| 2 | 
  | 
#include <cstring> | 
| 3 | 
  | 
#include <cmath> | 
| 4 | 
  | 
 | 
| 5 | 
+ | 
#include <iostream> | 
| 6 | 
+ | 
using namespace std; | 
| 7 | 
  | 
 | 
| 8 | 
  | 
#include "SimInfo.hpp" | 
| 9 | 
  | 
#define __C | 
| 16 | 
  | 
#include "mpiSimulation.hpp" | 
| 17 | 
  | 
#endif | 
| 18 | 
  | 
 | 
| 19 | 
+ | 
inline double roundMe( double x ){ | 
| 20 | 
+ | 
  return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 ); | 
| 21 | 
+ | 
} | 
| 22 | 
+ | 
           | 
| 23 | 
+ | 
 | 
| 24 | 
  | 
SimInfo* currentInfo; | 
| 25 | 
  | 
 | 
| 26 | 
  | 
SimInfo::SimInfo(){ | 
| 47 | 
  | 
} | 
| 48 | 
  | 
 | 
| 49 | 
  | 
void SimInfo::setBox(double newBox[3]) { | 
| 50 | 
< | 
 | 
| 44 | 
< | 
  double smallestBoxL, maxCutoff; | 
| 45 | 
< | 
  int status; | 
| 50 | 
> | 
   | 
| 51 | 
  | 
  int i; | 
| 52 | 
+ | 
  double tempMat[9]; | 
| 53 | 
  | 
 | 
| 54 | 
< | 
  for(i=0; i<9; i++) Hmat[i] = 0.0;; | 
| 54 | 
> | 
  for(i=0; i<9; i++) tempMat[i] = 0.0;; | 
| 55 | 
  | 
 | 
| 56 | 
< | 
  Hmat[0] = newBox[0]; | 
| 57 | 
< | 
  Hmat[4] = newBox[1]; | 
| 58 | 
< | 
  Hmat[8] = newBox[2]; | 
| 56 | 
> | 
  tempMat[0] = newBox[0]; | 
| 57 | 
> | 
  tempMat[4] = newBox[1]; | 
| 58 | 
> | 
  tempMat[8] = newBox[2]; | 
| 59 | 
  | 
 | 
| 60 | 
< | 
  calcHmatI(); | 
| 55 | 
< | 
  calcBoxL(); | 
| 60 | 
> | 
  setBoxM( tempMat ); | 
| 61 | 
  | 
 | 
| 57 | 
– | 
  setFortranBoxSize(Hmat); | 
| 58 | 
– | 
 | 
| 59 | 
– | 
  smallestBoxL = boxLx; | 
| 60 | 
– | 
  if (boxLy < smallestBoxL) smallestBoxL = boxLy; | 
| 61 | 
– | 
  if (boxLz < smallestBoxL) smallestBoxL = boxLz; | 
| 62 | 
– | 
 | 
| 63 | 
– | 
  maxCutoff = smallestBoxL / 2.0; | 
| 64 | 
– | 
 | 
| 65 | 
– | 
  if (rList > maxCutoff) { | 
| 66 | 
– | 
    sprintf( painCave.errMsg, | 
| 67 | 
– | 
             "New Box size is forcing neighborlist radius down to %lf\n", | 
| 68 | 
– | 
             maxCutoff ); | 
| 69 | 
– | 
    painCave.isFatal = 0; | 
| 70 | 
– | 
    simError(); | 
| 71 | 
– | 
 | 
| 72 | 
– | 
    rList = maxCutoff; | 
| 73 | 
– | 
 | 
| 74 | 
– | 
    sprintf( painCave.errMsg, | 
| 75 | 
– | 
             "New Box size is forcing cutoff radius down to %lf\n", | 
| 76 | 
– | 
             maxCutoff - 1.0 ); | 
| 77 | 
– | 
    painCave.isFatal = 0; | 
| 78 | 
– | 
    simError(); | 
| 79 | 
– | 
 | 
| 80 | 
– | 
    rCut = rList - 1.0; | 
| 81 | 
– | 
 | 
| 82 | 
– | 
    // list radius changed so we have to refresh the simulation structure. | 
| 83 | 
– | 
    refreshSim(); | 
| 84 | 
– | 
  } | 
| 85 | 
– | 
 | 
| 86 | 
– | 
  if (rCut > maxCutoff) { | 
| 87 | 
– | 
    sprintf( painCave.errMsg, | 
| 88 | 
– | 
             "New Box size is forcing cutoff radius down to %lf\n", | 
| 89 | 
– | 
             maxCutoff ); | 
| 90 | 
– | 
    painCave.isFatal = 0; | 
| 91 | 
– | 
    simError(); | 
| 92 | 
– | 
 | 
| 93 | 
– | 
    status = 0; | 
| 94 | 
– | 
    LJ_new_rcut(&rCut, &status); | 
| 95 | 
– | 
    if (status != 0) { | 
| 96 | 
– | 
      sprintf( painCave.errMsg, | 
| 97 | 
– | 
               "Error in recomputing LJ shifts based on new rcut\n"); | 
| 98 | 
– | 
      painCave.isFatal = 1; | 
| 99 | 
– | 
      simError(); | 
| 100 | 
– | 
    } | 
| 101 | 
– | 
  } | 
| 62 | 
  | 
} | 
| 63 | 
  | 
 | 
| 64 | 
  | 
void SimInfo::setBoxM( double theBox[9] ){ | 
| 67 | 
  | 
  double smallestBoxL, maxCutoff; | 
| 68 | 
  | 
 | 
| 69 | 
  | 
  for(i=0; i<9; i++) Hmat[i] = theBox[i]; | 
| 70 | 
+ | 
 | 
| 71 | 
+ | 
  cerr  | 
| 72 | 
+ | 
    << "setting Hmat ->\n" | 
| 73 | 
+ | 
    << "[ " << Hmat[0] << ", " << Hmat[3] << ", " << Hmat[6] << " ]\n" | 
| 74 | 
+ | 
    << "[ " << Hmat[1] << ", " << Hmat[4] << ", " << Hmat[7] << " ]\n" | 
| 75 | 
+ | 
    << "[ " << Hmat[2] << ", " << Hmat[5] << ", " << Hmat[8] << " ]\n"; | 
| 76 | 
+ | 
 | 
| 77 | 
  | 
  calcHmatI(); | 
| 78 | 
  | 
  calcBoxL(); | 
| 79 | 
  | 
 | 
| 80 | 
< | 
  setFortranBoxSize(Hmat); | 
| 80 | 
> | 
 | 
| 81 | 
> | 
 | 
| 82 | 
> | 
  setFortranBoxSize(Hmat, HmatI, &orthoRhombic); | 
| 83 | 
  | 
  | 
| 84 | 
  | 
  smallestBoxL = boxLx; | 
| 85 | 
  | 
  if (boxLy < smallestBoxL) smallestBoxL = boxLy; | 
| 127 | 
  | 
} | 
| 128 | 
  | 
  | 
| 129 | 
  | 
 | 
| 130 | 
< | 
void SimInfo::getBox(double theBox[9]) { | 
| 130 | 
> | 
void SimInfo::getBoxM (double theBox[9]) { | 
| 131 | 
  | 
 | 
| 132 | 
  | 
  int i; | 
| 133 | 
  | 
  for(i=0; i<9; i++) theBox[i] = Hmat[i]; | 
| 134 | 
  | 
} | 
| 135 | 
< | 
  | 
| 135 | 
> | 
 | 
| 136 | 
> | 
 | 
| 137 | 
> | 
void SimInfo::scaleBox(double scale) { | 
| 138 | 
> | 
  double theBox[9]; | 
| 139 | 
> | 
  int i; | 
| 140 | 
> | 
 | 
| 141 | 
> | 
  cerr << "Scaling box by " << scale << "\n"; | 
| 142 | 
> | 
 | 
| 143 | 
> | 
  for(i=0; i<9; i++) theBox[i] = Hmat[i]*scale; | 
| 144 | 
> | 
 | 
| 145 | 
> | 
  setBoxM(theBox); | 
| 146 | 
  | 
 | 
| 147 | 
+ | 
} | 
| 148 | 
+ | 
 | 
| 149 | 
  | 
void SimInfo::calcHmatI( void ) { | 
| 150 | 
  | 
 | 
| 151 | 
  | 
  double C[3][3]; | 
| 152 | 
  | 
  double detHmat; | 
| 153 | 
  | 
  int i, j, k; | 
| 154 | 
+ | 
  double smallDiag; | 
| 155 | 
+ | 
  double tol; | 
| 156 | 
+ | 
  double sanity[3][3]; | 
| 157 | 
  | 
 | 
| 158 | 
  | 
  // calculate the adjunct of Hmat; | 
| 159 | 
  | 
 | 
| 185 | 
  | 
      i++; | 
| 186 | 
  | 
    } | 
| 187 | 
  | 
  } | 
| 188 | 
+ | 
 | 
| 189 | 
+ | 
  // sanity check | 
| 190 | 
+ | 
 | 
| 191 | 
+ | 
  for(i=0; i<3; i++){ | 
| 192 | 
+ | 
    for(j=0; j<3; j++){ | 
| 193 | 
+ | 
       | 
| 194 | 
+ | 
      sanity[i][j] = 0.0; | 
| 195 | 
+ | 
      for(k=0; k<3; k++){ | 
| 196 | 
+ | 
        sanity[i][j] += Hmat[3*k+i] * HmatI[3*j+k]; | 
| 197 | 
+ | 
      } | 
| 198 | 
+ | 
    } | 
| 199 | 
+ | 
  } | 
| 200 | 
+ | 
 | 
| 201 | 
+ | 
  cerr << "sanity => \n"  | 
| 202 | 
+ | 
       << sanity[0][0] << "\t" << sanity[0][1] << "\t" << sanity [0][2] << "\n" | 
| 203 | 
+ | 
       << sanity[1][0] << "\t" << sanity[1][1] << "\t" << sanity [1][2] << "\n" | 
| 204 | 
+ | 
       << sanity[2][0] << "\t" << sanity[2][1] << "\t" << sanity [2][2]  | 
| 205 | 
+ | 
       << "\n"; | 
| 206 | 
+ | 
     | 
| 207 | 
+ | 
 | 
| 208 | 
+ | 
  // check to see if Hmat is orthorhombic | 
| 209 | 
+ | 
   | 
| 210 | 
+ | 
  smallDiag = Hmat[0]; | 
| 211 | 
+ | 
  if(smallDiag > Hmat[4]) smallDiag = Hmat[4]; | 
| 212 | 
+ | 
  if(smallDiag > Hmat[8]) smallDiag = Hmat[8]; | 
| 213 | 
+ | 
  tol = smallDiag * 1E-6; | 
| 214 | 
+ | 
 | 
| 215 | 
+ | 
  orthoRhombic = 1; | 
| 216 | 
+ | 
  for(i=0; (i<9) && orthoRhombic; i++){ | 
| 217 | 
+ | 
     | 
| 218 | 
+ | 
    if( (i%4) ){ // ignore the diagonals (0, 4, and 8) | 
| 219 | 
+ | 
      orthoRhombic = (Hmat[i] <= tol); | 
| 220 | 
+ | 
    } | 
| 221 | 
+ | 
  } | 
| 222 | 
+ | 
     | 
| 223 | 
  | 
} | 
| 224 | 
  | 
 | 
| 225 | 
  | 
void SimInfo::calcBoxL( void ){ | 
| 260 | 
  | 
  int i, j, k; | 
| 261 | 
  | 
  double scaled[3]; | 
| 262 | 
  | 
 | 
| 263 | 
< | 
  // calc the scaled coordinates. | 
| 264 | 
< | 
   | 
| 265 | 
< | 
  for(i=0; i<3; i++) | 
| 266 | 
< | 
    scaled[i] = thePos[0]*Hmat[i] + thePos[1]*Hat[i+3] + thePos[3]*Hmat[i+6]; | 
| 267 | 
< | 
 | 
| 268 | 
< | 
  // wrap the scaled coordinates | 
| 269 | 
< | 
 | 
| 270 | 
< | 
  for(i=0; i<3; i++) | 
| 271 | 
< | 
    scaled[i] -= (copysign(1,scaled[i]) * (int)(fabs(scaled[i]) + 0.5)); | 
| 272 | 
< | 
   | 
| 273 | 
< | 
 | 
| 263 | 
> | 
  if( !orthoRhombic ){ | 
| 264 | 
> | 
    // calc the scaled coordinates. | 
| 265 | 
> | 
     | 
| 266 | 
> | 
    for(i=0; i<3; i++) | 
| 267 | 
> | 
      scaled[i] =  | 
| 268 | 
> | 
        thePos[0]*HmatI[i] + thePos[1]*HmatI[i+3] + thePos[3]*HmatI[i+6]; | 
| 269 | 
> | 
     | 
| 270 | 
> | 
    // wrap the scaled coordinates | 
| 271 | 
> | 
     | 
| 272 | 
> | 
    for(i=0; i<3; i++) | 
| 273 | 
> | 
      scaled[i] -= roundMe(scaled[i]); | 
| 274 | 
> | 
     | 
| 275 | 
> | 
    // calc the wrapped real coordinates from the wrapped scaled coordinates | 
| 276 | 
> | 
     | 
| 277 | 
> | 
    for(i=0; i<3; i++) | 
| 278 | 
> | 
      thePos[i] =  | 
| 279 | 
> | 
        scaled[0]*Hmat[i] + scaled[1]*Hmat[i+3] + scaled[2]*Hmat[i+6]; | 
| 280 | 
> | 
  } | 
| 281 | 
> | 
  else{ | 
| 282 | 
> | 
    // calc the scaled coordinates. | 
| 283 | 
> | 
     | 
| 284 | 
> | 
    for(i=0; i<3; i++) | 
| 285 | 
> | 
      scaled[i] = thePos[i]*HmatI[i*4]; | 
| 286 | 
> | 
     | 
| 287 | 
> | 
    // wrap the scaled coordinates | 
| 288 | 
> | 
     | 
| 289 | 
> | 
    for(i=0; i<3; i++) | 
| 290 | 
> | 
      scaled[i] -= roundMe(scaled[i]); | 
| 291 | 
> | 
     | 
| 292 | 
> | 
    // calc the wrapped real coordinates from the wrapped scaled coordinates | 
| 293 | 
> | 
     | 
| 294 | 
> | 
    for(i=0; i<3; i++) | 
| 295 | 
> | 
      thePos[i] = scaled[i]*Hmat[i*4]; | 
| 296 | 
> | 
  } | 
| 297 | 
> | 
     | 
| 298 | 
> | 
     | 
| 299 | 
  | 
} | 
| 300 | 
  | 
 | 
| 301 | 
  | 
 | 
| 341 | 
  | 
  fInfo.rt = 0.0; | 
| 342 | 
  | 
  fInfo.dielect = 0.0; | 
| 343 | 
  | 
 | 
| 300 | 
– | 
  fInfo.box[0] = box_x; | 
| 301 | 
– | 
  fInfo.box[1] = box_y; | 
| 302 | 
– | 
  fInfo.box[2] = box_z; | 
| 303 | 
– | 
 | 
| 344 | 
  | 
  fInfo.rlist = rList; | 
| 345 | 
  | 
  fInfo.rcut = rCut; | 
| 346 | 
  | 
 |