| 48 |
|
|
| 49 |
|
void SimInfo::setBox(double newBox[3]) { |
| 50 |
|
|
| 51 |
< |
int i; |
| 52 |
< |
double tempMat[9]; |
| 51 |
> |
int i, j; |
| 52 |
> |
double tempMat[3][3]; |
| 53 |
|
|
| 54 |
< |
for(i=0; i<9; i++) tempMat[i] = 0.0;; |
| 54 |
> |
for(i=0; i<3; i++) |
| 55 |
> |
for (j=0; j<3; j++) tempMat[i][j] = 0.0;; |
| 56 |
|
|
| 57 |
< |
tempMat[0] = newBox[0]; |
| 58 |
< |
tempMat[4] = newBox[1]; |
| 59 |
< |
tempMat[8] = newBox[2]; |
| 57 |
> |
tempMat[0][0] = newBox[0]; |
| 58 |
> |
tempMat[1][1] = newBox[1]; |
| 59 |
> |
tempMat[2][2] = newBox[2]; |
| 60 |
|
|
| 61 |
|
setBoxM( tempMat ); |
| 62 |
|
|
| 63 |
|
} |
| 64 |
|
|
| 65 |
< |
void SimInfo::setBoxM( double theBox[9] ){ |
| 65 |
> |
void SimInfo::setBoxM( double theBox[3][3] ){ |
| 66 |
|
|
| 67 |
< |
int i, status; |
| 67 |
> |
int i, j, status; |
| 68 |
|
double smallestBoxL, maxCutoff; |
| 69 |
+ |
double FortranHmat[9]; // to preserve compatibility with Fortran the |
| 70 |
+ |
// ordering in the array is as follows: |
| 71 |
+ |
// [ 0 3 6 ] |
| 72 |
+ |
// [ 1 4 7 ] |
| 73 |
+ |
// [ 2 5 8 ] |
| 74 |
+ |
double FortranHmatInv[9]; // the inverted Hmat (for Fortran); |
| 75 |
|
|
| 69 |
– |
for(i=0; i<9; i++) Hmat[i] = theBox[i]; |
| 76 |
|
|
| 77 |
+ |
for(i=0; i < 3; i++) |
| 78 |
+ |
for (j=0; j < 3; j++) Hmat[i][j] = theBox[i][j]; |
| 79 |
+ |
|
| 80 |
|
cerr |
| 81 |
|
<< "setting Hmat ->\n" |
| 82 |
< |
<< "[ " << Hmat[0] << ", " << Hmat[3] << ", " << Hmat[6] << " ]\n" |
| 83 |
< |
<< "[ " << Hmat[1] << ", " << Hmat[4] << ", " << Hmat[7] << " ]\n" |
| 84 |
< |
<< "[ " << Hmat[2] << ", " << Hmat[5] << ", " << Hmat[8] << " ]\n"; |
| 82 |
> |
<< "[ " << Hmat[0][0] << ", " << Hmat[0][1] << ", " << Hmat[0][2] << " ]\n" |
| 83 |
> |
<< "[ " << Hmat[1][0] << ", " << Hmat[1][1] << ", " << Hmat[1][2] << " ]\n" |
| 84 |
> |
<< "[ " << Hmat[2][0] << ", " << Hmat[2][1] << ", " << Hmat[2][2] << " ]\n"; |
| 85 |
|
|
| 77 |
– |
calcHmatI(); |
| 86 |
|
calcBoxL(); |
| 87 |
+ |
calcHmatInv(); |
| 88 |
|
|
| 89 |
+ |
for(i=0; i < 3; i++) { |
| 90 |
+ |
for (j=0; j < 3; j++) { |
| 91 |
+ |
FortranHmat[3*j + i] = Hmat[i][j]; |
| 92 |
+ |
FortranHmatInv[3*j + i] = HmatInv[i][j]; |
| 93 |
+ |
} |
| 94 |
+ |
} |
| 95 |
|
|
| 96 |
< |
|
| 82 |
< |
setFortranBoxSize(Hmat, HmatI, &orthoRhombic); |
| 96 |
> |
setFortranBoxSize(FortranHmat, FortranHmatI, &orthoRhombic); |
| 97 |
|
|
| 98 |
|
smallestBoxL = boxLx; |
| 99 |
|
if (boxLy < smallestBoxL) smallestBoxL = boxLy; |
| 141 |
|
} |
| 142 |
|
|
| 143 |
|
|
| 144 |
< |
void SimInfo::getBoxM (double theBox[9]) { |
| 144 |
> |
void SimInfo::getBoxM (double theBox[3][3]) { |
| 145 |
|
|
| 146 |
< |
int i; |
| 147 |
< |
for(i=0; i<9; i++) theBox[i] = Hmat[i]; |
| 146 |
> |
int i, j; |
| 147 |
> |
for(i=0; i<3; i++) |
| 148 |
> |
for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]; |
| 149 |
|
} |
| 150 |
|
|
| 151 |
|
|
| 152 |
|
void SimInfo::scaleBox(double scale) { |
| 153 |
< |
double theBox[9]; |
| 154 |
< |
int i; |
| 153 |
> |
double theBox[3][3]; |
| 154 |
> |
int i, j; |
| 155 |
|
|
| 156 |
|
cerr << "Scaling box by " << scale << "\n"; |
| 157 |
|
|
| 158 |
< |
for(i=0; i<9; i++) theBox[i] = Hmat[i]*scale; |
| 158 |
> |
for(i=0; i<3; i++) |
| 159 |
> |
for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]*scale; |
| 160 |
|
|
| 161 |
|
setBoxM(theBox); |
| 162 |
|
|
| 163 |
|
} |
| 164 |
|
|
| 165 |
< |
void SimInfo::calcHmatI( void ) { |
| 165 |
> |
void SimInfo::calcHmatInv( void ) { |
| 166 |
|
|
| 151 |
– |
double C[3][3]; |
| 152 |
– |
double detHmat; |
| 153 |
– |
int i, j, k; |
| 167 |
|
double smallDiag; |
| 168 |
|
double tol; |
| 169 |
|
double sanity[3][3]; |
| 170 |
|
|
| 171 |
< |
// calculate the adjunct of Hmat; |
| 171 |
> |
invertMat3( Hmat, HmatInv ); |
| 172 |
|
|
| 173 |
< |
C[0][0] = ( Hmat[4]*Hmat[8]) - (Hmat[7]*Hmat[5]); |
| 161 |
< |
C[1][0] = -( Hmat[1]*Hmat[8]) + (Hmat[7]*Hmat[2]); |
| 162 |
< |
C[2][0] = ( Hmat[1]*Hmat[5]) - (Hmat[4]*Hmat[2]); |
| 173 |
> |
// Check the inverse to make sure it is sane: |
| 174 |
|
|
| 175 |
< |
C[0][1] = -( Hmat[3]*Hmat[8]) + (Hmat[6]*Hmat[5]); |
| 165 |
< |
C[1][1] = ( Hmat[0]*Hmat[8]) - (Hmat[6]*Hmat[2]); |
| 166 |
< |
C[2][1] = -( Hmat[0]*Hmat[5]) + (Hmat[3]*Hmat[2]); |
| 175 |
> |
matMul3( Hmat, HmatInv, sanity ); |
| 176 |
|
|
| 168 |
– |
C[0][2] = ( Hmat[3]*Hmat[7]) - (Hmat[6]*Hmat[4]); |
| 169 |
– |
C[1][2] = -( Hmat[0]*Hmat[7]) + (Hmat[6]*Hmat[1]); |
| 170 |
– |
C[2][2] = ( Hmat[0]*Hmat[4]) - (Hmat[3]*Hmat[1]); |
| 171 |
– |
|
| 172 |
– |
// calcutlate the determinant of Hmat |
| 173 |
– |
|
| 174 |
– |
detHmat = 0.0; |
| 175 |
– |
for(i=0; i<3; i++) detHmat += Hmat[i] * C[i][0]; |
| 176 |
– |
|
| 177 |
– |
|
| 178 |
– |
// H^-1 = C^T / det(H) |
| 179 |
– |
|
| 180 |
– |
i=0; |
| 181 |
– |
for(j=0; j<3; j++){ |
| 182 |
– |
for(k=0; k<3; k++){ |
| 183 |
– |
|
| 184 |
– |
HmatI[i] = C[j][k] / detHmat; |
| 185 |
– |
i++; |
| 186 |
– |
} |
| 187 |
– |
} |
| 188 |
– |
|
| 189 |
– |
// sanity check |
| 190 |
– |
|
| 191 |
– |
for(i=0; i<3; i++){ |
| 192 |
– |
for(j=0; j<3; j++){ |
| 193 |
– |
|
| 194 |
– |
sanity[i][j] = 0.0; |
| 195 |
– |
for(k=0; k<3; k++){ |
| 196 |
– |
sanity[i][j] += Hmat[3*k+i] * HmatI[3*j+k]; |
| 197 |
– |
} |
| 198 |
– |
} |
| 199 |
– |
} |
| 200 |
– |
|
| 177 |
|
cerr << "sanity => \n" |
| 178 |
|
<< sanity[0][0] << "\t" << sanity[0][1] << "\t" << sanity [0][2] << "\n" |
| 179 |
|
<< sanity[1][0] << "\t" << sanity[1][1] << "\t" << sanity [1][2] << "\n" |
| 180 |
|
<< sanity[2][0] << "\t" << sanity[2][1] << "\t" << sanity [2][2] |
| 181 |
|
<< "\n"; |
| 182 |
|
|
| 207 |
– |
|
| 183 |
|
// check to see if Hmat is orthorhombic |
| 184 |
|
|
| 185 |
< |
smallDiag = Hmat[0]; |
| 186 |
< |
if(smallDiag > Hmat[4]) smallDiag = Hmat[4]; |
| 187 |
< |
if(smallDiag > Hmat[8]) smallDiag = Hmat[8]; |
| 185 |
> |
smallDiag = Hmat[0][0]; |
| 186 |
> |
if(smallDiag > Hmat[1][1]) smallDiag = Hmat[1][1]; |
| 187 |
> |
if(smallDiag > Hmat[2][2]) smallDiag = Hmat[2][2]; |
| 188 |
|
tol = smallDiag * 1E-6; |
| 189 |
|
|
| 190 |
|
orthoRhombic = 1; |
| 191 |
< |
for(i=0; (i<9) && orthoRhombic; i++){ |
| 192 |
< |
|
| 193 |
< |
if( (i%4) ){ // ignore the diagonals (0, 4, and 8) |
| 194 |
< |
orthoRhombic = (Hmat[i] <= tol); |
| 191 |
> |
|
| 192 |
> |
for (i = 0; i < 3; i++ ) { |
| 193 |
> |
for (j = 0 ; j < 3; j++) { |
| 194 |
> |
if (i != j) { |
| 195 |
> |
if (orthoRhombic) { |
| 196 |
> |
if (Hmat[i][j] >= tol) orthoRhombic = 0; |
| 197 |
> |
} |
| 198 |
> |
} |
| 199 |
|
} |
| 200 |
|
} |
| 222 |
– |
|
| 201 |
|
} |
| 202 |
|
|
| 203 |
+ |
double SimInfo::matDet3(double a[3][3]) { |
| 204 |
+ |
int i, j, k; |
| 205 |
+ |
double determinant; |
| 206 |
+ |
|
| 207 |
+ |
determinant = 0.0; |
| 208 |
+ |
|
| 209 |
+ |
for(i = 0; i < 3; i++) { |
| 210 |
+ |
j = (i+1)%3; |
| 211 |
+ |
k = (i+2)%3; |
| 212 |
+ |
|
| 213 |
+ |
determinant += a[0][i] * (a[1][j]*a[2][k] - a[1][k]*a[2][j]); |
| 214 |
+ |
} |
| 215 |
+ |
|
| 216 |
+ |
return determinant; |
| 217 |
+ |
} |
| 218 |
+ |
|
| 219 |
+ |
void SimInfo::invertMat3(double a[3][3], double b[3][3]) { |
| 220 |
+ |
|
| 221 |
+ |
int i, j, k, l, m, n; |
| 222 |
+ |
double determinant; |
| 223 |
+ |
|
| 224 |
+ |
determinant = matDet3( a ); |
| 225 |
+ |
|
| 226 |
+ |
if (determinant == 0.0) { |
| 227 |
+ |
sprintf( painCave.errMsg, |
| 228 |
+ |
"Can't invert a matrix with a zero determinant!\n"); |
| 229 |
+ |
painCave.isFatal = 1; |
| 230 |
+ |
simError(); |
| 231 |
+ |
} |
| 232 |
+ |
|
| 233 |
+ |
for (i=0; i < 3; i++) { |
| 234 |
+ |
j = (i+1)%3; |
| 235 |
+ |
k = (i+2)%3; |
| 236 |
+ |
for(l = 0; l < 3; l++) { |
| 237 |
+ |
m = (l+1)%3; |
| 238 |
+ |
n = (l+2)%3; |
| 239 |
+ |
|
| 240 |
+ |
b[l][i] = (a[j][m]*a[k][n] - a[j][n]*a[k][m]) / determinant; |
| 241 |
+ |
} |
| 242 |
+ |
} |
| 243 |
+ |
} |
| 244 |
+ |
|
| 245 |
+ |
void SimInfo::matMul3(double a[3][3], double b[3][3], double c[3][3]) { |
| 246 |
+ |
double r00, r01, r02, r10, r11, r12, r20, r21, r22; |
| 247 |
+ |
|
| 248 |
+ |
r00 = a[0][0]*b[0][0] + a[0][1]*b[1][0] + a[0][2]*b[2][0]; |
| 249 |
+ |
r01 = a[0][0]*b[0][1] + a[0][1]*b[1][1] + a[0][2]*b[2][1]; |
| 250 |
+ |
r02 = a[0][0]*b[0][2] + a[0][1]*b[1][2] + a[0][2]*b[2][2]; |
| 251 |
+ |
|
| 252 |
+ |
r10 = a[1][0]*b[0][0] + a[1][1]*b[1][0] + a[1][2]*b[2][0]; |
| 253 |
+ |
r11 = a[1][0]*b[0][1] + a[1][1]*b[1][1] + a[1][2]*b[2][1]; |
| 254 |
+ |
r12 = a[1][0]*b[0][2] + a[1][1]*b[1][2] + a[1][2]*b[2][2]; |
| 255 |
+ |
|
| 256 |
+ |
r20 = a[2][0]*b[0][0] + a[2][1]*b[1][0] + a[2][2]*b[2][0]; |
| 257 |
+ |
r21 = a[2][0]*b[0][1] + a[2][1]*b[1][1] + a[2][2]*b[2][1]; |
| 258 |
+ |
r22 = a[2][0]*b[0][2] + a[2][1]*b[1][2] + a[2][2]*b[2][2]; |
| 259 |
+ |
|
| 260 |
+ |
c[0][0] = r00; c[0][1] = r01; c[0][2] = r02; |
| 261 |
+ |
c[1][0] = r10; c[1][1] = r11; c[1][2] = r12; |
| 262 |
+ |
c[2][0] = r20; c[2][1] = r21; c[2][2] = r22; |
| 263 |
+ |
} |
| 264 |
+ |
|
| 265 |
+ |
void SimInfo::matVecMul3(double m[3][3], double inVec[3], double outVec[3]) { |
| 266 |
+ |
double a0, a1, a2; |
| 267 |
+ |
|
| 268 |
+ |
a0 = inVec[0]; a1 = inVec[1]; a2 = inVec[2]; |
| 269 |
+ |
|
| 270 |
+ |
outVec[0] = m[0][0]*a0 + m[0][1]*a1 + m[0][2]*a2; |
| 271 |
+ |
outVec[1] = m[1][0]*a0 + m[1][1]*a1 + m[1][2]*a2; |
| 272 |
+ |
outVec[2] = m[2][0]*a0 + m[2][1]*a1 + m[2][2]*a2; |
| 273 |
+ |
} |
| 274 |
+ |
|
| 275 |
|
void SimInfo::calcBoxL( void ){ |
| 276 |
|
|
| 277 |
|
double dx, dy, dz, dsq; |
| 278 |
|
int i; |
| 279 |
|
|
| 280 |
< |
// boxVol = h1 (dot) h2 (cross) h3 |
| 280 |
> |
// boxVol = Determinant of Hmat |
| 281 |
|
|
| 282 |
< |
boxVol = Hmat[0] * ( (Hmat[4]*Hmat[8]) - (Hmat[7]*Hmat[5]) ) |
| 233 |
< |
+ Hmat[1] * ( (Hmat[5]*Hmat[6]) - (Hmat[8]*Hmat[3]) ) |
| 234 |
< |
+ Hmat[2] * ( (Hmat[3]*Hmat[7]) - (Hmat[6]*Hmat[4]) ); |
| 282 |
> |
boxVol = matDet3( Hmat ); |
| 283 |
|
|
| 236 |
– |
|
| 284 |
|
// boxLx |
| 285 |
|
|
| 286 |
< |
dx = Hmat[0]; dy = Hmat[1]; dz = Hmat[2]; |
| 286 |
> |
dx = Hmat[0][0]; dy = Hmat[1][0]; dz = Hmat[2][0]; |
| 287 |
|
dsq = dx*dx + dy*dy + dz*dz; |
| 288 |
|
boxLx = sqrt( dsq ); |
| 289 |
|
|
| 290 |
|
// boxLy |
| 291 |
|
|
| 292 |
< |
dx = Hmat[3]; dy = Hmat[4]; dz = Hmat[5]; |
| 292 |
> |
dx = Hmat[0][1]; dy = Hmat[1][1]; dz = Hmat[2][1]; |
| 293 |
|
dsq = dx*dx + dy*dy + dz*dz; |
| 294 |
|
boxLy = sqrt( dsq ); |
| 295 |
|
|
| 296 |
|
// boxLz |
| 297 |
|
|
| 298 |
< |
dx = Hmat[6]; dy = Hmat[7]; dz = Hmat[8]; |
| 298 |
> |
dx = Hmat[0][2]; dy = Hmat[1][2]; dz = Hmat[2][2]; |
| 299 |
|
dsq = dx*dx + dy*dy + dz*dz; |
| 300 |
|
boxLz = sqrt( dsq ); |
| 301 |
|
|
| 309 |
|
|
| 310 |
|
if( !orthoRhombic ){ |
| 311 |
|
// calc the scaled coordinates. |
| 312 |
+ |
|
| 313 |
+ |
|
| 314 |
+ |
matVecMul3(HmatInv, thePos, scaled); |
| 315 |
|
|
| 316 |
|
for(i=0; i<3; i++) |
| 267 |
– |
scaled[i] = |
| 268 |
– |
thePos[0]*HmatI[i] + thePos[1]*HmatI[i+3] + thePos[3]*HmatI[i+6]; |
| 269 |
– |
|
| 270 |
– |
// wrap the scaled coordinates |
| 271 |
– |
|
| 272 |
– |
for(i=0; i<3; i++) |
| 317 |
|
scaled[i] -= roundMe(scaled[i]); |
| 318 |
|
|
| 319 |
|
// calc the wrapped real coordinates from the wrapped scaled coordinates |
| 320 |
|
|
| 321 |
< |
for(i=0; i<3; i++) |
| 322 |
< |
thePos[i] = |
| 279 |
< |
scaled[0]*Hmat[i] + scaled[1]*Hmat[i+3] + scaled[2]*Hmat[i+6]; |
| 321 |
> |
matVecMul3(Hmat, scaled, thePos); |
| 322 |
> |
|
| 323 |
|
} |
| 324 |
|
else{ |
| 325 |
|
// calc the scaled coordinates. |
| 326 |
|
|
| 327 |
|
for(i=0; i<3; i++) |
| 328 |
< |
scaled[i] = thePos[i]*HmatI[i*4]; |
| 328 |
> |
scaled[i] = thePos[i]*HmatInv[i][i]; |
| 329 |
|
|
| 330 |
|
// wrap the scaled coordinates |
| 331 |
|
|
| 335 |
|
// calc the wrapped real coordinates from the wrapped scaled coordinates |
| 336 |
|
|
| 337 |
|
for(i=0; i<3; i++) |
| 338 |
< |
thePos[i] = scaled[i]*Hmat[i*4]; |
| 338 |
> |
thePos[i] = scaled[i]*Hmat[i][i]; |
| 339 |
|
} |
| 340 |
|
|
| 298 |
– |
|
| 341 |
|
} |
| 342 |
|
|
| 343 |
|
|