| 34 |
|
setTemp = 0; |
| 35 |
|
thermalTime = 0.0; |
| 36 |
|
rCut = 0.0; |
| 37 |
+ |
ecr = 0.0; |
| 38 |
+ |
est = 0.0; |
| 39 |
+ |
oldEcr = 0.0; |
| 40 |
+ |
oldRcut = 0.0; |
| 41 |
|
|
| 42 |
+ |
haveOrigRcut = 0; |
| 43 |
+ |
haveOrigEcr = 0; |
| 44 |
+ |
boxIsInit = 0; |
| 45 |
+ |
|
| 46 |
+ |
|
| 47 |
+ |
|
| 48 |
|
usePBC = 0; |
| 49 |
|
useLJ = 0; |
| 50 |
|
useSticky = 0; |
| 57 |
|
} |
| 58 |
|
|
| 59 |
|
void SimInfo::setBox(double newBox[3]) { |
| 60 |
+ |
|
| 61 |
+ |
int i, j; |
| 62 |
+ |
double tempMat[3][3]; |
| 63 |
|
|
| 64 |
< |
double smallestBoxL, maxCutoff; |
| 65 |
< |
int status; |
| 53 |
< |
int i; |
| 64 |
> |
for(i=0; i<3; i++) |
| 65 |
> |
for (j=0; j<3; j++) tempMat[i][j] = 0.0;; |
| 66 |
|
|
| 67 |
< |
for(i=0; i<9; i++) Hmat[i] = 0.0;; |
| 67 |
> |
tempMat[0][0] = newBox[0]; |
| 68 |
> |
tempMat[1][1] = newBox[1]; |
| 69 |
> |
tempMat[2][2] = newBox[2]; |
| 70 |
|
|
| 71 |
< |
Hmat[0] = newBox[0]; |
| 58 |
< |
Hmat[4] = newBox[1]; |
| 59 |
< |
Hmat[8] = newBox[2]; |
| 71 |
> |
setBoxM( tempMat ); |
| 72 |
|
|
| 73 |
< |
calcHmatI(); |
| 73 |
> |
} |
| 74 |
> |
|
| 75 |
> |
void SimInfo::setBoxM( double theBox[3][3] ){ |
| 76 |
> |
|
| 77 |
> |
int i, j, status; |
| 78 |
> |
double smallestBoxL, maxCutoff; |
| 79 |
> |
double FortranHmat[9]; // to preserve compatibility with Fortran the |
| 80 |
> |
// ordering in the array is as follows: |
| 81 |
> |
// [ 0 3 6 ] |
| 82 |
> |
// [ 1 4 7 ] |
| 83 |
> |
// [ 2 5 8 ] |
| 84 |
> |
double FortranHmatInv[9]; // the inverted Hmat (for Fortran); |
| 85 |
> |
|
| 86 |
> |
|
| 87 |
> |
if( !boxIsInit ) boxIsInit = 1; |
| 88 |
> |
|
| 89 |
> |
for(i=0; i < 3; i++) |
| 90 |
> |
for (j=0; j < 3; j++) Hmat[i][j] = theBox[i][j]; |
| 91 |
> |
|
| 92 |
|
calcBoxL(); |
| 93 |
+ |
calcHmatInv(); |
| 94 |
|
|
| 95 |
< |
setFortranBoxSize(Hmat, HmatI, &orthoRhombic); |
| 95 |
> |
for(i=0; i < 3; i++) { |
| 96 |
> |
for (j=0; j < 3; j++) { |
| 97 |
> |
FortranHmat[3*j + i] = Hmat[i][j]; |
| 98 |
> |
FortranHmatInv[3*j + i] = HmatInv[i][j]; |
| 99 |
> |
} |
| 100 |
> |
} |
| 101 |
|
|
| 102 |
< |
smallestBoxL = boxLx; |
| 103 |
< |
if (boxLy < smallestBoxL) smallestBoxL = boxLy; |
| 104 |
< |
if (boxLz < smallestBoxL) smallestBoxL = boxLz; |
| 102 |
> |
setFortranBoxSize(FortranHmat, FortranHmatInv, &orthoRhombic); |
| 103 |
> |
|
| 104 |
> |
} |
| 105 |
> |
|
| 106 |
|
|
| 107 |
< |
maxCutoff = smallestBoxL / 2.0; |
| 107 |
> |
void SimInfo::getBoxM (double theBox[3][3]) { |
| 108 |
|
|
| 109 |
< |
if (rList > maxCutoff) { |
| 110 |
< |
sprintf( painCave.errMsg, |
| 111 |
< |
"New Box size is forcing neighborlist radius down to %lf\n", |
| 112 |
< |
maxCutoff ); |
| 76 |
< |
painCave.isFatal = 0; |
| 77 |
< |
simError(); |
| 109 |
> |
int i, j; |
| 110 |
> |
for(i=0; i<3; i++) |
| 111 |
> |
for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]; |
| 112 |
> |
} |
| 113 |
|
|
| 79 |
– |
rList = maxCutoff; |
| 114 |
|
|
| 115 |
< |
sprintf( painCave.errMsg, |
| 116 |
< |
"New Box size is forcing cutoff radius down to %lf\n", |
| 117 |
< |
maxCutoff - 1.0 ); |
| 84 |
< |
painCave.isFatal = 0; |
| 85 |
< |
simError(); |
| 115 |
> |
void SimInfo::scaleBox(double scale) { |
| 116 |
> |
double theBox[3][3]; |
| 117 |
> |
int i, j; |
| 118 |
|
|
| 119 |
< |
rCut = rList - 1.0; |
| 119 |
> |
// cerr << "Scaling box by " << scale << "\n"; |
| 120 |
|
|
| 121 |
< |
// list radius changed so we have to refresh the simulation structure. |
| 122 |
< |
refreshSim(); |
| 91 |
< |
} |
| 121 |
> |
for(i=0; i<3; i++) |
| 122 |
> |
for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]*scale; |
| 123 |
|
|
| 124 |
< |
if (rCut > maxCutoff) { |
| 94 |
< |
sprintf( painCave.errMsg, |
| 95 |
< |
"New Box size is forcing cutoff radius down to %lf\n", |
| 96 |
< |
maxCutoff ); |
| 97 |
< |
painCave.isFatal = 0; |
| 98 |
< |
simError(); |
| 124 |
> |
setBoxM(theBox); |
| 125 |
|
|
| 100 |
– |
status = 0; |
| 101 |
– |
LJ_new_rcut(&rCut, &status); |
| 102 |
– |
if (status != 0) { |
| 103 |
– |
sprintf( painCave.errMsg, |
| 104 |
– |
"Error in recomputing LJ shifts based on new rcut\n"); |
| 105 |
– |
painCave.isFatal = 1; |
| 106 |
– |
simError(); |
| 107 |
– |
} |
| 108 |
– |
} |
| 126 |
|
} |
| 127 |
|
|
| 128 |
< |
void SimInfo::setBoxM( double theBox[9] ){ |
| 128 |
> |
void SimInfo::calcHmatInv( void ) { |
| 129 |
|
|
| 130 |
< |
int i, status; |
| 131 |
< |
double smallestBoxL, maxCutoff; |
| 130 |
> |
int i,j; |
| 131 |
> |
double smallDiag; |
| 132 |
> |
double tol; |
| 133 |
> |
double sanity[3][3]; |
| 134 |
|
|
| 135 |
< |
for(i=0; i<9; i++) Hmat[i] = theBox[i]; |
| 117 |
< |
calcHmatI(); |
| 118 |
< |
calcBoxL(); |
| 135 |
> |
invertMat3( Hmat, HmatInv ); |
| 136 |
|
|
| 137 |
< |
setFortranBoxSize(Hmat, HmatI, &orthoRhombic); |
| 121 |
< |
|
| 122 |
< |
smallestBoxL = boxLx; |
| 123 |
< |
if (boxLy < smallestBoxL) smallestBoxL = boxLy; |
| 124 |
< |
if (boxLz < smallestBoxL) smallestBoxL = boxLz; |
| 137 |
> |
// Check the inverse to make sure it is sane: |
| 138 |
|
|
| 139 |
< |
maxCutoff = smallestBoxL / 2.0; |
| 139 |
> |
matMul3( Hmat, HmatInv, sanity ); |
| 140 |
> |
|
| 141 |
> |
// check to see if Hmat is orthorhombic |
| 142 |
> |
|
| 143 |
> |
smallDiag = Hmat[0][0]; |
| 144 |
> |
if(smallDiag > Hmat[1][1]) smallDiag = Hmat[1][1]; |
| 145 |
> |
if(smallDiag > Hmat[2][2]) smallDiag = Hmat[2][2]; |
| 146 |
> |
tol = smallDiag * 1E-6; |
| 147 |
|
|
| 148 |
< |
if (rList > maxCutoff) { |
| 149 |
< |
sprintf( painCave.errMsg, |
| 150 |
< |
"New Box size is forcing neighborlist radius down to %lf\n", |
| 151 |
< |
maxCutoff ); |
| 152 |
< |
painCave.isFatal = 0; |
| 153 |
< |
simError(); |
| 148 |
> |
orthoRhombic = 1; |
| 149 |
> |
|
| 150 |
> |
for (i = 0; i < 3; i++ ) { |
| 151 |
> |
for (j = 0 ; j < 3; j++) { |
| 152 |
> |
if (i != j) { |
| 153 |
> |
if (orthoRhombic) { |
| 154 |
> |
if (Hmat[i][j] >= tol) orthoRhombic = 0; |
| 155 |
> |
} |
| 156 |
> |
} |
| 157 |
> |
} |
| 158 |
> |
} |
| 159 |
> |
} |
| 160 |
|
|
| 161 |
< |
rList = maxCutoff; |
| 161 |
> |
double SimInfo::matDet3(double a[3][3]) { |
| 162 |
> |
int i, j, k; |
| 163 |
> |
double determinant; |
| 164 |
|
|
| 165 |
< |
sprintf( painCave.errMsg, |
| 138 |
< |
"New Box size is forcing cutoff radius down to %lf\n", |
| 139 |
< |
maxCutoff - 1.0 ); |
| 140 |
< |
painCave.isFatal = 0; |
| 141 |
< |
simError(); |
| 165 |
> |
determinant = 0.0; |
| 166 |
|
|
| 167 |
< |
rCut = rList - 1.0; |
| 167 |
> |
for(i = 0; i < 3; i++) { |
| 168 |
> |
j = (i+1)%3; |
| 169 |
> |
k = (i+2)%3; |
| 170 |
|
|
| 171 |
< |
// list radius changed so we have to refresh the simulation structure. |
| 146 |
< |
refreshSim(); |
| 171 |
> |
determinant += a[0][i] * (a[1][j]*a[2][k] - a[1][k]*a[2][j]); |
| 172 |
|
} |
| 173 |
|
|
| 174 |
< |
if (rCut > maxCutoff) { |
| 174 |
> |
return determinant; |
| 175 |
> |
} |
| 176 |
> |
|
| 177 |
> |
void SimInfo::invertMat3(double a[3][3], double b[3][3]) { |
| 178 |
> |
|
| 179 |
> |
int i, j, k, l, m, n; |
| 180 |
> |
double determinant; |
| 181 |
> |
|
| 182 |
> |
determinant = matDet3( a ); |
| 183 |
> |
|
| 184 |
> |
if (determinant == 0.0) { |
| 185 |
|
sprintf( painCave.errMsg, |
| 186 |
< |
"New Box size is forcing cutoff radius down to %lf\n", |
| 187 |
< |
maxCutoff ); |
| 153 |
< |
painCave.isFatal = 0; |
| 186 |
> |
"Can't invert a matrix with a zero determinant!\n"); |
| 187 |
> |
painCave.isFatal = 1; |
| 188 |
|
simError(); |
| 189 |
+ |
} |
| 190 |
|
|
| 191 |
< |
status = 0; |
| 192 |
< |
LJ_new_rcut(&rCut, &status); |
| 193 |
< |
if (status != 0) { |
| 194 |
< |
sprintf( painCave.errMsg, |
| 195 |
< |
"Error in recomputing LJ shifts based on new rcut\n"); |
| 196 |
< |
painCave.isFatal = 1; |
| 197 |
< |
simError(); |
| 191 |
> |
for (i=0; i < 3; i++) { |
| 192 |
> |
j = (i+1)%3; |
| 193 |
> |
k = (i+2)%3; |
| 194 |
> |
for(l = 0; l < 3; l++) { |
| 195 |
> |
m = (l+1)%3; |
| 196 |
> |
n = (l+2)%3; |
| 197 |
> |
|
| 198 |
> |
b[l][i] = (a[j][m]*a[k][n] - a[j][n]*a[k][m]) / determinant; |
| 199 |
|
} |
| 200 |
|
} |
| 201 |
|
} |
| 166 |
– |
|
| 202 |
|
|
| 203 |
< |
void SimInfo::getBoxM (double theBox[9]) { |
| 203 |
> |
void SimInfo::matMul3(double a[3][3], double b[3][3], double c[3][3]) { |
| 204 |
> |
double r00, r01, r02, r10, r11, r12, r20, r21, r22; |
| 205 |
|
|
| 206 |
< |
int i; |
| 207 |
< |
for(i=0; i<9; i++) theBox[i] = Hmat[i]; |
| 206 |
> |
r00 = a[0][0]*b[0][0] + a[0][1]*b[1][0] + a[0][2]*b[2][0]; |
| 207 |
> |
r01 = a[0][0]*b[0][1] + a[0][1]*b[1][1] + a[0][2]*b[2][1]; |
| 208 |
> |
r02 = a[0][0]*b[0][2] + a[0][1]*b[1][2] + a[0][2]*b[2][2]; |
| 209 |
> |
|
| 210 |
> |
r10 = a[1][0]*b[0][0] + a[1][1]*b[1][0] + a[1][2]*b[2][0]; |
| 211 |
> |
r11 = a[1][0]*b[0][1] + a[1][1]*b[1][1] + a[1][2]*b[2][1]; |
| 212 |
> |
r12 = a[1][0]*b[0][2] + a[1][1]*b[1][2] + a[1][2]*b[2][2]; |
| 213 |
> |
|
| 214 |
> |
r20 = a[2][0]*b[0][0] + a[2][1]*b[1][0] + a[2][2]*b[2][0]; |
| 215 |
> |
r21 = a[2][0]*b[0][1] + a[2][1]*b[1][1] + a[2][2]*b[2][1]; |
| 216 |
> |
r22 = a[2][0]*b[0][2] + a[2][1]*b[1][2] + a[2][2]*b[2][2]; |
| 217 |
> |
|
| 218 |
> |
c[0][0] = r00; c[0][1] = r01; c[0][2] = r02; |
| 219 |
> |
c[1][0] = r10; c[1][1] = r11; c[1][2] = r12; |
| 220 |
> |
c[2][0] = r20; c[2][1] = r21; c[2][2] = r22; |
| 221 |
|
} |
| 222 |
|
|
| 223 |
+ |
void SimInfo::matVecMul3(double m[3][3], double inVec[3], double outVec[3]) { |
| 224 |
+ |
double a0, a1, a2; |
| 225 |
|
|
| 226 |
< |
void SimInfo::scaleBox(double scale) { |
| 176 |
< |
double theBox[9]; |
| 177 |
< |
int i; |
| 226 |
> |
a0 = inVec[0]; a1 = inVec[1]; a2 = inVec[2]; |
| 227 |
|
|
| 228 |
< |
for(i=0; i<9; i++) theBox[i] = Hmat[i]*scale; |
| 229 |
< |
|
| 230 |
< |
setBoxM(theBox); |
| 182 |
< |
|
| 228 |
> |
outVec[0] = m[0][0]*a0 + m[0][1]*a1 + m[0][2]*a2; |
| 229 |
> |
outVec[1] = m[1][0]*a0 + m[1][1]*a1 + m[1][2]*a2; |
| 230 |
> |
outVec[2] = m[2][0]*a0 + m[2][1]*a1 + m[2][2]*a2; |
| 231 |
|
} |
| 232 |
|
|
| 233 |
< |
void SimInfo::calcHmatI( void ) { |
| 234 |
< |
|
| 235 |
< |
double C[3][3]; |
| 188 |
< |
double detHmat; |
| 189 |
< |
int i, j, k; |
| 190 |
< |
double smallDiag; |
| 191 |
< |
double tol; |
| 192 |
< |
double sanity[3][3]; |
| 193 |
< |
|
| 194 |
< |
// calculate the adjunct of Hmat; |
| 195 |
< |
|
| 196 |
< |
C[0][0] = ( Hmat[4]*Hmat[8]) - (Hmat[7]*Hmat[5]); |
| 197 |
< |
C[1][0] = -( Hmat[1]*Hmat[8]) + (Hmat[7]*Hmat[2]); |
| 198 |
< |
C[2][0] = ( Hmat[1]*Hmat[5]) - (Hmat[4]*Hmat[2]); |
| 233 |
> |
void SimInfo::transposeMat3(double in[3][3], double out[3][3]) { |
| 234 |
> |
double temp[3][3]; |
| 235 |
> |
int i, j; |
| 236 |
|
|
| 237 |
< |
C[0][1] = -( Hmat[3]*Hmat[8]) + (Hmat[6]*Hmat[5]); |
| 238 |
< |
C[1][1] = ( Hmat[0]*Hmat[8]) - (Hmat[6]*Hmat[2]); |
| 239 |
< |
C[2][1] = -( Hmat[0]*Hmat[5]) + (Hmat[3]*Hmat[2]); |
| 203 |
< |
|
| 204 |
< |
C[0][2] = ( Hmat[3]*Hmat[7]) - (Hmat[6]*Hmat[4]); |
| 205 |
< |
C[1][2] = -( Hmat[0]*Hmat[7]) + (Hmat[6]*Hmat[1]); |
| 206 |
< |
C[2][2] = ( Hmat[0]*Hmat[4]) - (Hmat[3]*Hmat[1]); |
| 207 |
< |
|
| 208 |
< |
// calcutlate the determinant of Hmat |
| 209 |
< |
|
| 210 |
< |
detHmat = 0.0; |
| 211 |
< |
for(i=0; i<3; i++) detHmat += Hmat[i] * C[i][0]; |
| 212 |
< |
|
| 213 |
< |
|
| 214 |
< |
// H^-1 = C^T / det(H) |
| 215 |
< |
|
| 216 |
< |
i=0; |
| 217 |
< |
for(j=0; j<3; j++){ |
| 218 |
< |
for(k=0; k<3; k++){ |
| 219 |
< |
|
| 220 |
< |
HmatI[i] = C[j][k] / detHmat; |
| 221 |
< |
i++; |
| 237 |
> |
for (i = 0; i < 3; i++) { |
| 238 |
> |
for (j = 0; j < 3; j++) { |
| 239 |
> |
temp[j][i] = in[i][j]; |
| 240 |
|
} |
| 241 |
|
} |
| 242 |
< |
|
| 243 |
< |
// sanity check |
| 244 |
< |
|
| 227 |
< |
for(i=0; i<3; i++){ |
| 228 |
< |
for(j=0; j<3; j++){ |
| 229 |
< |
|
| 230 |
< |
sanity[i][j] = 0.0; |
| 231 |
< |
for(k=0; k<3; k++){ |
| 232 |
< |
sanity[i][j] += Hmat[3*k+i] * HmatI[3*j+k]; |
| 233 |
< |
} |
| 242 |
> |
for (i = 0; i < 3; i++) { |
| 243 |
> |
for (j = 0; j < 3; j++) { |
| 244 |
> |
out[i][j] = temp[i][j]; |
| 245 |
|
} |
| 246 |
|
} |
| 247 |
+ |
} |
| 248 |
+ |
|
| 249 |
+ |
void SimInfo::printMat3(double A[3][3] ){ |
| 250 |
|
|
| 251 |
< |
cerr << "sanity => \n" |
| 252 |
< |
<< sanity[0][0] << "\t" << sanity[0][1] << "\t" << sanity [0][2] << "\n" |
| 253 |
< |
<< sanity[1][0] << "\t" << sanity[1][1] << "\t" << sanity [1][2] << "\n" |
| 254 |
< |
<< sanity[2][0] << "\t" << sanity[2][1] << "\t" << sanity [2][2] |
| 255 |
< |
<< "\n"; |
| 242 |
< |
|
| 251 |
> |
std::cerr |
| 252 |
> |
<< "[ " << A[0][0] << ", " << A[0][1] << ", " << A[0][2] << " ]\n" |
| 253 |
> |
<< "[ " << A[1][0] << ", " << A[1][1] << ", " << A[1][2] << " ]\n" |
| 254 |
> |
<< "[ " << A[2][0] << ", " << A[2][1] << ", " << A[2][2] << " ]\n"; |
| 255 |
> |
} |
| 256 |
|
|
| 257 |
< |
// check to see if Hmat is orthorhombic |
| 245 |
< |
|
| 246 |
< |
smallDiag = Hmat[0]; |
| 247 |
< |
if(smallDiag > Hmat[4]) smallDiag = Hmat[4]; |
| 248 |
< |
if(smallDiag > Hmat[8]) smallDiag = Hmat[8]; |
| 249 |
< |
tol = smallDiag * 1E-6; |
| 257 |
> |
void SimInfo::printMat9(double A[9] ){ |
| 258 |
|
|
| 259 |
< |
orthoRhombic = 1; |
| 260 |
< |
for(i=0; (i<9) && orthoRhombic; i++){ |
| 261 |
< |
|
| 262 |
< |
if( (i%4) ){ // ignore the diagonals (0, 4, and 8) |
| 255 |
< |
orthoRhombic = (Hmat[i] <= tol); |
| 256 |
< |
} |
| 257 |
< |
} |
| 258 |
< |
|
| 259 |
> |
std::cerr |
| 260 |
> |
<< "[ " << A[0] << ", " << A[1] << ", " << A[2] << " ]\n" |
| 261 |
> |
<< "[ " << A[3] << ", " << A[4] << ", " << A[5] << " ]\n" |
| 262 |
> |
<< "[ " << A[6] << ", " << A[7] << ", " << A[8] << " ]\n"; |
| 263 |
|
} |
| 264 |
|
|
| 265 |
|
void SimInfo::calcBoxL( void ){ |
| 267 |
|
double dx, dy, dz, dsq; |
| 268 |
|
int i; |
| 269 |
|
|
| 270 |
< |
// boxVol = h1 (dot) h2 (cross) h3 |
| 270 |
> |
// boxVol = Determinant of Hmat |
| 271 |
|
|
| 272 |
< |
boxVol = Hmat[0] * ( (Hmat[4]*Hmat[8]) - (Hmat[7]*Hmat[5]) ) |
| 269 |
< |
+ Hmat[1] * ( (Hmat[5]*Hmat[6]) - (Hmat[8]*Hmat[3]) ) |
| 270 |
< |
+ Hmat[2] * ( (Hmat[3]*Hmat[7]) - (Hmat[6]*Hmat[4]) ); |
| 272 |
> |
boxVol = matDet3( Hmat ); |
| 273 |
|
|
| 272 |
– |
|
| 274 |
|
// boxLx |
| 275 |
|
|
| 276 |
< |
dx = Hmat[0]; dy = Hmat[1]; dz = Hmat[2]; |
| 276 |
> |
dx = Hmat[0][0]; dy = Hmat[1][0]; dz = Hmat[2][0]; |
| 277 |
|
dsq = dx*dx + dy*dy + dz*dz; |
| 278 |
< |
boxLx = sqrt( dsq ); |
| 278 |
> |
boxL[0] = sqrt( dsq ); |
| 279 |
> |
maxCutoff = 0.5 * boxL[0]; |
| 280 |
|
|
| 281 |
|
// boxLy |
| 282 |
|
|
| 283 |
< |
dx = Hmat[3]; dy = Hmat[4]; dz = Hmat[5]; |
| 283 |
> |
dx = Hmat[0][1]; dy = Hmat[1][1]; dz = Hmat[2][1]; |
| 284 |
|
dsq = dx*dx + dy*dy + dz*dz; |
| 285 |
< |
boxLy = sqrt( dsq ); |
| 285 |
> |
boxL[1] = sqrt( dsq ); |
| 286 |
> |
if( (0.5 * boxL[1]) < maxCutoff ) maxCutoff = 0.5 * boxL[1]; |
| 287 |
|
|
| 288 |
|
// boxLz |
| 289 |
|
|
| 290 |
< |
dx = Hmat[6]; dy = Hmat[7]; dz = Hmat[8]; |
| 290 |
> |
dx = Hmat[0][2]; dy = Hmat[1][2]; dz = Hmat[2][2]; |
| 291 |
|
dsq = dx*dx + dy*dy + dz*dz; |
| 292 |
< |
boxLz = sqrt( dsq ); |
| 293 |
< |
|
| 292 |
> |
boxL[2] = sqrt( dsq ); |
| 293 |
> |
if( (0.5 * boxL[2]) < maxCutoff ) maxCutoff = 0.5 * boxL[2]; |
| 294 |
> |
|
| 295 |
|
} |
| 296 |
|
|
| 297 |
|
|
| 302 |
|
|
| 303 |
|
if( !orthoRhombic ){ |
| 304 |
|
// calc the scaled coordinates. |
| 305 |
+ |
|
| 306 |
+ |
|
| 307 |
+ |
matVecMul3(HmatInv, thePos, scaled); |
| 308 |
|
|
| 309 |
|
for(i=0; i<3; i++) |
| 303 |
– |
scaled[i] = |
| 304 |
– |
thePos[0]*HmatI[i] + thePos[1]*HmatI[i+3] + thePos[3]*HmatI[i+6]; |
| 305 |
– |
|
| 306 |
– |
// wrap the scaled coordinates |
| 307 |
– |
|
| 308 |
– |
for(i=0; i<3; i++) |
| 310 |
|
scaled[i] -= roundMe(scaled[i]); |
| 311 |
|
|
| 312 |
|
// calc the wrapped real coordinates from the wrapped scaled coordinates |
| 313 |
|
|
| 314 |
< |
for(i=0; i<3; i++) |
| 315 |
< |
thePos[i] = |
| 315 |
< |
scaled[0]*Hmat[i] + scaled[1]*Hmat[i+3] + scaled[2]*Hmat[i+6]; |
| 314 |
> |
matVecMul3(Hmat, scaled, thePos); |
| 315 |
> |
|
| 316 |
|
} |
| 317 |
|
else{ |
| 318 |
|
// calc the scaled coordinates. |
| 319 |
|
|
| 320 |
|
for(i=0; i<3; i++) |
| 321 |
< |
scaled[i] = thePos[i]*HmatI[i*4]; |
| 321 |
> |
scaled[i] = thePos[i]*HmatInv[i][i]; |
| 322 |
|
|
| 323 |
|
// wrap the scaled coordinates |
| 324 |
|
|
| 328 |
|
// calc the wrapped real coordinates from the wrapped scaled coordinates |
| 329 |
|
|
| 330 |
|
for(i=0; i<3; i++) |
| 331 |
< |
thePos[i] = scaled[i]*Hmat[i*4]; |
| 331 |
> |
thePos[i] = scaled[i]*Hmat[i][i]; |
| 332 |
|
} |
| 333 |
|
|
| 334 |
– |
|
| 334 |
|
} |
| 335 |
|
|
| 336 |
|
|
| 371 |
|
int isError; |
| 372 |
|
int n_global; |
| 373 |
|
int* excl; |
| 374 |
< |
|
| 376 |
< |
fInfo.rrf = 0.0; |
| 377 |
< |
fInfo.rt = 0.0; |
| 374 |
> |
|
| 375 |
|
fInfo.dielect = 0.0; |
| 376 |
|
|
| 380 |
– |
fInfo.rlist = rList; |
| 381 |
– |
fInfo.rcut = rCut; |
| 382 |
– |
|
| 377 |
|
if( useDipole ){ |
| 384 |
– |
fInfo.rrf = ecr; |
| 385 |
– |
fInfo.rt = ecr - est; |
| 378 |
|
if( useReactionField )fInfo.dielect = dielectric; |
| 379 |
|
} |
| 380 |
|
|
| 423 |
|
|
| 424 |
|
} |
| 425 |
|
|
| 426 |
+ |
|
| 427 |
+ |
void SimInfo::setRcut( double theRcut ){ |
| 428 |
+ |
|
| 429 |
+ |
if( !haveOrigRcut ){ |
| 430 |
+ |
haveOrigRcut = 1; |
| 431 |
+ |
origRcut = theRcut; |
| 432 |
+ |
} |
| 433 |
+ |
|
| 434 |
+ |
rCut = theRcut; |
| 435 |
+ |
checkCutOffs(); |
| 436 |
+ |
} |
| 437 |
+ |
|
| 438 |
+ |
void SimInfo::setEcr( double theEcr ){ |
| 439 |
+ |
|
| 440 |
+ |
if( !haveOrigEcr ){ |
| 441 |
+ |
haveOrigEcr = 1; |
| 442 |
+ |
origEcr = theEcr; |
| 443 |
+ |
} |
| 444 |
+ |
|
| 445 |
+ |
ecr = theEcr; |
| 446 |
+ |
checkCutOffs(); |
| 447 |
+ |
} |
| 448 |
+ |
|
| 449 |
+ |
void SimInfo::setEcr( double theEcr, double theEst ){ |
| 450 |
+ |
|
| 451 |
+ |
est = theEst; |
| 452 |
+ |
setEcr( theEcr ); |
| 453 |
+ |
} |
| 454 |
+ |
|
| 455 |
+ |
|
| 456 |
+ |
void SimInfo::checkCutOffs( void ){ |
| 457 |
+ |
|
| 458 |
+ |
int cutChanged = 0; |
| 459 |
+ |
|
| 460 |
+ |
if( boxIsInit ){ |
| 461 |
+ |
|
| 462 |
+ |
//we need to check cutOffs against the box |
| 463 |
+ |
|
| 464 |
+ |
if( maxCutoff > rCut ){ |
| 465 |
+ |
if( rCut < origRcut ){ |
| 466 |
+ |
rCut = origRcut; |
| 467 |
+ |
if (rCut > maxCutoff) rCut = maxCutoff; |
| 468 |
+ |
|
| 469 |
+ |
sprintf( painCave.errMsg, |
| 470 |
+ |
"New Box size is setting the long range cutoff radius " |
| 471 |
+ |
"to %lf\n", |
| 472 |
+ |
rCut ); |
| 473 |
+ |
painCave.isFatal = 0; |
| 474 |
+ |
simError(); |
| 475 |
+ |
} |
| 476 |
+ |
} |
| 477 |
+ |
|
| 478 |
+ |
if( maxCutoff > ecr ){ |
| 479 |
+ |
if( ecr < origEcr ){ |
| 480 |
+ |
rCut = origEcr; |
| 481 |
+ |
if (ecr > maxCutoff) ecr = maxCutoff; |
| 482 |
+ |
|
| 483 |
+ |
sprintf( painCave.errMsg, |
| 484 |
+ |
"New Box size is setting the electrostaticCutoffRadius " |
| 485 |
+ |
"to %lf\n", |
| 486 |
+ |
ecr ); |
| 487 |
+ |
painCave.isFatal = 0; |
| 488 |
+ |
simError(); |
| 489 |
+ |
} |
| 490 |
+ |
} |
| 491 |
+ |
|
| 492 |
+ |
|
| 493 |
+ |
if (rCut > maxCutoff) { |
| 494 |
+ |
sprintf( painCave.errMsg, |
| 495 |
+ |
"New Box size is setting the long range cutoff radius " |
| 496 |
+ |
"to %lf\n", |
| 497 |
+ |
maxCutoff ); |
| 498 |
+ |
painCave.isFatal = 0; |
| 499 |
+ |
simError(); |
| 500 |
+ |
rCut = maxCutoff; |
| 501 |
+ |
} |
| 502 |
+ |
|
| 503 |
+ |
if( ecr > maxCutoff){ |
| 504 |
+ |
sprintf( painCave.errMsg, |
| 505 |
+ |
"New Box size is setting the electrostaticCutoffRadius " |
| 506 |
+ |
"to %lf\n", |
| 507 |
+ |
maxCutoff ); |
| 508 |
+ |
painCave.isFatal = 0; |
| 509 |
+ |
simError(); |
| 510 |
+ |
ecr = maxCutoff; |
| 511 |
+ |
} |
| 512 |
+ |
|
| 513 |
+ |
|
| 514 |
+ |
} |
| 515 |
+ |
|
| 516 |
+ |
|
| 517 |
+ |
if( (oldEcr != ecr) || ( oldRcut != rCut ) ) cutChanged = 1; |
| 518 |
+ |
|
| 519 |
+ |
// rlist is the 1.0 plus max( rcut, ecr ) |
| 520 |
+ |
|
| 521 |
+ |
( rCut > ecr )? rList = rCut + 1.0: rList = ecr + 1.0; |
| 522 |
+ |
|
| 523 |
+ |
if( cutChanged ){ |
| 524 |
+ |
|
| 525 |
+ |
notifyFortranCutOffs( &rCut, &rList, &ecr, &est ); |
| 526 |
+ |
} |
| 527 |
+ |
|
| 528 |
+ |
oldEcr = ecr; |
| 529 |
+ |
oldRcut = rCut; |
| 530 |
+ |
} |