| 1 | 
< | 
#include <cstdlib> | 
| 2 | 
< | 
#include <cstring> | 
| 3 | 
< | 
#include <cmath> | 
| 1 | 
> | 
#include <stdlib.h> | 
| 2 | 
> | 
#include <string.h> | 
| 3 | 
> | 
#include <math.h> | 
| 4 | 
  | 
 | 
| 5 | 
  | 
#include <iostream> | 
| 6 | 
  | 
using namespace std; | 
| 12 | 
  | 
 | 
| 13 | 
  | 
#include "fortranWrappers.hpp" | 
| 14 | 
  | 
 | 
| 15 | 
+ | 
#include "MatVec3.h" | 
| 16 | 
+ | 
 | 
| 17 | 
  | 
#ifdef IS_MPI | 
| 18 | 
  | 
#include "mpiSimulation.hpp" | 
| 19 | 
  | 
#endif | 
| 22 | 
  | 
  return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 ); | 
| 23 | 
  | 
} | 
| 24 | 
  | 
           | 
| 25 | 
+ | 
inline double min( double a, double b ){ | 
| 26 | 
+ | 
  return (a < b ) ? a : b; | 
| 27 | 
+ | 
} | 
| 28 | 
  | 
 | 
| 29 | 
  | 
SimInfo* currentInfo; | 
| 30 | 
  | 
 | 
| 31 | 
  | 
SimInfo::SimInfo(){ | 
| 32 | 
< | 
  excludes = NULL; | 
| 32 | 
> | 
 | 
| 33 | 
  | 
  n_constraints = 0; | 
| 34 | 
  | 
  nZconstraints = 0; | 
| 35 | 
  | 
  n_oriented = 0; | 
| 42 | 
  | 
  thermalTime = 0.0; | 
| 43 | 
  | 
  currentTime = 0.0; | 
| 44 | 
  | 
  rCut = 0.0; | 
| 45 | 
< | 
  origRcut = -1.0; | 
| 41 | 
< | 
  ecr = 0.0; | 
| 42 | 
< | 
  origEcr = -1.0; | 
| 43 | 
< | 
  est = 0.0; | 
| 44 | 
< | 
  oldEcr = 0.0; | 
| 45 | 
< | 
  oldRcut = 0.0; | 
| 45 | 
> | 
  rSw = 0.0; | 
| 46 | 
  | 
 | 
| 47 | 
< | 
  haveOrigRcut = 0; | 
| 48 | 
< | 
  haveOrigEcr = 0; | 
| 47 | 
> | 
  haveRcut = 0; | 
| 48 | 
> | 
  haveRsw = 0; | 
| 49 | 
  | 
  boxIsInit = 0; | 
| 50 | 
  | 
   | 
| 51 | 
< | 
   | 
| 51 | 
> | 
  resetTime = 1e99; | 
| 52 | 
  | 
 | 
| 53 | 
+ | 
  orthoRhombic = 0; | 
| 54 | 
+ | 
  orthoTolerance = 1E-6; | 
| 55 | 
+ | 
  useInitXSstate = true; | 
| 56 | 
+ | 
 | 
| 57 | 
  | 
  usePBC = 0; | 
| 58 | 
  | 
  useLJ = 0;  | 
| 59 | 
  | 
  useSticky = 0; | 
| 60 | 
< | 
  useDipole = 0; | 
| 60 | 
> | 
  useCharges = 0; | 
| 61 | 
> | 
  useDipoles = 0; | 
| 62 | 
  | 
  useReactionField = 0; | 
| 63 | 
  | 
  useGB = 0; | 
| 64 | 
  | 
  useEAM = 0; | 
| 65 | 
+ | 
   | 
| 66 | 
+ | 
  haveCutoffGroups = false; | 
| 67 | 
  | 
 | 
| 68 | 
+ | 
  excludes = Exclude::Instance(); | 
| 69 | 
+ | 
 | 
| 70 | 
  | 
  myConfiguration = new SimState(); | 
| 71 | 
  | 
 | 
| 72 | 
+ | 
  has_minimizer = false; | 
| 73 | 
+ | 
  the_minimizer =NULL; | 
| 74 | 
+ | 
 | 
| 75 | 
+ | 
  ngroup = 0; | 
| 76 | 
+ | 
 | 
| 77 | 
  | 
  wrapMeSimInfo( this ); | 
| 78 | 
  | 
} | 
| 79 | 
  | 
 | 
| 86 | 
  | 
   | 
| 87 | 
  | 
  for(i = properties.begin(); i != properties.end(); i++) | 
| 88 | 
  | 
    delete (*i).second; | 
| 89 | 
< | 
     | 
| 89 | 
> | 
   | 
| 90 | 
  | 
} | 
| 91 | 
  | 
 | 
| 92 | 
  | 
void SimInfo::setBox(double newBox[3]) { | 
| 107 | 
  | 
 | 
| 108 | 
  | 
void SimInfo::setBoxM( double theBox[3][3] ){ | 
| 109 | 
  | 
   | 
| 110 | 
< | 
  int i, j, status; | 
| 97 | 
< | 
  double smallestBoxL, maxCutoff; | 
| 110 | 
> | 
  int i, j; | 
| 111 | 
  | 
  double FortranHmat[9]; // to preserve compatibility with Fortran the | 
| 112 | 
  | 
                         // ordering in the array is as follows: | 
| 113 | 
  | 
                         // [ 0 3 6 ] | 
| 115 | 
  | 
                         // [ 2 5 8 ] | 
| 116 | 
  | 
  double FortranHmatInv[9]; // the inverted Hmat (for Fortran); | 
| 117 | 
  | 
 | 
| 105 | 
– | 
   | 
| 118 | 
  | 
  if( !boxIsInit ) boxIsInit = 1; | 
| 119 | 
  | 
 | 
| 120 | 
  | 
  for(i=0; i < 3; i++)  | 
| 158 | 
  | 
 | 
| 159 | 
  | 
void SimInfo::calcHmatInv( void ) { | 
| 160 | 
  | 
   | 
| 161 | 
+ | 
  int oldOrtho; | 
| 162 | 
  | 
  int i,j; | 
| 163 | 
  | 
  double smallDiag; | 
| 164 | 
  | 
  double tol; | 
| 166 | 
  | 
 | 
| 167 | 
  | 
  invertMat3( Hmat, HmatInv ); | 
| 168 | 
  | 
 | 
| 156 | 
– | 
  // Check the inverse to make sure it is sane: | 
| 157 | 
– | 
 | 
| 158 | 
– | 
  matMul3( Hmat, HmatInv, sanity ); | 
| 159 | 
– | 
     | 
| 169 | 
  | 
  // check to see if Hmat is orthorhombic | 
| 170 | 
  | 
   | 
| 171 | 
< | 
  smallDiag = Hmat[0][0]; | 
| 163 | 
< | 
  if(smallDiag > Hmat[1][1]) smallDiag = Hmat[1][1]; | 
| 164 | 
< | 
  if(smallDiag > Hmat[2][2]) smallDiag = Hmat[2][2]; | 
| 165 | 
< | 
  tol = smallDiag * 1E-6; | 
| 171 | 
> | 
  oldOrtho = orthoRhombic; | 
| 172 | 
  | 
 | 
| 173 | 
+ | 
  smallDiag = fabs(Hmat[0][0]); | 
| 174 | 
+ | 
  if(smallDiag > fabs(Hmat[1][1])) smallDiag = fabs(Hmat[1][1]); | 
| 175 | 
+ | 
  if(smallDiag > fabs(Hmat[2][2])) smallDiag = fabs(Hmat[2][2]); | 
| 176 | 
+ | 
  tol = smallDiag * orthoTolerance; | 
| 177 | 
+ | 
 | 
| 178 | 
  | 
  orthoRhombic = 1; | 
| 179 | 
  | 
   | 
| 180 | 
  | 
  for (i = 0; i < 3; i++ ) { | 
| 181 | 
  | 
    for (j = 0 ; j < 3; j++) { | 
| 182 | 
  | 
      if (i != j) { | 
| 183 | 
  | 
        if (orthoRhombic) { | 
| 184 | 
< | 
          if (Hmat[i][j] >= tol) orthoRhombic = 0; | 
| 184 | 
> | 
          if ( fabs(Hmat[i][j]) >= tol) orthoRhombic = 0; | 
| 185 | 
  | 
        }         | 
| 186 | 
  | 
      } | 
| 187 | 
  | 
    } | 
| 188 | 
  | 
  } | 
| 178 | 
– | 
} | 
| 189 | 
  | 
 | 
| 190 | 
< | 
double SimInfo::matDet3(double a[3][3]) { | 
| 191 | 
< | 
  int i, j, k; | 
| 192 | 
< | 
  double determinant; | 
| 193 | 
< | 
 | 
| 194 | 
< | 
  determinant = 0.0; | 
| 195 | 
< | 
 | 
| 196 | 
< | 
  for(i = 0; i < 3; i++) { | 
| 197 | 
< | 
    j = (i+1)%3; | 
| 198 | 
< | 
    k = (i+2)%3; | 
| 199 | 
< | 
 | 
| 200 | 
< | 
    determinant += a[0][i] * (a[1][j]*a[2][k] - a[1][k]*a[2][j]); | 
| 191 | 
< | 
  } | 
| 192 | 
< | 
 | 
| 193 | 
< | 
  return determinant; | 
| 194 | 
< | 
} | 
| 195 | 
< | 
 | 
| 196 | 
< | 
void SimInfo::invertMat3(double a[3][3], double b[3][3]) { | 
| 197 | 
< | 
   | 
| 198 | 
< | 
  int  i, j, k, l, m, n; | 
| 199 | 
< | 
  double determinant; | 
| 200 | 
< | 
 | 
| 201 | 
< | 
  determinant = matDet3( a ); | 
| 202 | 
< | 
 | 
| 203 | 
< | 
  if (determinant == 0.0) { | 
| 204 | 
< | 
    sprintf( painCave.errMsg, | 
| 205 | 
< | 
             "Can't invert a matrix with a zero determinant!\n"); | 
| 206 | 
< | 
    painCave.isFatal = 1; | 
| 207 | 
< | 
    simError(); | 
| 208 | 
< | 
  } | 
| 209 | 
< | 
 | 
| 210 | 
< | 
  for (i=0; i < 3; i++) { | 
| 211 | 
< | 
    j = (i+1)%3; | 
| 212 | 
< | 
    k = (i+2)%3; | 
| 213 | 
< | 
    for(l = 0; l < 3; l++) { | 
| 214 | 
< | 
      m = (l+1)%3; | 
| 215 | 
< | 
      n = (l+2)%3; | 
| 216 | 
< | 
       | 
| 217 | 
< | 
      b[l][i] = (a[j][m]*a[k][n] - a[j][n]*a[k][m]) / determinant; | 
| 190 | 
> | 
  if( oldOrtho != orthoRhombic ){ | 
| 191 | 
> | 
     | 
| 192 | 
> | 
    if( orthoRhombic ){ | 
| 193 | 
> | 
      sprintf( painCave.errMsg, | 
| 194 | 
> | 
               "OOPSE is switching from the default Non-Orthorhombic\n" | 
| 195 | 
> | 
               "\tto the faster Orthorhombic periodic boundary computations.\n" | 
| 196 | 
> | 
               "\tThis is usually a good thing, but if you wan't the\n" | 
| 197 | 
> | 
               "\tNon-Orthorhombic computations, make the orthoBoxTolerance\n" | 
| 198 | 
> | 
               "\tvariable ( currently set to %G ) smaller.\n", | 
| 199 | 
> | 
               orthoTolerance); | 
| 200 | 
> | 
      simError(); | 
| 201 | 
  | 
    } | 
| 202 | 
< | 
  } | 
| 203 | 
< | 
} | 
| 204 | 
< | 
 | 
| 205 | 
< | 
void SimInfo::matMul3(double a[3][3], double b[3][3], double c[3][3]) { | 
| 206 | 
< | 
  double r00, r01, r02, r10, r11, r12, r20, r21, r22; | 
| 207 | 
< | 
 | 
| 208 | 
< | 
  r00 = a[0][0]*b[0][0] + a[0][1]*b[1][0] + a[0][2]*b[2][0]; | 
| 209 | 
< | 
  r01 = a[0][0]*b[0][1] + a[0][1]*b[1][1] + a[0][2]*b[2][1]; | 
| 210 | 
< | 
  r02 = a[0][0]*b[0][2] + a[0][1]*b[1][2] + a[0][2]*b[2][2]; | 
| 211 | 
< | 
   | 
| 229 | 
< | 
  r10 = a[1][0]*b[0][0] + a[1][1]*b[1][0] + a[1][2]*b[2][0]; | 
| 230 | 
< | 
  r11 = a[1][0]*b[0][1] + a[1][1]*b[1][1] + a[1][2]*b[2][1]; | 
| 231 | 
< | 
  r12 = a[1][0]*b[0][2] + a[1][1]*b[1][2] + a[1][2]*b[2][2]; | 
| 232 | 
< | 
   | 
| 233 | 
< | 
  r20 = a[2][0]*b[0][0] + a[2][1]*b[1][0] + a[2][2]*b[2][0]; | 
| 234 | 
< | 
  r21 = a[2][0]*b[0][1] + a[2][1]*b[1][1] + a[2][2]*b[2][1]; | 
| 235 | 
< | 
  r22 = a[2][0]*b[0][2] + a[2][1]*b[1][2] + a[2][2]*b[2][2]; | 
| 236 | 
< | 
   | 
| 237 | 
< | 
  c[0][0] = r00; c[0][1] = r01; c[0][2] = r02; | 
| 238 | 
< | 
  c[1][0] = r10; c[1][1] = r11; c[1][2] = r12; | 
| 239 | 
< | 
  c[2][0] = r20; c[2][1] = r21; c[2][2] = r22; | 
| 240 | 
< | 
} | 
| 241 | 
< | 
 | 
| 242 | 
< | 
void SimInfo::matVecMul3(double m[3][3], double inVec[3], double outVec[3]) { | 
| 243 | 
< | 
  double a0, a1, a2; | 
| 244 | 
< | 
 | 
| 245 | 
< | 
  a0 = inVec[0];  a1 = inVec[1];  a2 = inVec[2]; | 
| 246 | 
< | 
 | 
| 247 | 
< | 
  outVec[0] = m[0][0]*a0 + m[0][1]*a1 + m[0][2]*a2; | 
| 248 | 
< | 
  outVec[1] = m[1][0]*a0 + m[1][1]*a1 + m[1][2]*a2; | 
| 249 | 
< | 
  outVec[2] = m[2][0]*a0 + m[2][1]*a1 + m[2][2]*a2; | 
| 250 | 
< | 
} | 
| 251 | 
< | 
 | 
| 252 | 
< | 
void SimInfo::transposeMat3(double in[3][3], double out[3][3]) { | 
| 253 | 
< | 
  double temp[3][3]; | 
| 254 | 
< | 
  int i, j; | 
| 255 | 
< | 
 | 
| 256 | 
< | 
  for (i = 0; i < 3; i++) { | 
| 257 | 
< | 
    for (j = 0; j < 3; j++) { | 
| 258 | 
< | 
      temp[j][i] = in[i][j]; | 
| 202 | 
> | 
    else { | 
| 203 | 
> | 
      sprintf( painCave.errMsg, | 
| 204 | 
> | 
               "OOPSE is switching from the faster Orthorhombic to the more\n" | 
| 205 | 
> | 
               "\tflexible Non-Orthorhombic periodic boundary computations.\n" | 
| 206 | 
> | 
               "\tThis is usually because the box has deformed under\n" | 
| 207 | 
> | 
               "\tNPTf integration. If you wan't to live on the edge with\n" | 
| 208 | 
> | 
               "\tthe Orthorhombic computations, make the orthoBoxTolerance\n" | 
| 209 | 
> | 
               "\tvariable ( currently set to %G ) larger.\n", | 
| 210 | 
> | 
               orthoTolerance); | 
| 211 | 
> | 
      simError(); | 
| 212 | 
  | 
    } | 
| 213 | 
  | 
  } | 
| 261 | 
– | 
  for (i = 0; i < 3; i++) { | 
| 262 | 
– | 
    for (j = 0; j < 3; j++) { | 
| 263 | 
– | 
      out[i][j] = temp[i][j]; | 
| 264 | 
– | 
    } | 
| 265 | 
– | 
  } | 
| 214 | 
  | 
} | 
| 267 | 
– | 
   | 
| 268 | 
– | 
void SimInfo::printMat3(double A[3][3] ){ | 
| 215 | 
  | 
 | 
| 270 | 
– | 
  std::cerr  | 
| 271 | 
– | 
            << "[ " << A[0][0] << ", " << A[0][1] << ", " << A[0][2] << " ]\n" | 
| 272 | 
– | 
            << "[ " << A[1][0] << ", " << A[1][1] << ", " << A[1][2] << " ]\n" | 
| 273 | 
– | 
            << "[ " << A[2][0] << ", " << A[2][1] << ", " << A[2][2] << " ]\n"; | 
| 274 | 
– | 
} | 
| 275 | 
– | 
 | 
| 276 | 
– | 
void SimInfo::printMat9(double A[9] ){ | 
| 277 | 
– | 
 | 
| 278 | 
– | 
  std::cerr  | 
| 279 | 
– | 
            << "[ " << A[0] << ", " << A[1] << ", " << A[2] << " ]\n" | 
| 280 | 
– | 
            << "[ " << A[3] << ", " << A[4] << ", " << A[5] << " ]\n" | 
| 281 | 
– | 
            << "[ " << A[6] << ", " << A[7] << ", " << A[8] << " ]\n"; | 
| 282 | 
– | 
} | 
| 283 | 
– | 
 | 
| 216 | 
  | 
void SimInfo::calcBoxL( void ){ | 
| 217 | 
  | 
 | 
| 218 | 
  | 
  double dx, dy, dz, dsq; | 
| 287 | 
– | 
  int i; | 
| 219 | 
  | 
 | 
| 220 | 
  | 
  // boxVol = Determinant of Hmat | 
| 221 | 
  | 
 | 
| 226 | 
  | 
  dx = Hmat[0][0]; dy = Hmat[1][0]; dz = Hmat[2][0]; | 
| 227 | 
  | 
  dsq = dx*dx + dy*dy + dz*dz; | 
| 228 | 
  | 
  boxL[0] = sqrt( dsq ); | 
| 229 | 
< | 
  maxCutoff = 0.5 * boxL[0]; | 
| 229 | 
> | 
  //maxCutoff = 0.5 * boxL[0]; | 
| 230 | 
  | 
 | 
| 231 | 
  | 
  // boxLy | 
| 232 | 
  | 
   | 
| 233 | 
  | 
  dx = Hmat[0][1]; dy = Hmat[1][1]; dz = Hmat[2][1]; | 
| 234 | 
  | 
  dsq = dx*dx + dy*dy + dz*dz; | 
| 235 | 
  | 
  boxL[1] = sqrt( dsq ); | 
| 236 | 
< | 
  if( (0.5 * boxL[1]) < maxCutoff ) maxCutoff = 0.5 * boxL[1]; | 
| 236 | 
> | 
  //if( (0.5 * boxL[1]) < maxCutoff ) maxCutoff = 0.5 * boxL[1]; | 
| 237 | 
  | 
 | 
| 238 | 
+ | 
 | 
| 239 | 
  | 
  // boxLz | 
| 240 | 
  | 
   | 
| 241 | 
  | 
  dx = Hmat[0][2]; dy = Hmat[1][2]; dz = Hmat[2][2]; | 
| 242 | 
  | 
  dsq = dx*dx + dy*dy + dz*dz; | 
| 243 | 
  | 
  boxL[2] = sqrt( dsq ); | 
| 244 | 
< | 
  if( (0.5 * boxL[2]) < maxCutoff ) maxCutoff = 0.5 * boxL[2]; | 
| 244 | 
> | 
  //if( (0.5 * boxL[2]) < maxCutoff ) maxCutoff = 0.5 * boxL[2]; | 
| 245 | 
> | 
 | 
| 246 | 
> | 
  //calculate the max cutoff | 
| 247 | 
> | 
  maxCutoff =  calcMaxCutOff();  | 
| 248 | 
  | 
   | 
| 249 | 
  | 
  checkCutOffs(); | 
| 250 | 
  | 
 | 
| 251 | 
  | 
} | 
| 252 | 
  | 
 | 
| 253 | 
  | 
 | 
| 254 | 
+ | 
double SimInfo::calcMaxCutOff(){ | 
| 255 | 
+ | 
 | 
| 256 | 
+ | 
  double ri[3], rj[3], rk[3]; | 
| 257 | 
+ | 
  double rij[3], rjk[3], rki[3]; | 
| 258 | 
+ | 
  double minDist; | 
| 259 | 
+ | 
 | 
| 260 | 
+ | 
  ri[0] = Hmat[0][0]; | 
| 261 | 
+ | 
  ri[1] = Hmat[1][0]; | 
| 262 | 
+ | 
  ri[2] = Hmat[2][0]; | 
| 263 | 
+ | 
 | 
| 264 | 
+ | 
  rj[0] = Hmat[0][1]; | 
| 265 | 
+ | 
  rj[1] = Hmat[1][1]; | 
| 266 | 
+ | 
  rj[2] = Hmat[2][1]; | 
| 267 | 
+ | 
 | 
| 268 | 
+ | 
  rk[0] = Hmat[0][2]; | 
| 269 | 
+ | 
  rk[1] = Hmat[1][2]; | 
| 270 | 
+ | 
  rk[2] = Hmat[2][2]; | 
| 271 | 
+ | 
     | 
| 272 | 
+ | 
  crossProduct3(ri, rj, rij); | 
| 273 | 
+ | 
  distXY = dotProduct3(rk,rij) / norm3(rij); | 
| 274 | 
+ | 
 | 
| 275 | 
+ | 
  crossProduct3(rj,rk, rjk); | 
| 276 | 
+ | 
  distYZ = dotProduct3(ri,rjk) / norm3(rjk); | 
| 277 | 
+ | 
 | 
| 278 | 
+ | 
  crossProduct3(rk,ri, rki); | 
| 279 | 
+ | 
  distZX = dotProduct3(rj,rki) / norm3(rki); | 
| 280 | 
+ | 
 | 
| 281 | 
+ | 
  minDist = min(min(distXY, distYZ), distZX); | 
| 282 | 
+ | 
  return minDist/2; | 
| 283 | 
+ | 
   | 
| 284 | 
+ | 
} | 
| 285 | 
+ | 
 | 
| 286 | 
  | 
void SimInfo::wrapVector( double thePos[3] ){ | 
| 287 | 
  | 
 | 
| 288 | 
< | 
  int i, j, k; | 
| 288 | 
> | 
  int i; | 
| 289 | 
  | 
  double scaled[3]; | 
| 290 | 
  | 
 | 
| 291 | 
  | 
  if( !orthoRhombic ){ | 
| 323 | 
  | 
 | 
| 324 | 
  | 
 | 
| 325 | 
  | 
int SimInfo::getNDF(){ | 
| 326 | 
< | 
  int ndf_local, ndf; | 
| 326 | 
> | 
  int ndf_local; | 
| 327 | 
> | 
 | 
| 328 | 
> | 
  ndf_local = 0; | 
| 329 | 
  | 
   | 
| 330 | 
< | 
  ndf_local = 3 * n_atoms + 3 * n_oriented - n_constraints; | 
| 330 | 
> | 
  for(int i = 0; i < integrableObjects.size(); i++){ | 
| 331 | 
> | 
    ndf_local += 3; | 
| 332 | 
> | 
    if (integrableObjects[i]->isDirectional()) { | 
| 333 | 
> | 
      if (integrableObjects[i]->isLinear()) | 
| 334 | 
> | 
        ndf_local += 2; | 
| 335 | 
> | 
      else | 
| 336 | 
> | 
        ndf_local += 3; | 
| 337 | 
> | 
    } | 
| 338 | 
> | 
  } | 
| 339 | 
  | 
 | 
| 340 | 
+ | 
  // n_constraints is local, so subtract them on each processor: | 
| 341 | 
+ | 
 | 
| 342 | 
+ | 
  ndf_local -= n_constraints; | 
| 343 | 
+ | 
 | 
| 344 | 
  | 
#ifdef IS_MPI | 
| 345 | 
  | 
  MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); | 
| 346 | 
  | 
#else | 
| 347 | 
  | 
  ndf = ndf_local; | 
| 348 | 
  | 
#endif | 
| 349 | 
  | 
 | 
| 350 | 
+ | 
  // nZconstraints is global, as are the 3 COM translations for the  | 
| 351 | 
+ | 
  // entire system: | 
| 352 | 
+ | 
 | 
| 353 | 
  | 
  ndf = ndf - 3 - nZconstraints; | 
| 354 | 
  | 
 | 
| 355 | 
  | 
  return ndf; | 
| 356 | 
  | 
} | 
| 357 | 
  | 
 | 
| 358 | 
  | 
int SimInfo::getNDFraw() { | 
| 359 | 
< | 
  int ndfRaw_local, ndfRaw; | 
| 359 | 
> | 
  int ndfRaw_local; | 
| 360 | 
  | 
 | 
| 361 | 
  | 
  // Raw degrees of freedom that we have to set | 
| 362 | 
< | 
  ndfRaw_local = 3 * n_atoms + 3 * n_oriented; | 
| 363 | 
< | 
   | 
| 362 | 
> | 
  ndfRaw_local = 0; | 
| 363 | 
> | 
 | 
| 364 | 
> | 
  for(int i = 0; i < integrableObjects.size(); i++){ | 
| 365 | 
> | 
    ndfRaw_local += 3; | 
| 366 | 
> | 
    if (integrableObjects[i]->isDirectional()) { | 
| 367 | 
> | 
       if (integrableObjects[i]->isLinear()) | 
| 368 | 
> | 
        ndfRaw_local += 2; | 
| 369 | 
> | 
      else | 
| 370 | 
> | 
        ndfRaw_local += 3; | 
| 371 | 
> | 
    } | 
| 372 | 
> | 
  } | 
| 373 | 
> | 
     | 
| 374 | 
  | 
#ifdef IS_MPI | 
| 375 | 
  | 
  MPI_Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); | 
| 376 | 
  | 
#else | 
| 379 | 
  | 
 | 
| 380 | 
  | 
  return ndfRaw; | 
| 381 | 
  | 
} | 
| 382 | 
< | 
  | 
| 382 | 
> | 
 | 
| 383 | 
> | 
int SimInfo::getNDFtranslational() { | 
| 384 | 
> | 
  int ndfTrans_local; | 
| 385 | 
> | 
 | 
| 386 | 
> | 
  ndfTrans_local = 3 * integrableObjects.size() - n_constraints; | 
| 387 | 
> | 
 | 
| 388 | 
> | 
 | 
| 389 | 
> | 
#ifdef IS_MPI | 
| 390 | 
> | 
  MPI_Allreduce(&ndfTrans_local,&ndfTrans,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); | 
| 391 | 
> | 
#else | 
| 392 | 
> | 
  ndfTrans = ndfTrans_local; | 
| 393 | 
> | 
#endif | 
| 394 | 
> | 
 | 
| 395 | 
> | 
  ndfTrans = ndfTrans - 3 - nZconstraints; | 
| 396 | 
> | 
 | 
| 397 | 
> | 
  return ndfTrans; | 
| 398 | 
> | 
} | 
| 399 | 
> | 
 | 
| 400 | 
> | 
int SimInfo::getTotIntegrableObjects() { | 
| 401 | 
> | 
  int nObjs_local; | 
| 402 | 
> | 
  int nObjs; | 
| 403 | 
> | 
 | 
| 404 | 
> | 
  nObjs_local =  integrableObjects.size(); | 
| 405 | 
> | 
 | 
| 406 | 
> | 
 | 
| 407 | 
> | 
#ifdef IS_MPI | 
| 408 | 
> | 
  MPI_Allreduce(&nObjs_local,&nObjs,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); | 
| 409 | 
> | 
#else | 
| 410 | 
> | 
  nObjs = nObjs_local; | 
| 411 | 
> | 
#endif | 
| 412 | 
> | 
 | 
| 413 | 
> | 
 | 
| 414 | 
> | 
  return nObjs; | 
| 415 | 
> | 
} | 
| 416 | 
> | 
 | 
| 417 | 
  | 
void SimInfo::refreshSim(){ | 
| 418 | 
  | 
 | 
| 419 | 
  | 
  simtype fInfo; | 
| 423 | 
  | 
 | 
| 424 | 
  | 
  fInfo.dielect = 0.0; | 
| 425 | 
  | 
 | 
| 426 | 
< | 
  if( useDipole ){ | 
| 426 | 
> | 
  if( useDipoles ){ | 
| 427 | 
  | 
    if( useReactionField )fInfo.dielect = dielectric; | 
| 428 | 
  | 
  } | 
| 429 | 
  | 
 | 
| 432 | 
  | 
  fInfo.SIM_uses_LJ = useLJ; | 
| 433 | 
  | 
  fInfo.SIM_uses_sticky = useSticky; | 
| 434 | 
  | 
  //fInfo.SIM_uses_sticky = 0; | 
| 435 | 
< | 
  fInfo.SIM_uses_dipoles = useDipole; | 
| 435 | 
> | 
  fInfo.SIM_uses_charges = useCharges; | 
| 436 | 
> | 
  fInfo.SIM_uses_dipoles = useDipoles; | 
| 437 | 
  | 
  //fInfo.SIM_uses_dipoles = 0; | 
| 438 | 
< | 
  //fInfo.SIM_uses_RF = useReactionField; | 
| 439 | 
< | 
  fInfo.SIM_uses_RF = 0; | 
| 438 | 
> | 
  fInfo.SIM_uses_RF = useReactionField; | 
| 439 | 
> | 
  //fInfo.SIM_uses_RF = 0; | 
| 440 | 
  | 
  fInfo.SIM_uses_GB = useGB; | 
| 441 | 
  | 
  fInfo.SIM_uses_EAM = useEAM; | 
| 442 | 
  | 
 | 
| 443 | 
< | 
  excl = Exclude::getArray(); | 
| 444 | 
< | 
 | 
| 443 | 
> | 
  n_exclude = excludes->getSize(); | 
| 444 | 
> | 
  excl = excludes->getFortranArray(); | 
| 445 | 
> | 
   | 
| 446 | 
  | 
#ifdef IS_MPI | 
| 447 | 
  | 
  n_global = mpiSim->getTotAtoms(); | 
| 448 | 
  | 
#else | 
| 449 | 
  | 
  n_global = n_atoms; | 
| 450 | 
  | 
#endif | 
| 451 | 
< | 
 | 
| 451 | 
> | 
   | 
| 452 | 
  | 
  isError = 0; | 
| 453 | 
< | 
 | 
| 453 | 
> | 
   | 
| 454 | 
> | 
  getFortranGroupArray(this, mfact, ngroup, groupList, groupStart); | 
| 455 | 
> | 
  //it may not be a good idea to pass the address of first element in vector | 
| 456 | 
> | 
  //since c++ standard does not require vector to be stored continously in meomory | 
| 457 | 
> | 
  //Most of the compilers will organize the memory of vector continously | 
| 458 | 
  | 
  setFsimulation( &fInfo, &n_global, &n_atoms, identArray, &n_exclude, excl,  | 
| 459 | 
< | 
                  &nGlobalExcludes, globalExcludes, molMembershipArray,  | 
| 460 | 
< | 
                  &isError ); | 
| 461 | 
< | 
 | 
| 459 | 
> | 
                  &nGlobalExcludes, globalExcludes, molMembershipArray,  | 
| 460 | 
> | 
                  &mfact[0], &ngroup, &groupList[0], &groupStart[0], &isError); | 
| 461 | 
> | 
   | 
| 462 | 
  | 
  if( isError ){ | 
| 463 | 
< | 
 | 
| 463 | 
> | 
     | 
| 464 | 
  | 
    sprintf( painCave.errMsg, | 
| 465 | 
< | 
             "There was an error setting the simulation information in fortran.\n" ); | 
| 465 | 
> | 
             "There was an error setting the simulation information in fortran.\n" ); | 
| 466 | 
  | 
    painCave.isFatal = 1; | 
| 467 | 
  | 
    simError(); | 
| 468 | 
  | 
  } | 
| 469 | 
< | 
 | 
| 469 | 
> | 
   | 
| 470 | 
  | 
#ifdef IS_MPI | 
| 471 | 
  | 
  sprintf( checkPointMsg, | 
| 472 | 
  | 
           "succesfully sent the simulation information to fortran.\n"); | 
| 473 | 
  | 
  MPIcheckPoint(); | 
| 474 | 
  | 
#endif // is_mpi | 
| 475 | 
< | 
 | 
| 475 | 
> | 
   | 
| 476 | 
  | 
  this->ndf = this->getNDF(); | 
| 477 | 
  | 
  this->ndfRaw = this->getNDFraw(); | 
| 478 | 
< | 
 | 
| 478 | 
> | 
  this->ndfTrans = this->getNDFtranslational(); | 
| 479 | 
  | 
} | 
| 480 | 
  | 
 | 
| 481 | 
< | 
 | 
| 482 | 
< | 
void SimInfo::setRcut( double theRcut ){ | 
| 483 | 
< | 
 | 
| 450 | 
< | 
  if( !haveOrigRcut ){ | 
| 451 | 
< | 
    haveOrigRcut = 1; | 
| 452 | 
< | 
    origRcut = theRcut; | 
| 453 | 
< | 
  } | 
| 454 | 
< | 
 | 
| 481 | 
> | 
void SimInfo::setDefaultRcut( double theRcut ){ | 
| 482 | 
> | 
   | 
| 483 | 
> | 
  haveRcut = 1; | 
| 484 | 
  | 
  rCut = theRcut; | 
| 485 | 
< | 
  checkCutOffs(); | 
| 485 | 
> | 
  rList = rCut + 1.0;  | 
| 486 | 
> | 
   | 
| 487 | 
> | 
  notifyFortranCutOffs( &rCut, &rSw, &rList ); | 
| 488 | 
  | 
} | 
| 489 | 
  | 
 | 
| 490 | 
< | 
void SimInfo::setEcr( double theEcr ){ | 
| 490 | 
> | 
void SimInfo::setDefaultRcut( double theRcut, double theRsw ){ | 
| 491 | 
  | 
 | 
| 492 | 
< | 
  if( !haveOrigEcr ){ | 
| 493 | 
< | 
    haveOrigEcr = 1; | 
| 463 | 
< | 
    origEcr = theEcr; | 
| 464 | 
< | 
  } | 
| 465 | 
< | 
 | 
| 466 | 
< | 
  ecr = theEcr; | 
| 467 | 
< | 
  checkCutOffs(); | 
| 492 | 
> | 
  rSw = theRsw; | 
| 493 | 
> | 
  setDefaultRcut( theRcut ); | 
| 494 | 
  | 
} | 
| 495 | 
  | 
 | 
| 470 | 
– | 
void SimInfo::setEcr( double theEcr, double theEst ){ | 
| 496 | 
  | 
 | 
| 472 | 
– | 
  est = theEst; | 
| 473 | 
– | 
  setEcr( theEcr ); | 
| 474 | 
– | 
} | 
| 475 | 
– | 
 | 
| 476 | 
– | 
 | 
| 497 | 
  | 
void SimInfo::checkCutOffs( void ){ | 
| 498 | 
< | 
 | 
| 479 | 
< | 
  int cutChanged = 0; | 
| 480 | 
< | 
 | 
| 481 | 
< | 
 | 
| 482 | 
< | 
 | 
| 498 | 
> | 
   | 
| 499 | 
  | 
  if( boxIsInit ){ | 
| 500 | 
  | 
     | 
| 501 | 
  | 
    //we need to check cutOffs against the box | 
| 502 | 
< | 
    | 
| 503 | 
< | 
    if(( maxCutoff > rCut )&&(usePBC)){ | 
| 488 | 
< | 
      if( rCut < origRcut ){ | 
| 489 | 
< | 
        rCut = origRcut; | 
| 490 | 
< | 
        if (rCut > maxCutoff) rCut = maxCutoff; | 
| 491 | 
< | 
         | 
| 492 | 
< | 
        sprintf( painCave.errMsg, | 
| 493 | 
< | 
                 "New Box size is setting the long range cutoff radius " | 
| 494 | 
< | 
                 "to %lf\n", | 
| 495 | 
< | 
                 rCut ); | 
| 496 | 
< | 
        painCave.isFatal = 0; | 
| 497 | 
< | 
        simError(); | 
| 498 | 
< | 
      } | 
| 499 | 
< | 
    } | 
| 500 | 
< | 
 | 
| 501 | 
< | 
    if( maxCutoff > ecr ){ | 
| 502 | 
< | 
      if( ecr < origEcr ){ | 
| 503 | 
< | 
        rCut = origEcr; | 
| 504 | 
< | 
        if (ecr > maxCutoff) ecr = maxCutoff; | 
| 505 | 
< | 
         | 
| 506 | 
< | 
        sprintf( painCave.errMsg, | 
| 507 | 
< | 
                 "New Box size is setting the electrostaticCutoffRadius " | 
| 508 | 
< | 
                 "to %lf\n", | 
| 509 | 
< | 
                 ecr ); | 
| 510 | 
< | 
        painCave.isFatal = 0; | 
| 511 | 
< | 
        simError(); | 
| 512 | 
< | 
      } | 
| 513 | 
< | 
    } | 
| 514 | 
< | 
 | 
| 515 | 
< | 
 | 
| 516 | 
< | 
    if ((rCut > maxCutoff)&&(usePBC)) { | 
| 502 | 
> | 
     | 
| 503 | 
> | 
    if( rCut > maxCutoff ){ | 
| 504 | 
  | 
      sprintf( painCave.errMsg, | 
| 505 | 
< | 
               "New Box size is setting the long range cutoff radius " | 
| 506 | 
< | 
               "to %lf\n", | 
| 507 | 
< | 
               maxCutoff ); | 
| 508 | 
< | 
      painCave.isFatal = 0; | 
| 505 | 
> | 
               "cutoffRadius is too large for the current periodic box.\n" | 
| 506 | 
> | 
               "\tCurrent Value of cutoffRadius = %G at time %G\n " | 
| 507 | 
> | 
               "\tThis is larger than half of at least one of the\n" | 
| 508 | 
> | 
               "\tperiodic box vectors.  Right now, the Box matrix is:\n" | 
| 509 | 
> | 
               "\n" | 
| 510 | 
> | 
               "\t[ %G %G %G ]\n" | 
| 511 | 
> | 
               "\t[ %G %G %G ]\n" | 
| 512 | 
> | 
               "\t[ %G %G %G ]\n", | 
| 513 | 
> | 
               rCut, currentTime, | 
| 514 | 
> | 
               Hmat[0][0], Hmat[0][1], Hmat[0][2], | 
| 515 | 
> | 
               Hmat[1][0], Hmat[1][1], Hmat[1][2], | 
| 516 | 
> | 
               Hmat[2][0], Hmat[2][1], Hmat[2][2]); | 
| 517 | 
> | 
      painCave.isFatal = 1; | 
| 518 | 
  | 
      simError(); | 
| 519 | 
< | 
      rCut = maxCutoff; | 
| 520 | 
< | 
    } | 
| 521 | 
< | 
 | 
| 522 | 
< | 
    if( ecr > maxCutoff){ | 
| 523 | 
< | 
      sprintf( painCave.errMsg, | 
| 524 | 
< | 
               "New Box size is setting the electrostaticCutoffRadius " | 
| 525 | 
< | 
               "to %lf\n", | 
| 526 | 
< | 
               maxCutoff  ); | 
| 531 | 
< | 
      painCave.isFatal = 0; | 
| 532 | 
< | 
      simError();       | 
| 533 | 
< | 
      ecr = maxCutoff; | 
| 534 | 
< | 
    } | 
| 535 | 
< | 
 | 
| 536 | 
< | 
     | 
| 519 | 
> | 
    }     | 
| 520 | 
> | 
  } else { | 
| 521 | 
> | 
    // initialize this stuff before using it, OK? | 
| 522 | 
> | 
    sprintf( painCave.errMsg, | 
| 523 | 
> | 
             "Trying to check cutoffs without a box.\n" | 
| 524 | 
> | 
             "\tOOPSE should have better programmers than that.\n" ); | 
| 525 | 
> | 
    painCave.isFatal = 1; | 
| 526 | 
> | 
    simError();       | 
| 527 | 
  | 
  } | 
| 538 | 
– | 
    | 
| 539 | 
– | 
 | 
| 540 | 
– | 
  if( (oldEcr != ecr) || ( oldRcut != rCut ) ) cutChanged = 1; | 
| 541 | 
– | 
 | 
| 542 | 
– | 
  // rlist is the 1.0 plus max( rcut, ecr ) | 
| 528 | 
  | 
   | 
| 544 | 
– | 
  ( rCut > ecr )? rList = rCut + 1.0: rList = ecr + 1.0; | 
| 545 | 
– | 
 | 
| 546 | 
– | 
  if( cutChanged ){ | 
| 547 | 
– | 
     | 
| 548 | 
– | 
    notifyFortranCutOffs( &rCut, &rList, &ecr, &est ); | 
| 549 | 
– | 
  } | 
| 550 | 
– | 
 | 
| 551 | 
– | 
  oldEcr = ecr; | 
| 552 | 
– | 
  oldRcut = rCut; | 
| 529 | 
  | 
} | 
| 530 | 
  | 
 | 
| 531 | 
  | 
void SimInfo::addProperty(GenericData* prop){ | 
| 564 | 
  | 
    return NULL;   | 
| 565 | 
  | 
} | 
| 566 | 
  | 
 | 
| 591 | 
– | 
vector<GenericData*> SimInfo::getProperties(){ | 
| 567 | 
  | 
 | 
| 568 | 
< | 
  vector<GenericData*> result; | 
| 569 | 
< | 
  map<string, GenericData*>::iterator i; | 
| 568 | 
> | 
void getFortranGroupArray(SimInfo* info, vector<double>& mfact, int& ngroup,  | 
| 569 | 
> | 
                          vector<int>& groupList, vector<int>& groupStart){ | 
| 570 | 
> | 
  Molecule* myMols; | 
| 571 | 
> | 
  Atom** myAtoms; | 
| 572 | 
> | 
  int numAtom; | 
| 573 | 
> | 
  int curIndex; | 
| 574 | 
> | 
  double mtot; | 
| 575 | 
> | 
  int numMol; | 
| 576 | 
> | 
  int numCutoffGroups; | 
| 577 | 
> | 
  CutoffGroup* myCutoffGroup; | 
| 578 | 
> | 
  vector<CutoffGroup*>::iterator iterCutoff; | 
| 579 | 
> | 
  Atom* cutoffAtom; | 
| 580 | 
> | 
  vector<Atom*>::iterator iterAtom; | 
| 581 | 
> | 
  int atomIndex; | 
| 582 | 
> | 
  double totalMass; | 
| 583 | 
  | 
   | 
| 584 | 
< | 
  for(i = properties.begin(); i != properties.end(); i++) | 
| 585 | 
< | 
    result.push_back((*i).second); | 
| 584 | 
> | 
  mfact.clear(); | 
| 585 | 
> | 
  groupList.clear(); | 
| 586 | 
> | 
  groupStart.clear(); | 
| 587 | 
> | 
   | 
| 588 | 
> | 
  //Be careful, fortran array begin at 1 | 
| 589 | 
> | 
  curIndex = 1; | 
| 590 | 
> | 
 | 
| 591 | 
> | 
  myMols = info->molecules; | 
| 592 | 
> | 
  numMol = info->n_mol; | 
| 593 | 
> | 
  for(int i  = 0; i < numMol; i++){ | 
| 594 | 
> | 
    numAtom = myMols[i].getNAtoms(); | 
| 595 | 
> | 
    myAtoms = myMols[i].getMyAtoms(); | 
| 596 | 
> | 
 | 
| 597 | 
  | 
     | 
| 598 | 
< | 
  return result; | 
| 600 | 
< | 
} | 
| 598 | 
> | 
    for(int j = 0; j < numAtom; j++){ | 
| 599 | 
  | 
 | 
| 600 | 
+ | 
     | 
| 601 | 
+ | 
#ifdef IS_MPI       | 
| 602 | 
+ | 
      atomIndex = myAtoms[j]->getGlobalIndex(); | 
| 603 | 
+ | 
#else | 
| 604 | 
+ | 
      atomIndex = myAtoms[j]->getIndex(); | 
| 605 | 
+ | 
#endif | 
| 606 | 
  | 
 | 
| 607 | 
+ | 
      if(myMols[i].belongToCutoffGroup(atomIndex)) | 
| 608 | 
+ | 
        continue; | 
| 609 | 
+ | 
      else{ | 
| 610 | 
+ | 
        mfact.push_back(myAtoms[j]->getMass()); | 
| 611 | 
+ | 
        groupList.push_back(myAtoms[j]->getIndex() + 1); | 
| 612 | 
+ | 
        groupStart.push_back(curIndex++);    | 
| 613 | 
+ | 
      } | 
| 614 | 
+ | 
    } | 
| 615 | 
+ | 
       | 
| 616 | 
+ | 
    numCutoffGroups = myMols[i].getNCutoffGroups(); | 
| 617 | 
+ | 
    for(myCutoffGroup =myMols[i].beginCutoffGroup(iterCutoff); myCutoffGroup != NULL;  | 
| 618 | 
+ | 
                                                  myCutoffGroup =myMols[i].nextCutoffGroup(iterCutoff)){ | 
| 619 | 
+ | 
 | 
| 620 | 
+ | 
      totalMass = myCutoffGroup->getMass(); | 
| 621 | 
+ | 
       | 
| 622 | 
+ | 
      for(cutoffAtom = myCutoffGroup->beginAtom(iterAtom); cutoffAtom != NULL;  | 
| 623 | 
+ | 
                                           cutoffAtom = myCutoffGroup->nextAtom(iterAtom)){ | 
| 624 | 
+ | 
        mfact.push_back(cutoffAtom->getMass()/totalMass); | 
| 625 | 
+ | 
        groupList.push_back(cutoffAtom->getIndex() + 1); | 
| 626 | 
+ | 
      }   | 
| 627 | 
+ | 
                               | 
| 628 | 
+ | 
      groupStart.push_back(curIndex); | 
| 629 | 
+ | 
      curIndex += myCutoffGroup->getNumAtom(); | 
| 630 | 
+ | 
 | 
| 631 | 
+ | 
    }//end for(myCutoffGroup =myMols[i].beginCutoffGroup(iterCutoff)) | 
| 632 | 
+ | 
 | 
| 633 | 
+ | 
  }//end for(int i  = 0; i < numMol; i++) | 
| 634 | 
+ | 
   | 
| 635 | 
+ | 
  ngroup = groupStart.size(); | 
| 636 | 
+ | 
} |