, ".dump");
1328 >      }
1329 >      else{
1330 >        endTest = &(info[k].sampleName[nameLength - 4]);
1331 >        if (!strcmp(endTest, ".bss")){
1332 >          strcpy(endTest, ".dump");
1333 >        }
1334 >        else if (!strcmp(endTest, ".mdl")){
1335 >          strcpy(endTest, ".dump");
1336 >        }
1337 >        else{
1338 >          strcat(info[k].sampleName, ".dump");
1339 >        }
1340 >      }
1341 >
1342 >      strcpy(info[k].statusName, inFileName);
1343 >      nameLength = strlen(info[k].statusName);
1344 >      endTest = &(info[k].statusName[nameLength - 5]);
1345 >      if (!strcmp(endTest, ".bass")){
1346 >        strcpy(endTest, ".stat");
1347 >      }
1348 >      else if (!strcmp(endTest, ".BASS")){
1349 >        strcpy(endTest, ".stat");
1350 >      }
1351 >      else{
1352 >        endTest = &(info[k].statusName[nameLength - 4]);
1353 >        if (!strcmp(endTest, ".bss")){
1354 >          strcpy(endTest, ".stat");
1355 >        }
1356 >        else if (!strcmp(endTest, ".mdl")){
1357 >          strcpy(endTest, ".stat");
1358 >        }
1359 >        else{
1360 >          strcat(info[k].statusName, ".stat");
1361 >        }
1362 >      }
1363 >
1364 >      strcpy(info[k].rawPotName, inFileName);
1365 >      nameLength = strlen(info[k].rawPotName);
1366 >      endTest = &(info[k].rawPotName[nameLength - 5]);
1367 >      if (!strcmp(endTest, ".bass")){
1368 >        strcpy(endTest, ".raw");
1369 >      }
1370 >      else if (!strcmp(endTest, ".BASS")){
1371 >        strcpy(endTest, ".raw");
1372 >      }
1373 >      else{
1374 >        endTest = &(info[k].rawPotName[nameLength - 4]);
1375 >        if (!strcmp(endTest, ".bss")){
1376 >          strcpy(endTest, ".raw");
1377 >        }
1378 >        else if (!strcmp(endTest, ".mdl")){
1379 >          strcpy(endTest, ".raw");
1380 >        }
1381 >        else{
1382 >          strcat(info[k].rawPotName, ".raw");
1383 >        }
1384 >      }
1385 >
1386 > #ifdef IS_MPI
1387 >
1388 >    }
1389 > #endif // is_mpi
1390 >  }
1391 > }
1392 >
1393 >
1394 > void SimSetup::sysObjectsCreation(void){
1395 >  int i, k;
1396 >
1397 >  // create the forceField
1398 >
1399 >  createFF();
1400 >
1401 >  // extract componentList
1402 >
1403 >  compList();
1404 >
1405 >  // calc the number of atoms, bond, bends, and torsions
1406 >
1407 >  calcSysValues();
1408 >
1409 > #ifdef IS_MPI
1410 >  // divide the molecules among the processors
1411 >
1412 >  mpiMolDivide();
1413 > #endif //is_mpi
1414 >
1415 >  // create the atom and SRI arrays. Also initialize Molecule Stamp ID's
1416 >
1417 >  makeSysArrays();
1418 >
1419 >  // make and initialize the molecules (all but atomic coordinates)
1420 >
1421 >  makeMolecules();
1422 >
1423 >  for (k = 0; k < nInfo; k++){
1424 >    info[k].identArray = new int[info[k].n_atoms];
1425 >    for (i = 0; i < info[k].n_atoms; i++){
1426 >      info[k].identArray[i] = info[k].atoms[i]->getIdent();
1427 >    }
1428 >  }
1429 > }
1430 >
1431 >
1432 > void SimSetup::createFF(void){
1433 >  switch (ffCase){
1434 >    case FF_DUFF:
1435 >      the_ff = new DUFF();
1436 >      break;
1437 >
1438 >    case FF_LJ:
1439 >      the_ff = new LJFF();
1440 >      break;
1441 >
1442 >    case FF_EAM:
1443 >      the_ff = new EAM_FF();
1444 >      break;
1445 >
1446 >    case FF_H2O:
1447 >      the_ff = new WATER();
1448 >      break;
1449 >
1450 >    default:
1451 >      sprintf(painCave.errMsg,
1452 >              "SimSetup Error. Unrecognized force field in case statement.\n");
1453 >      painCave.isFatal = 1;
1454 >      simError();
1455 >  }
1456 >
1457 > #ifdef IS_MPI
1458 >  strcpy(checkPointMsg, "ForceField creation successful");
1459 >  MPIcheckPoint();
1460 > #endif // is_mpi
1461 > }
1462 >
1463 >
1464 > void SimSetup::compList(void){
1465 >  int i;
1466 >  char* id;
1467 >  LinkedMolStamp* headStamp = new LinkedMolStamp();
1468 >  LinkedMolStamp* currentStamp = NULL;
1469 >  comp_stamps = new MoleculeStamp * [n_components];
1470 >  bool haveCutoffGroups;
1471 >
1472 >  haveCutoffGroups = false;
1473 >  
1474 >  // make an array of molecule stamps that match the components used.
1475 >  // also extract the used stamps out into a separate linked list
1476 >
1477 >  for (i = 0; i < nInfo; i++){
1478 >    info[i].nComponents = n_components;
1479 >    info[i].componentsNmol = components_nmol;
1480 >    info[i].compStamps = comp_stamps;
1481 >    info[i].headStamp = headStamp;
1482 >  }
1483 >
1484 >
1485 >  for (i = 0; i < n_components; i++){
1486 >    id = the_components[i]->getType();
1487 >    comp_stamps[i] = NULL;
1488 >
1489 >    // check to make sure the component isn't already in the list
1490 >
1491 >    comp_stamps[i] = headStamp->match(id);
1492 >    if (comp_stamps[i] == NULL){
1493 >      // extract the component from the list;
1494 >
1495 >      currentStamp = stamps->extractMolStamp(id);
1496 >      if (currentStamp == NULL){
1497 >        sprintf(painCave.errMsg,
1498 >                "SimSetup error: Component \"%s\" was not found in the "
1499 >                "list of declared molecules\n",
1500 >                id);
1501 >        painCave.isFatal = 1;
1502 >        simError();
1503 >      }
1504 >
1505 >      headStamp->add(currentStamp);
1506 >      comp_stamps[i] = headStamp->match(id);
1507 >    }
1508 >
1509 >    if(comp_stamps[i]->getNCutoffGroups() > 0)
1510 >      haveCutoffGroups = true;    
1511 >  }
1512 >    
1513 >  for (i = 0; i < nInfo; i++)
1514 >    info[i].haveCutoffGroups = haveCutoffGroups;
1515 >
1516 > #ifdef IS_MPI
1517 >  strcpy(checkPointMsg, "Component stamps successfully extracted\n");
1518 >  MPIcheckPoint();
1519 > #endif // is_mpi
1520 > }
1521 >
1522 > void SimSetup::calcSysValues(void){
1523 >  int i, j;
1524 >  int ncutgroups, atomsingroups, ngroupsinstamp;
1525 >
1526 >  int* molMembershipArray;
1527 >  CutoffGroupStamp* cg;
1528 >
1529 >  tot_atoms = 0;
1530 >  tot_bonds = 0;
1531 >  tot_bends = 0;
1532 >  tot_torsions = 0;
1533 >  tot_rigid = 0;
1534 >  tot_groups = 0;
1535 >  for (i = 0; i < n_components; i++){
1536 >    tot_atoms += components_nmol[i] * comp_stamps[i]->getNAtoms();
1537 >    tot_bonds += components_nmol[i] * comp_stamps[i]->getNBonds();
1538 >    tot_bends += components_nmol[i] * comp_stamps[i]->getNBends();
1539 >    tot_torsions += components_nmol[i] * comp_stamps[i]->getNTorsions();
1540 >    tot_rigid += components_nmol[i] * comp_stamps[i]->getNRigidBodies();
1541 >
1542 >    ncutgroups = comp_stamps[i]->getNCutoffGroups();
1543 >    atomsingroups = 0;
1544 >    for (j=0; j < ncutgroups; j++) {
1545 >      cg = comp_stamps[i]->getCutoffGroup(j);
1546 >      atomsingroups += cg->getNMembers();
1547 >    }
1548 >    ngroupsinstamp = comp_stamps[i]->getNAtoms() - atomsingroups + ncutgroups;
1549 >    tot_groups += components_nmol[i] * ngroupsinstamp;    
1550 >  }
1551 >  
1552 >  tot_SRI = tot_bonds + tot_bends + tot_torsions;
1553 >  molMembershipArray = new int[tot_atoms];
1554 >
1555 >  for (i = 0; i < nInfo; i++){
1556 >    info[i].n_atoms = tot_atoms;
1557 >    info[i].n_bonds = tot_bonds;
1558 >    info[i].n_bends = tot_bends;
1559 >    info[i].n_torsions = tot_torsions;
1560 >    info[i].n_SRI = tot_SRI;
1561 >    info[i].n_mol = tot_nmol;
1562 >    info[i].ngroup = tot_groups;
1563 >    info[i].molMembershipArray = molMembershipArray;
1564 >  }
1565 > }
1566 >
1567 > #ifdef IS_MPI
1568 >
1569 > void SimSetup::mpiMolDivide(void){
1570 >  int i, j, k;
1571 >  int localMol, allMol;
1572 >  int local_atoms, local_bonds, local_bends, local_torsions, local_SRI;
1573 >  int local_rigid, local_groups;
1574 >  vector<int> globalMolIndex;
1575 >  int ncutgroups, atomsingroups, ngroupsinstamp;
1576 >  CutoffGroupStamp* cg;
1577 >
1578 >  mpiSim = new mpiSimulation(info);
1579 >
1580 >  mpiSim->divideLabor();
1581 >  globalAtomIndex = mpiSim->getGlobalAtomIndex();
1582 >  //globalMolIndex = mpiSim->getGlobalMolIndex();
1583 >
1584 >  // set up the local variables
1585 >
1586 >  mol2proc = mpiSim->getMolToProcMap();
1587 >  molCompType = mpiSim->getMolComponentType();
1588 >
1589 >  allMol = 0;
1590 >  localMol = 0;
1591 >  local_atoms = 0;
1592 >  local_bonds = 0;
1593 >  local_bends = 0;
1594 >  local_torsions = 0;
1595 >  local_rigid = 0;
1596 >  local_groups = 0;
1597 >  globalAtomCounter = 0;
1598 >
1599 >  for (i = 0; i < n_components; i++){
1600 >    for (j = 0; j < components_nmol[i]; j++){
1601 >      if (mol2proc[allMol] == worldRank){
1602 >        local_atoms += comp_stamps[i]->getNAtoms();
1603 >        local_bonds += comp_stamps[i]->getNBonds();
1604 >        local_bends += comp_stamps[i]->getNBends();
1605 >        local_torsions += comp_stamps[i]->getNTorsions();
1606 >        local_rigid += comp_stamps[i]->getNRigidBodies();
1607 >
1608 >        ncutgroups = comp_stamps[i]->getNCutoffGroups();
1609 >        atomsingroups = 0;
1610 >        for (k=0; k < ncutgroups; k++) {
1611 >          cg = comp_stamps[i]->getCutoffGroup(k);
1612 >          atomsingroups += cg->getNMembers();
1613 >        }
1614 >        ngroupsinstamp = comp_stamps[i]->getNAtoms() - atomsingroups +
1615 >          ncutgroups;
1616 >        local_groups += ngroupsinstamp;    
1617 >
1618 >        localMol++;
1619 >      }      
1620 >      for (k = 0; k < comp_stamps[i]->getNAtoms(); k++){
1621 >        info[0].molMembershipArray[globalAtomCounter] = allMol;
1622 >        globalAtomCounter++;
1623 >      }
1624 >
1625 >      allMol++;
1626 >    }
1627 >  }
1628 >  local_SRI = local_bonds + local_bends + local_torsions;
1629 >
1630 >  info[0].n_atoms = mpiSim->getNAtomsLocal();  
1631 >  
1632 >  if (local_atoms != info[0].n_atoms){
1633 >    sprintf(painCave.errMsg,
1634 >            "SimSetup error: mpiSim's localAtom (%d) and SimSetup's\n"
1635 >            "\tlocalAtom (%d) are not equal.\n",
1636 >            info[0].n_atoms, local_atoms);
1637 >    painCave.isFatal = 1;
1638 >    simError();
1639 >  }
1640 >
1641 >  info[0].ngroup = mpiSim->getNGroupsLocal();  
1642 >  if (local_groups != info[0].ngroup){
1643 >    sprintf(painCave.errMsg,
1644 >            "SimSetup error: mpiSim's localGroups (%d) and SimSetup's\n"
1645 >            "\tlocalGroups (%d) are not equal.\n",
1646 >            info[0].ngroup, local_groups);
1647 >    painCave.isFatal = 1;
1648 >    simError();
1649 >  }
1650 >  
1651 >  info[0].n_bonds = local_bonds;
1652 >  info[0].n_bends = local_bends;
1653 >  info[0].n_torsions = local_torsions;
1654 >  info[0].n_SRI = local_SRI;
1655 >  info[0].n_mol = localMol;
1656 >
1657 >  strcpy(checkPointMsg, "Passed nlocal consistency check.");
1658 >  MPIcheckPoint();
1659 > }
1660 >
1661 > #endif // is_mpi
1662 >
1663 >
1664 > void SimSetup::makeSysArrays(void){
1665 >
1666 > #ifndef IS_MPI
1667 >  int k, j;
1668 > #endif // is_mpi
1669 >  int i, l;
1670 >
1671 >  Atom** the_atoms;
1672 >  Molecule* the_molecules;
1673 >
1674 >  for (l = 0; l < nInfo; l++){
1675 >    // create the atom and short range interaction arrays
1676 >
1677 >    the_atoms = new Atom * [info[l].n_atoms];
1678 >    the_molecules = new Molecule[info[l].n_mol];
1679 >    int molIndex;
1680 >
1681 >    // initialize the molecule's stampID's
1682 >
1683 > #ifdef IS_MPI
1684 >
1685 >
1686 >    molIndex = 0;
1687 >    for (i = 0; i < mpiSim->getNMolGlobal(); i++){
1688 >      if (mol2proc[i] == worldRank){
1689 >        the_molecules[molIndex].setStampID(molCompType[i]);
1690 >        the_molecules[molIndex].setMyIndex(molIndex);
1691 >        the_molecules[molIndex].setGlobalIndex(i);
1692 >        molIndex++;
1693 >      }
1694 >    }
1695 >
1696 > #else // is_mpi
1697 >
1698 >    molIndex = 0;
1699 >    globalAtomCounter = 0;
1700 >    for (i = 0; i < n_components; i++){
1701 >      for (j = 0; j < components_nmol[i]; j++){
1702 >        the_molecules[molIndex].setStampID(i);
1703 >        the_molecules[molIndex].setMyIndex(molIndex);
1704 >        the_molecules[molIndex].setGlobalIndex(molIndex);
1705 >        for (k = 0; k < comp_stamps[i]->getNAtoms(); k++){
1706 >          info[l].molMembershipArray[globalAtomCounter] = molIndex;
1707 >          globalAtomCounter++;
1708 >        }
1709 >        molIndex++;
1710 >      }
1711 >    }
1712 >
1713 >
1714 > #endif // is_mpi
1715 >
1716 >    info[l].globalExcludes = new int;
1717 >    info[l].globalExcludes[0] = 0;
1718 >    
1719 >    // set the arrays into the SimInfo object
1720 >
1721 >    info[l].atoms = the_atoms;
1722 >    info[l].molecules = the_molecules;
1723 >    info[l].nGlobalExcludes = 0;
1724 >    
1725 >    the_ff->setSimInfo(info);
1726    }
1727   }
1728 +
1729 + void SimSetup::makeIntegrator(void){
1730 +  int k;
1731 +
1732 +  NVE<RealIntegrator>* myNVE = NULL;
1733 +  NVT<RealIntegrator>* myNVT = NULL;
1734 +  NPTi<NPT<RealIntegrator> >* myNPTi = NULL;
1735 +  NPTf<NPT<RealIntegrator> >* myNPTf = NULL;
1736 +  NPTxyz<NPT<RealIntegrator> >* myNPTxyz = NULL;
1737 +  
1738 +  for (k = 0; k < nInfo; k++){
1739 +    switch (ensembleCase){
1740 +      case NVE_ENS:
1741 +        if (globals->haveZconstraints()){
1742 +          setupZConstraint(info[k]);
1743 +          myNVE = new ZConstraint<NVE<RealIntegrator> >(&(info[k]), the_ff);
1744 +        }
1745 +        else{
1746 +          myNVE = new NVE<RealIntegrator>(&(info[k]), the_ff);
1747 +        }
1748 +        
1749 +        info->the_integrator = myNVE;
1750 +        break;
1751 +
1752 +      case NVT_ENS:
1753 +        if (globals->haveZconstraints()){
1754 +          setupZConstraint(info[k]);
1755 +          myNVT = new ZConstraint<NVT<RealIntegrator> >(&(info[k]), the_ff);
1756 +        }
1757 +        else
1758 +          myNVT = new NVT<RealIntegrator>(&(info[k]), the_ff);
1759 +
1760 +        myNVT->setTargetTemp(globals->getTargetTemp());
1761 +
1762 +        if (globals->haveTauThermostat())
1763 +          myNVT->setTauThermostat(globals->getTauThermostat());
1764 +        else{
1765 +          sprintf(painCave.errMsg,
1766 +                  "SimSetup error: If you use the NVT\n"
1767 +                  "\tensemble, you must set tauThermostat.\n");
1768 +          painCave.isFatal = 1;
1769 +          simError();
1770 +        }
1771 +
1772 +        info->the_integrator = myNVT;
1773 +        break;
1774 +
1775 +      case NPTi_ENS:
1776 +        if (globals->haveZconstraints()){
1777 +          setupZConstraint(info[k]);
1778 +          myNPTi = new ZConstraint<NPTi<NPT <RealIntegrator> > >(&(info[k]), the_ff);
1779 +        }
1780 +        else
1781 +          myNPTi = new NPTi<NPT<RealIntegrator> >(&(info[k]), the_ff);
1782 +
1783 +        myNPTi->setTargetTemp(globals->getTargetTemp());
1784 +
1785 +        if (globals->haveTargetPressure())
1786 +          myNPTi->setTargetPressure(globals->getTargetPressure());
1787 +        else{
1788 +          sprintf(painCave.errMsg,
1789 +                  "SimSetup error: If you use a constant pressure\n"
1790 +                  "\tensemble, you must set targetPressure in the BASS file.\n");
1791 +          painCave.isFatal = 1;
1792 +          simError();
1793 +        }
1794 +
1795 +        if (globals->haveTauThermostat())
1796 +          myNPTi->setTauThermostat(globals->getTauThermostat());
1797 +        else{
1798 +          sprintf(painCave.errMsg,
1799 +                  "SimSetup error: If you use an NPT\n"
1800 +                  "\tensemble, you must set tauThermostat.\n");
1801 +          painCave.isFatal = 1;
1802 +          simError();
1803 +        }
1804 +
1805 +        if (globals->haveTauBarostat())
1806 +          myNPTi->setTauBarostat(globals->getTauBarostat());
1807 +        else{
1808 +          sprintf(painCave.errMsg,
1809 +                  "SimSetup error: If you use an NPT\n"
1810 +                  "\tensemble, you must set tauBarostat.\n");
1811 +          painCave.isFatal = 1;
1812 +          simError();
1813 +        }
1814 +
1815 +        info->the_integrator = myNPTi;
1816 +        break;
1817 +
1818 +      case NPTf_ENS:
1819 +        if (globals->haveZconstraints()){
1820 +          setupZConstraint(info[k]);
1821 +          myNPTf = new ZConstraint<NPTf<NPT <RealIntegrator> > >(&(info[k]), the_ff);
1822 +        }
1823 +        else
1824 +          myNPTf = new NPTf<NPT <RealIntegrator> >(&(info[k]), the_ff);
1825 +
1826 +        myNPTf->setTargetTemp(globals->getTargetTemp());
1827 +
1828 +        if (globals->haveTargetPressure())
1829 +          myNPTf->setTargetPressure(globals->getTargetPressure());
1830 +        else{
1831 +          sprintf(painCave.errMsg,
1832 +                  "SimSetup error: If you use a constant pressure\n"
1833 +                  "\tensemble, you must set targetPressure in the BASS file.\n");
1834 +          painCave.isFatal = 1;
1835 +          simError();
1836 +        }    
1837 +
1838 +        if (globals->haveTauThermostat())
1839 +          myNPTf->setTauThermostat(globals->getTauThermostat());
1840 +
1841 +        else{
1842 +          sprintf(painCave.errMsg,
1843 +                  "SimSetup error: If you use an NPT\n"
1844 +                  "\tensemble, you must set tauThermostat.\n");
1845 +          painCave.isFatal = 1;
1846 +          simError();
1847 +        }
1848 +
1849 +        if (globals->haveTauBarostat())
1850 +          myNPTf->setTauBarostat(globals->getTauBarostat());
1851 +
1852 +        else{
1853 +          sprintf(painCave.errMsg,
1854 +                  "SimSetup error: If you use an NPT\n"
1855 +                  "\tensemble, you must set tauBarostat.\n");
1856 +          painCave.isFatal = 1;
1857 +          simError();
1858 +        }
1859 +
1860 +        info->the_integrator = myNPTf;
1861 +        break;
1862 +
1863 +      case NPTxyz_ENS:
1864 +        if (globals->haveZconstraints()){
1865 +          setupZConstraint(info[k]);
1866 +          myNPTxyz = new ZConstraint<NPTxyz<NPT <RealIntegrator> > >(&(info[k]), the_ff);
1867 +        }
1868 +        else
1869 +          myNPTxyz = new NPTxyz<NPT <RealIntegrator> >(&(info[k]), the_ff);
1870 +
1871 +        myNPTxyz->setTargetTemp(globals->getTargetTemp());
1872 +
1873 +        if (globals->haveTargetPressure())
1874 +          myNPTxyz->setTargetPressure(globals->getTargetPressure());
1875 +        else{
1876 +          sprintf(painCave.errMsg,
1877 +                  "SimSetup error: If you use a constant pressure\n"
1878 +                  "\tensemble, you must set targetPressure in the BASS file.\n");
1879 +          painCave.isFatal = 1;
1880 +          simError();
1881 +        }    
1882 +
1883 +        if (globals->haveTauThermostat())
1884 +          myNPTxyz->setTauThermostat(globals->getTauThermostat());
1885 +        else{
1886 +          sprintf(painCave.errMsg,
1887 +                  "SimSetup error: If you use an NPT\n"
1888 +                  "\tensemble, you must set tauThermostat.\n");
1889 +          painCave.isFatal = 1;
1890 +          simError();
1891 +        }
1892 +
1893 +        if (globals->haveTauBarostat())
1894 +          myNPTxyz->setTauBarostat(globals->getTauBarostat());
1895 +        else{
1896 +          sprintf(painCave.errMsg,
1897 +                  "SimSetup error: If you use an NPT\n"
1898 +                  "\tensemble, you must set tauBarostat.\n");
1899 +          painCave.isFatal = 1;
1900 +          simError();
1901 +        }
1902 +
1903 +        info->the_integrator = myNPTxyz;
1904 +        break;
1905 +
1906 +      default:
1907 +        sprintf(painCave.errMsg,
1908 +                "SimSetup Error. Unrecognized ensemble in case statement.\n");
1909 +        painCave.isFatal = 1;
1910 +        simError();
1911 +    }
1912 +  }
1913 + }
1914 +
1915 + void SimSetup::initFortran(void){
1916 +  info[0].refreshSim();
1917 +
1918 +  if (!strcmp(info[0].mixingRule, "standard")){
1919 +    the_ff->initForceField(LB_MIXING_RULE);
1920 +  }
1921 +  else if (!strcmp(info[0].mixingRule, "explicit")){
1922 +    the_ff->initForceField(EXPLICIT_MIXING_RULE);
1923 +  }
1924 +  else{
1925 +    sprintf(painCave.errMsg, "SimSetup Error: unknown mixing rule -> \"%s\"\n",
1926 +            info[0].mixingRule);
1927 +    painCave.isFatal = 1;
1928 +    simError();
1929 +  }
1930 +
1931 +
1932 + #ifdef IS_MPI
1933 +  strcpy(checkPointMsg, "Successfully intialized the mixingRule for Fortran.");
1934 +  MPIcheckPoint();
1935 + #endif // is_mpi
1936 + }
1937 +
1938 + void SimSetup::setupZConstraint(SimInfo& theInfo){
1939 +  int nZConstraints;
1940 +  ZconStamp** zconStamp;
1941 +
1942 +  if (globals->haveZconstraintTime()){
1943 +    //add sample time of z-constraint  into SimInfo's property list                    
1944 +    DoubleData* zconsTimeProp = new DoubleData();
1945 +    zconsTimeProp->setID(ZCONSTIME_ID);
1946 +    zconsTimeProp->setData(globals->getZconsTime());
1947 +    theInfo.addProperty(zconsTimeProp);
1948 +  }
1949 +  else{
1950 +    sprintf(painCave.errMsg,
1951 +            "ZConstraint error: If you use a ZConstraint,\n"
1952 +            "\tyou must set zconsTime.\n");
1953 +    painCave.isFatal = 1;
1954 +    simError();
1955 +  }
1956 +
1957 +  //push zconsTol into siminfo, if user does not specify
1958 +  //value for zconsTol, a default value will be used
1959 +  DoubleData* zconsTol = new DoubleData();
1960 +  zconsTol->setID(ZCONSTOL_ID);
1961 +  if (globals->haveZconsTol()){
1962 +    zconsTol->setData(globals->getZconsTol());
1963 +  }
1964 +  else{
1965 +    double defaultZConsTol = 0.01;
1966 +    sprintf(painCave.errMsg,
1967 +            "ZConstraint Warning: Tolerance for z-constraint method is not specified.\n"
1968 +            "\tOOPSE will use a default value of %f.\n"
1969 +            "\tTo set the tolerance, use the zconsTol variable.\n",
1970 +            defaultZConsTol);
1971 +    painCave.isFatal = 0;
1972 +    simError();      
1973 +
1974 +    zconsTol->setData(defaultZConsTol);
1975 +  }
1976 +  theInfo.addProperty(zconsTol);
1977 +
1978 +  //set Force Subtraction Policy
1979 +  StringData* zconsForcePolicy = new StringData();
1980 +  zconsForcePolicy->setID(ZCONSFORCEPOLICY_ID);
1981 +
1982 +  if (globals->haveZconsForcePolicy()){
1983 +    zconsForcePolicy->setData(globals->getZconsForcePolicy());
1984 +  }
1985 +  else{
1986 +    sprintf(painCave.errMsg,
1987 +            "ZConstraint Warning: No force subtraction policy was set.\n"
1988 +            "\tOOPSE will use PolicyByMass.\n"
1989 +            "\tTo set the policy, use the zconsForcePolicy variable.\n");
1990 +    painCave.isFatal = 0;
1991 +    simError();
1992 +    zconsForcePolicy->setData("BYMASS");
1993 +  }
1994 +
1995 +  theInfo.addProperty(zconsForcePolicy);
1996 +
1997 +  //set zcons gap
1998 +  DoubleData* zconsGap = new DoubleData();
1999 +  zconsGap->setID(ZCONSGAP_ID);
2000 +
2001 +  if (globals->haveZConsGap()){
2002 +    zconsGap->setData(globals->getZconsGap());
2003 +    theInfo.addProperty(zconsGap);  
2004 +  }
2005 +
2006 +  //set zcons fixtime
2007 +  DoubleData* zconsFixtime = new DoubleData();
2008 +  zconsFixtime->setID(ZCONSFIXTIME_ID);
2009 +
2010 +  if (globals->haveZConsFixTime()){
2011 +    zconsFixtime->setData(globals->getZconsFixtime());
2012 +    theInfo.addProperty(zconsFixtime);  
2013 +  }
2014 +
2015 +  //set zconsUsingSMD
2016 +  IntData* zconsUsingSMD = new IntData();
2017 +  zconsUsingSMD->setID(ZCONSUSINGSMD_ID);
2018 +
2019 +  if (globals->haveZConsUsingSMD()){
2020 +    zconsUsingSMD->setData(globals->getZconsUsingSMD());
2021 +    theInfo.addProperty(zconsUsingSMD);  
2022 +  }
2023 +
2024 +  //Determine the name of ouput file and add it into SimInfo's property list
2025 +  //Be careful, do not use inFileName, since it is a pointer which
2026 +  //point to a string at master node, and slave nodes do not contain that string
2027 +
2028 +  string zconsOutput(theInfo.finalName);
2029 +
2030 +  zconsOutput = zconsOutput.substr(0, zconsOutput.rfind(".")) + ".fz";
2031 +
2032 +  StringData* zconsFilename = new StringData();
2033 +  zconsFilename->setID(ZCONSFILENAME_ID);
2034 +  zconsFilename->setData(zconsOutput);
2035 +
2036 +  theInfo.addProperty(zconsFilename);
2037 +
2038 +  //setup index, pos and other parameters of z-constraint molecules
2039 +  nZConstraints = globals->getNzConstraints();
2040 +  theInfo.nZconstraints = nZConstraints;
2041 +
2042 +  zconStamp = globals->getZconStamp();
2043 +  ZConsParaItem tempParaItem;
2044 +
2045 +  ZConsParaData* zconsParaData = new ZConsParaData();
2046 +  zconsParaData->setID(ZCONSPARADATA_ID);
2047 +
2048 +  for (int i = 0; i < nZConstraints; i++){
2049 +    tempParaItem.havingZPos = zconStamp[i]->haveZpos();
2050 +    tempParaItem.zPos = zconStamp[i]->getZpos();
2051 +    tempParaItem.zconsIndex = zconStamp[i]->getMolIndex();
2052 +    tempParaItem.kRatio = zconStamp[i]->getKratio();
2053 +    tempParaItem.havingCantVel = zconStamp[i]->haveCantVel();
2054 +    tempParaItem.cantVel = zconStamp[i]->getCantVel();    
2055 +    zconsParaData->addItem(tempParaItem);
2056 +  }
2057 +
2058 +  //check the uniqueness of index  
2059 +  if(!zconsParaData->isIndexUnique()){
2060 +    sprintf(painCave.errMsg,
2061 +            "ZConstraint Error: molIndex is not unique!\n");
2062 +    painCave.isFatal = 1;
2063 +    simError();
2064 +  }
2065 +
2066 +  //sort the parameters by index of molecules
2067 +  zconsParaData->sortByIndex();
2068 +  
2069 +  //push data into siminfo, therefore, we can retrieve later
2070 +  theInfo.addProperty(zconsParaData);
2071 + }
2072 +
2073 + void SimSetup::makeMinimizer(){
2074 +
2075 +  OOPSEMinimizer* myOOPSEMinimizer;
2076 +  MinimizerParameterSet* param;
2077 +  char minimizerName[100];
2078 +  
2079 +  for (int i = 0; i < nInfo; i++){
2080 +    
2081 +    //prepare parameter set for minimizer
2082 +    param = new MinimizerParameterSet();
2083 +    param->setDefaultParameter();
2084 +
2085 +    if (globals->haveMinimizer()){
2086 +      param->setFTol(globals->getMinFTol());
2087 +    }
2088 +
2089 +    if (globals->haveMinGTol()){
2090 +      param->setGTol(globals->getMinGTol());
2091 +    }
2092 +
2093 +    if (globals->haveMinMaxIter()){
2094 +      param->setMaxIteration(globals->getMinMaxIter());
2095 +    }
2096 +
2097 +    if (globals->haveMinWriteFrq()){
2098 +      param->setMaxIteration(globals->getMinMaxIter());
2099 +    }
2100 +
2101 +    if (globals->haveMinWriteFrq()){
2102 +      param->setWriteFrq(globals->getMinWriteFrq());
2103 +    }
2104 +    
2105 +    if (globals->haveMinStepSize()){
2106 +      param->setStepSize(globals->getMinStepSize());
2107 +    }
2108 +
2109 +    if (globals->haveMinLSMaxIter()){
2110 +      param->setLineSearchMaxIteration(globals->getMinLSMaxIter());
2111 +    }    
2112 +
2113 +    if (globals->haveMinLSTol()){
2114 +      param->setLineSearchTol(globals->getMinLSTol());
2115 +    }    
2116 +
2117 +    strcpy(minimizerName, globals->getMinimizer());
2118 +
2119 +    if (!strcasecmp(minimizerName, "CG")){
2120 +      myOOPSEMinimizer = new PRCGMinimizer(&(info[i]), the_ff, param);
2121 +    }
2122 +    else if (!strcasecmp(minimizerName, "SD")){
2123 +    //myOOPSEMinimizer = MinimizerFactory.creatMinimizer("", &(info[i]), the_ff, param);
2124 +      myOOPSEMinimizer = new SDMinimizer(&(info[i]), the_ff, param);
2125 +    }
2126 +    else{
2127 +          sprintf(painCave.errMsg,
2128 +                  "SimSetup error: Unrecognized Minimizer, use Conjugate Gradient \n");
2129 +          painCave.isFatal = 0;
2130 +          simError();
2131 +
2132 +      myOOPSEMinimizer = new PRCGMinimizer(&(info[i]), the_ff, param);          
2133 +    }
2134 +     info[i].the_integrator = myOOPSEMinimizer;
2135 +
2136 +     //store the minimizer into simInfo
2137 +     info[i].the_minimizer = myOOPSEMinimizer;
2138 +     info[i].has_minimizer = true;
2139 +  }
2140 +
2141 + }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines