| 1 | #include <cstdlib> | 
| 2 | #include <cstring> | 
| 3 | #include <cmath> | 
| 4 |  | 
| 5 | #include <iostream> | 
| 6 | using namespace std; | 
| 7 |  | 
| 8 | #include "SimInfo.hpp" | 
| 9 | #define __C | 
| 10 | #include "fSimulation.h" | 
| 11 | #include "simError.h" | 
| 12 |  | 
| 13 | #include "fortranWrappers.hpp" | 
| 14 |  | 
| 15 | #ifdef IS_MPI | 
| 16 | #include "mpiSimulation.hpp" | 
| 17 | #endif | 
| 18 |  | 
| 19 | inline double roundMe( double x ){ | 
| 20 | return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 ); | 
| 21 | } | 
| 22 |  | 
| 23 |  | 
| 24 | SimInfo* currentInfo; | 
| 25 |  | 
| 26 | SimInfo::SimInfo(){ | 
| 27 | excludes = NULL; | 
| 28 | n_constraints = 0; | 
| 29 | n_oriented = 0; | 
| 30 | n_dipoles = 0; | 
| 31 | ndf = 0; | 
| 32 | ndfRaw = 0; | 
| 33 | the_integrator = NULL; | 
| 34 | setTemp = 0; | 
| 35 | thermalTime = 0.0; | 
| 36 | rCut = 0.0; | 
| 37 |  | 
| 38 | usePBC = 0; | 
| 39 | useLJ = 0; | 
| 40 | useSticky = 0; | 
| 41 | useDipole = 0; | 
| 42 | useReactionField = 0; | 
| 43 | useGB = 0; | 
| 44 | useEAM = 0; | 
| 45 |  | 
| 46 | wrapMeSimInfo( this ); | 
| 47 | } | 
| 48 |  | 
| 49 | void SimInfo::setBox(double newBox[3]) { | 
| 50 |  | 
| 51 | int i, j; | 
| 52 | double tempMat[3][3]; | 
| 53 |  | 
| 54 | for(i=0; i<3; i++) | 
| 55 | for (j=0; j<3; j++) tempMat[i][j] = 0.0;; | 
| 56 |  | 
| 57 | tempMat[0][0] = newBox[0]; | 
| 58 | tempMat[1][1] = newBox[1]; | 
| 59 | tempMat[2][2] = newBox[2]; | 
| 60 |  | 
| 61 | setBoxM( tempMat ); | 
| 62 |  | 
| 63 | } | 
| 64 |  | 
| 65 | void SimInfo::setBoxM( double theBox[3][3] ){ | 
| 66 |  | 
| 67 | int i, j, status; | 
| 68 | double smallestBoxL, maxCutoff; | 
| 69 | double FortranHmat[9]; // to preserve compatibility with Fortran the | 
| 70 | // ordering in the array is as follows: | 
| 71 | // [ 0 3 6 ] | 
| 72 | // [ 1 4 7 ] | 
| 73 | // [ 2 5 8 ] | 
| 74 | double FortranHmatInv[9]; // the inverted Hmat (for Fortran); | 
| 75 |  | 
| 76 |  | 
| 77 | for(i=0; i < 3; i++) | 
| 78 | for (j=0; j < 3; j++) Hmat[i][j] = theBox[i][j]; | 
| 79 |  | 
| 80 | cerr | 
| 81 | << "setting Hmat ->\n" | 
| 82 | << "[ " << Hmat[0][0] << ", " << Hmat[0][1] << ", " << Hmat[0][2] << " ]\n" | 
| 83 | << "[ " << Hmat[1][0] << ", " << Hmat[1][1] << ", " << Hmat[1][2] << " ]\n" | 
| 84 | << "[ " << Hmat[2][0] << ", " << Hmat[2][1] << ", " << Hmat[2][2] << " ]\n"; | 
| 85 |  | 
| 86 | calcBoxL(); | 
| 87 | calcHmatInv(); | 
| 88 |  | 
| 89 | for(i=0; i < 3; i++) { | 
| 90 | for (j=0; j < 3; j++) { | 
| 91 | FortranHmat[3*j + i] = Hmat[i][j]; | 
| 92 | FortranHmatInv[3*j + i] = HmatInv[i][j]; | 
| 93 | } | 
| 94 | } | 
| 95 |  | 
| 96 | setFortranBoxSize(FortranHmat, FortranHmatInv, &orthoRhombic); | 
| 97 |  | 
| 98 | smallestBoxL = boxLx; | 
| 99 | if (boxLy < smallestBoxL) smallestBoxL = boxLy; | 
| 100 | if (boxLz < smallestBoxL) smallestBoxL = boxLz; | 
| 101 |  | 
| 102 | maxCutoff = smallestBoxL / 2.0; | 
| 103 |  | 
| 104 | if (rList > maxCutoff) { | 
| 105 | sprintf( painCave.errMsg, | 
| 106 | "New Box size is forcing neighborlist radius down to %lf\n", | 
| 107 | maxCutoff ); | 
| 108 | painCave.isFatal = 0; | 
| 109 | simError(); | 
| 110 |  | 
| 111 | rList = maxCutoff; | 
| 112 |  | 
| 113 | sprintf( painCave.errMsg, | 
| 114 | "New Box size is forcing cutoff radius down to %lf\n", | 
| 115 | maxCutoff - 1.0 ); | 
| 116 | painCave.isFatal = 0; | 
| 117 | simError(); | 
| 118 |  | 
| 119 | rCut = rList - 1.0; | 
| 120 |  | 
| 121 | // list radius changed so we have to refresh the simulation structure. | 
| 122 | refreshSim(); | 
| 123 | } | 
| 124 |  | 
| 125 | if (rCut > maxCutoff) { | 
| 126 | sprintf( painCave.errMsg, | 
| 127 | "New Box size is forcing cutoff radius down to %lf\n", | 
| 128 | maxCutoff ); | 
| 129 | painCave.isFatal = 0; | 
| 130 | simError(); | 
| 131 |  | 
| 132 | status = 0; | 
| 133 | LJ_new_rcut(&rCut, &status); | 
| 134 | if (status != 0) { | 
| 135 | sprintf( painCave.errMsg, | 
| 136 | "Error in recomputing LJ shifts based on new rcut\n"); | 
| 137 | painCave.isFatal = 1; | 
| 138 | simError(); | 
| 139 | } | 
| 140 | } | 
| 141 | } | 
| 142 |  | 
| 143 |  | 
| 144 | void SimInfo::getBoxM (double theBox[3][3]) { | 
| 145 |  | 
| 146 | int i, j; | 
| 147 | for(i=0; i<3; i++) | 
| 148 | for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]; | 
| 149 | } | 
| 150 |  | 
| 151 |  | 
| 152 | void SimInfo::scaleBox(double scale) { | 
| 153 | double theBox[3][3]; | 
| 154 | int i, j; | 
| 155 |  | 
| 156 | cerr << "Scaling box by " << scale << "\n"; | 
| 157 |  | 
| 158 | for(i=0; i<3; i++) | 
| 159 | for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]*scale; | 
| 160 |  | 
| 161 | setBoxM(theBox); | 
| 162 |  | 
| 163 | } | 
| 164 |  | 
| 165 | void SimInfo::calcHmatInv( void ) { | 
| 166 |  | 
| 167 | int i,j; | 
| 168 | double smallDiag; | 
| 169 | double tol; | 
| 170 | double sanity[3][3]; | 
| 171 |  | 
| 172 | invertMat3( Hmat, HmatInv ); | 
| 173 |  | 
| 174 | // Check the inverse to make sure it is sane: | 
| 175 |  | 
| 176 | matMul3( Hmat, HmatInv, sanity ); | 
| 177 |  | 
| 178 | // check to see if Hmat is orthorhombic | 
| 179 |  | 
| 180 | smallDiag = Hmat[0][0]; | 
| 181 | if(smallDiag > Hmat[1][1]) smallDiag = Hmat[1][1]; | 
| 182 | if(smallDiag > Hmat[2][2]) smallDiag = Hmat[2][2]; | 
| 183 | tol = smallDiag * 1E-6; | 
| 184 |  | 
| 185 | orthoRhombic = 1; | 
| 186 |  | 
| 187 | for (i = 0; i < 3; i++ ) { | 
| 188 | for (j = 0 ; j < 3; j++) { | 
| 189 | if (i != j) { | 
| 190 | if (orthoRhombic) { | 
| 191 | if (Hmat[i][j] >= tol) orthoRhombic = 0; | 
| 192 | } | 
| 193 | } | 
| 194 | } | 
| 195 | } | 
| 196 | } | 
| 197 |  | 
| 198 | double SimInfo::matDet3(double a[3][3]) { | 
| 199 | int i, j, k; | 
| 200 | double determinant; | 
| 201 |  | 
| 202 | determinant = 0.0; | 
| 203 |  | 
| 204 | for(i = 0; i < 3; i++) { | 
| 205 | j = (i+1)%3; | 
| 206 | k = (i+2)%3; | 
| 207 |  | 
| 208 | determinant += a[0][i] * (a[1][j]*a[2][k] - a[1][k]*a[2][j]); | 
| 209 | } | 
| 210 |  | 
| 211 | return determinant; | 
| 212 | } | 
| 213 |  | 
| 214 | void SimInfo::invertMat3(double a[3][3], double b[3][3]) { | 
| 215 |  | 
| 216 | int  i, j, k, l, m, n; | 
| 217 | double determinant; | 
| 218 |  | 
| 219 | determinant = matDet3( a ); | 
| 220 |  | 
| 221 | if (determinant == 0.0) { | 
| 222 | sprintf( painCave.errMsg, | 
| 223 | "Can't invert a matrix with a zero determinant!\n"); | 
| 224 | painCave.isFatal = 1; | 
| 225 | simError(); | 
| 226 | } | 
| 227 |  | 
| 228 | for (i=0; i < 3; i++) { | 
| 229 | j = (i+1)%3; | 
| 230 | k = (i+2)%3; | 
| 231 | for(l = 0; l < 3; l++) { | 
| 232 | m = (l+1)%3; | 
| 233 | n = (l+2)%3; | 
| 234 |  | 
| 235 | b[l][i] = (a[j][m]*a[k][n] - a[j][n]*a[k][m]) / determinant; | 
| 236 | } | 
| 237 | } | 
| 238 | } | 
| 239 |  | 
| 240 | void SimInfo::matMul3(double a[3][3], double b[3][3], double c[3][3]) { | 
| 241 | double r00, r01, r02, r10, r11, r12, r20, r21, r22; | 
| 242 |  | 
| 243 | r00 = a[0][0]*b[0][0] + a[0][1]*b[1][0] + a[0][2]*b[2][0]; | 
| 244 | r01 = a[0][0]*b[0][1] + a[0][1]*b[1][1] + a[0][2]*b[2][1]; | 
| 245 | r02 = a[0][0]*b[0][2] + a[0][1]*b[1][2] + a[0][2]*b[2][2]; | 
| 246 |  | 
| 247 | r10 = a[1][0]*b[0][0] + a[1][1]*b[1][0] + a[1][2]*b[2][0]; | 
| 248 | r11 = a[1][0]*b[0][1] + a[1][1]*b[1][1] + a[1][2]*b[2][1]; | 
| 249 | r12 = a[1][0]*b[0][2] + a[1][1]*b[1][2] + a[1][2]*b[2][2]; | 
| 250 |  | 
| 251 | r20 = a[2][0]*b[0][0] + a[2][1]*b[1][0] + a[2][2]*b[2][0]; | 
| 252 | r21 = a[2][0]*b[0][1] + a[2][1]*b[1][1] + a[2][2]*b[2][1]; | 
| 253 | r22 = a[2][0]*b[0][2] + a[2][1]*b[1][2] + a[2][2]*b[2][2]; | 
| 254 |  | 
| 255 | c[0][0] = r00; c[0][1] = r01; c[0][2] = r02; | 
| 256 | c[1][0] = r10; c[1][1] = r11; c[1][2] = r12; | 
| 257 | c[2][0] = r20; c[2][1] = r21; c[2][2] = r22; | 
| 258 | } | 
| 259 |  | 
| 260 | void SimInfo::matVecMul3(double m[3][3], double inVec[3], double outVec[3]) { | 
| 261 | double a0, a1, a2; | 
| 262 |  | 
| 263 | a0 = inVec[0];  a1 = inVec[1];  a2 = inVec[2]; | 
| 264 |  | 
| 265 | outVec[0] = m[0][0]*a0 + m[0][1]*a1 + m[0][2]*a2; | 
| 266 | outVec[1] = m[1][0]*a0 + m[1][1]*a1 + m[1][2]*a2; | 
| 267 | outVec[2] = m[2][0]*a0 + m[2][1]*a1 + m[2][2]*a2; | 
| 268 | } | 
| 269 |  | 
| 270 | void SimInfo::calcBoxL( void ){ | 
| 271 |  | 
| 272 | double dx, dy, dz, dsq; | 
| 273 | int i; | 
| 274 |  | 
| 275 | // boxVol = Determinant of Hmat | 
| 276 |  | 
| 277 | boxVol = matDet3( Hmat ); | 
| 278 |  | 
| 279 | // boxLx | 
| 280 |  | 
| 281 | dx = Hmat[0][0]; dy = Hmat[1][0]; dz = Hmat[2][0]; | 
| 282 | dsq = dx*dx + dy*dy + dz*dz; | 
| 283 | boxLx = sqrt( dsq ); | 
| 284 |  | 
| 285 | // boxLy | 
| 286 |  | 
| 287 | dx = Hmat[0][1]; dy = Hmat[1][1]; dz = Hmat[2][1]; | 
| 288 | dsq = dx*dx + dy*dy + dz*dz; | 
| 289 | boxLy = sqrt( dsq ); | 
| 290 |  | 
| 291 | // boxLz | 
| 292 |  | 
| 293 | dx = Hmat[0][2]; dy = Hmat[1][2]; dz = Hmat[2][2]; | 
| 294 | dsq = dx*dx + dy*dy + dz*dz; | 
| 295 | boxLz = sqrt( dsq ); | 
| 296 |  | 
| 297 | } | 
| 298 |  | 
| 299 |  | 
| 300 | void SimInfo::wrapVector( double thePos[3] ){ | 
| 301 |  | 
| 302 | int i, j, k; | 
| 303 | double scaled[3]; | 
| 304 |  | 
| 305 | if( !orthoRhombic ){ | 
| 306 | // calc the scaled coordinates. | 
| 307 |  | 
| 308 |  | 
| 309 | matVecMul3(HmatInv, thePos, scaled); | 
| 310 |  | 
| 311 | for(i=0; i<3; i++) | 
| 312 | scaled[i] -= roundMe(scaled[i]); | 
| 313 |  | 
| 314 | // calc the wrapped real coordinates from the wrapped scaled coordinates | 
| 315 |  | 
| 316 | matVecMul3(Hmat, scaled, thePos); | 
| 317 |  | 
| 318 | } | 
| 319 | else{ | 
| 320 | // calc the scaled coordinates. | 
| 321 |  | 
| 322 | for(i=0; i<3; i++) | 
| 323 | scaled[i] = thePos[i]*HmatInv[i][i]; | 
| 324 |  | 
| 325 | // wrap the scaled coordinates | 
| 326 |  | 
| 327 | for(i=0; i<3; i++) | 
| 328 | scaled[i] -= roundMe(scaled[i]); | 
| 329 |  | 
| 330 | // calc the wrapped real coordinates from the wrapped scaled coordinates | 
| 331 |  | 
| 332 | for(i=0; i<3; i++) | 
| 333 | thePos[i] = scaled[i]*Hmat[i][i]; | 
| 334 | } | 
| 335 |  | 
| 336 | } | 
| 337 |  | 
| 338 |  | 
| 339 | int SimInfo::getNDF(){ | 
| 340 | int ndf_local, ndf; | 
| 341 |  | 
| 342 | ndf_local = 3 * n_atoms + 3 * n_oriented - n_constraints; | 
| 343 |  | 
| 344 | #ifdef IS_MPI | 
| 345 | MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); | 
| 346 | #else | 
| 347 | ndf = ndf_local; | 
| 348 | #endif | 
| 349 |  | 
| 350 | ndf = ndf - 3; | 
| 351 |  | 
| 352 | return ndf; | 
| 353 | } | 
| 354 |  | 
| 355 | int SimInfo::getNDFraw() { | 
| 356 | int ndfRaw_local, ndfRaw; | 
| 357 |  | 
| 358 | // Raw degrees of freedom that we have to set | 
| 359 | ndfRaw_local = 3 * n_atoms + 3 * n_oriented; | 
| 360 |  | 
| 361 | #ifdef IS_MPI | 
| 362 | MPI_Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); | 
| 363 | #else | 
| 364 | ndfRaw = ndfRaw_local; | 
| 365 | #endif | 
| 366 |  | 
| 367 | return ndfRaw; | 
| 368 | } | 
| 369 |  | 
| 370 | void SimInfo::refreshSim(){ | 
| 371 |  | 
| 372 | simtype fInfo; | 
| 373 | int isError; | 
| 374 | int n_global; | 
| 375 | int* excl; | 
| 376 |  | 
| 377 | fInfo.rrf = 0.0; | 
| 378 | fInfo.rt = 0.0; | 
| 379 | fInfo.dielect = 0.0; | 
| 380 |  | 
| 381 | fInfo.rlist = rList; | 
| 382 | fInfo.rcut = rCut; | 
| 383 |  | 
| 384 | if( useDipole ){ | 
| 385 | fInfo.rrf = ecr; | 
| 386 | fInfo.rt = ecr - est; | 
| 387 | if( useReactionField )fInfo.dielect = dielectric; | 
| 388 | } | 
| 389 |  | 
| 390 | fInfo.SIM_uses_PBC = usePBC; | 
| 391 | //fInfo.SIM_uses_LJ = 0; | 
| 392 | fInfo.SIM_uses_LJ = useLJ; | 
| 393 | fInfo.SIM_uses_sticky = useSticky; | 
| 394 | //fInfo.SIM_uses_sticky = 0; | 
| 395 | fInfo.SIM_uses_dipoles = useDipole; | 
| 396 | //fInfo.SIM_uses_dipoles = 0; | 
| 397 | //fInfo.SIM_uses_RF = useReactionField; | 
| 398 | fInfo.SIM_uses_RF = 0; | 
| 399 | fInfo.SIM_uses_GB = useGB; | 
| 400 | fInfo.SIM_uses_EAM = useEAM; | 
| 401 |  | 
| 402 | excl = Exclude::getArray(); | 
| 403 |  | 
| 404 | #ifdef IS_MPI | 
| 405 | n_global = mpiSim->getTotAtoms(); | 
| 406 | #else | 
| 407 | n_global = n_atoms; | 
| 408 | #endif | 
| 409 |  | 
| 410 | isError = 0; | 
| 411 |  | 
| 412 | setFsimulation( &fInfo, &n_global, &n_atoms, identArray, &n_exclude, excl, | 
| 413 | &nGlobalExcludes, globalExcludes, molMembershipArray, | 
| 414 | &isError ); | 
| 415 |  | 
| 416 | if( isError ){ | 
| 417 |  | 
| 418 | sprintf( painCave.errMsg, | 
| 419 | "There was an error setting the simulation information in fortran.\n" ); | 
| 420 | painCave.isFatal = 1; | 
| 421 | simError(); | 
| 422 | } | 
| 423 |  | 
| 424 | #ifdef IS_MPI | 
| 425 | sprintf( checkPointMsg, | 
| 426 | "succesfully sent the simulation information to fortran.\n"); | 
| 427 | MPIcheckPoint(); | 
| 428 | #endif // is_mpi | 
| 429 |  | 
| 430 | this->ndf = this->getNDF(); | 
| 431 | this->ndfRaw = this->getNDFraw(); | 
| 432 |  | 
| 433 | } | 
| 434 |  |