| 12 |
|
|
| 13 |
|
#include "fortranWrappers.hpp" |
| 14 |
|
|
| 15 |
+ |
#include "MatVec3.h" |
| 16 |
+ |
|
| 17 |
|
#ifdef IS_MPI |
| 18 |
|
#include "mpiSimulation.hpp" |
| 19 |
|
#endif |
| 29 |
|
SimInfo* currentInfo; |
| 30 |
|
|
| 31 |
|
SimInfo::SimInfo(){ |
| 32 |
< |
excludes = NULL; |
| 32 |
> |
|
| 33 |
|
n_constraints = 0; |
| 34 |
|
nZconstraints = 0; |
| 35 |
|
n_oriented = 0; |
| 42 |
|
thermalTime = 0.0; |
| 43 |
|
currentTime = 0.0; |
| 44 |
|
rCut = 0.0; |
| 45 |
< |
ecr = 0.0; |
| 44 |
< |
est = 0.0; |
| 45 |
> |
rSw = 0.0; |
| 46 |
|
|
| 47 |
|
haveRcut = 0; |
| 48 |
< |
haveEcr = 0; |
| 48 |
> |
haveRsw = 0; |
| 49 |
|
boxIsInit = 0; |
| 50 |
|
|
| 51 |
|
resetTime = 1e99; |
| 52 |
|
|
| 53 |
+ |
orthoRhombic = 0; |
| 54 |
|
orthoTolerance = 1E-6; |
| 55 |
|
useInitXSstate = true; |
| 56 |
|
|
| 62 |
|
useReactionField = 0; |
| 63 |
|
useGB = 0; |
| 64 |
|
useEAM = 0; |
| 65 |
+ |
useThermInt = 0; |
| 66 |
|
|
| 67 |
+ |
haveCutoffGroups = false; |
| 68 |
+ |
|
| 69 |
+ |
excludes = Exclude::Instance(); |
| 70 |
+ |
|
| 71 |
|
myConfiguration = new SimState(); |
| 72 |
|
|
| 73 |
+ |
has_minimizer = false; |
| 74 |
+ |
the_minimizer =NULL; |
| 75 |
+ |
|
| 76 |
+ |
ngroup = 0; |
| 77 |
+ |
|
| 78 |
|
wrapMeSimInfo( this ); |
| 79 |
|
} |
| 80 |
|
|
| 87 |
|
|
| 88 |
|
for(i = properties.begin(); i != properties.end(); i++) |
| 89 |
|
delete (*i).second; |
| 90 |
< |
|
| 90 |
> |
|
| 91 |
|
} |
| 92 |
|
|
| 93 |
|
void SimInfo::setBox(double newBox[3]) { |
| 192 |
|
|
| 193 |
|
if( orthoRhombic ){ |
| 194 |
|
sprintf( painCave.errMsg, |
| 195 |
< |
"Hmat is switching from Non-Orthorhombic to OrthoRhombic\n" |
| 196 |
< |
" If this is a bad thing, change the orthoBoxTolerance( currently %G ).\n", |
| 195 |
> |
"OOPSE is switching from the default Non-Orthorhombic\n" |
| 196 |
> |
"\tto the faster Orthorhombic periodic boundary computations.\n" |
| 197 |
> |
"\tThis is usually a good thing, but if you wan't the\n" |
| 198 |
> |
"\tNon-Orthorhombic computations, make the orthoBoxTolerance\n" |
| 199 |
> |
"\tvariable ( currently set to %G ) smaller.\n", |
| 200 |
|
orthoTolerance); |
| 201 |
|
simError(); |
| 202 |
|
} |
| 203 |
|
else { |
| 204 |
|
sprintf( painCave.errMsg, |
| 205 |
< |
"Hmat is switching from Orthorhombic to Non-OrthoRhombic\n" |
| 206 |
< |
" If this is a bad thing, change the orthoBoxTolerance( currently %G ).\n", |
| 205 |
> |
"OOPSE is switching from the faster Orthorhombic to the more\n" |
| 206 |
> |
"\tflexible Non-Orthorhombic periodic boundary computations.\n" |
| 207 |
> |
"\tThis is usually because the box has deformed under\n" |
| 208 |
> |
"\tNPTf integration. If you wan't to live on the edge with\n" |
| 209 |
> |
"\tthe Orthorhombic computations, make the orthoBoxTolerance\n" |
| 210 |
> |
"\tvariable ( currently set to %G ) larger.\n", |
| 211 |
|
orthoTolerance); |
| 212 |
|
simError(); |
| 194 |
– |
} |
| 195 |
– |
} |
| 196 |
– |
} |
| 197 |
– |
|
| 198 |
– |
double SimInfo::matDet3(double a[3][3]) { |
| 199 |
– |
int i, j, k; |
| 200 |
– |
double determinant; |
| 201 |
– |
|
| 202 |
– |
determinant = 0.0; |
| 203 |
– |
|
| 204 |
– |
for(i = 0; i < 3; i++) { |
| 205 |
– |
j = (i+1)%3; |
| 206 |
– |
k = (i+2)%3; |
| 207 |
– |
|
| 208 |
– |
determinant += a[0][i] * (a[1][j]*a[2][k] - a[1][k]*a[2][j]); |
| 209 |
– |
} |
| 210 |
– |
|
| 211 |
– |
return determinant; |
| 212 |
– |
} |
| 213 |
– |
|
| 214 |
– |
void SimInfo::invertMat3(double a[3][3], double b[3][3]) { |
| 215 |
– |
|
| 216 |
– |
int i, j, k, l, m, n; |
| 217 |
– |
double determinant; |
| 218 |
– |
|
| 219 |
– |
determinant = matDet3( a ); |
| 220 |
– |
|
| 221 |
– |
if (determinant == 0.0) { |
| 222 |
– |
sprintf( painCave.errMsg, |
| 223 |
– |
"Can't invert a matrix with a zero determinant!\n"); |
| 224 |
– |
painCave.isFatal = 1; |
| 225 |
– |
simError(); |
| 226 |
– |
} |
| 227 |
– |
|
| 228 |
– |
for (i=0; i < 3; i++) { |
| 229 |
– |
j = (i+1)%3; |
| 230 |
– |
k = (i+2)%3; |
| 231 |
– |
for(l = 0; l < 3; l++) { |
| 232 |
– |
m = (l+1)%3; |
| 233 |
– |
n = (l+2)%3; |
| 234 |
– |
|
| 235 |
– |
b[l][i] = (a[j][m]*a[k][n] - a[j][n]*a[k][m]) / determinant; |
| 236 |
– |
} |
| 237 |
– |
} |
| 238 |
– |
} |
| 239 |
– |
|
| 240 |
– |
void SimInfo::matMul3(double a[3][3], double b[3][3], double c[3][3]) { |
| 241 |
– |
double r00, r01, r02, r10, r11, r12, r20, r21, r22; |
| 242 |
– |
|
| 243 |
– |
r00 = a[0][0]*b[0][0] + a[0][1]*b[1][0] + a[0][2]*b[2][0]; |
| 244 |
– |
r01 = a[0][0]*b[0][1] + a[0][1]*b[1][1] + a[0][2]*b[2][1]; |
| 245 |
– |
r02 = a[0][0]*b[0][2] + a[0][1]*b[1][2] + a[0][2]*b[2][2]; |
| 246 |
– |
|
| 247 |
– |
r10 = a[1][0]*b[0][0] + a[1][1]*b[1][0] + a[1][2]*b[2][0]; |
| 248 |
– |
r11 = a[1][0]*b[0][1] + a[1][1]*b[1][1] + a[1][2]*b[2][1]; |
| 249 |
– |
r12 = a[1][0]*b[0][2] + a[1][1]*b[1][2] + a[1][2]*b[2][2]; |
| 250 |
– |
|
| 251 |
– |
r20 = a[2][0]*b[0][0] + a[2][1]*b[1][0] + a[2][2]*b[2][0]; |
| 252 |
– |
r21 = a[2][0]*b[0][1] + a[2][1]*b[1][1] + a[2][2]*b[2][1]; |
| 253 |
– |
r22 = a[2][0]*b[0][2] + a[2][1]*b[1][2] + a[2][2]*b[2][2]; |
| 254 |
– |
|
| 255 |
– |
c[0][0] = r00; c[0][1] = r01; c[0][2] = r02; |
| 256 |
– |
c[1][0] = r10; c[1][1] = r11; c[1][2] = r12; |
| 257 |
– |
c[2][0] = r20; c[2][1] = r21; c[2][2] = r22; |
| 258 |
– |
} |
| 259 |
– |
|
| 260 |
– |
void SimInfo::matVecMul3(double m[3][3], double inVec[3], double outVec[3]) { |
| 261 |
– |
double a0, a1, a2; |
| 262 |
– |
|
| 263 |
– |
a0 = inVec[0]; a1 = inVec[1]; a2 = inVec[2]; |
| 264 |
– |
|
| 265 |
– |
outVec[0] = m[0][0]*a0 + m[0][1]*a1 + m[0][2]*a2; |
| 266 |
– |
outVec[1] = m[1][0]*a0 + m[1][1]*a1 + m[1][2]*a2; |
| 267 |
– |
outVec[2] = m[2][0]*a0 + m[2][1]*a1 + m[2][2]*a2; |
| 268 |
– |
} |
| 269 |
– |
|
| 270 |
– |
void SimInfo::transposeMat3(double in[3][3], double out[3][3]) { |
| 271 |
– |
double temp[3][3]; |
| 272 |
– |
int i, j; |
| 273 |
– |
|
| 274 |
– |
for (i = 0; i < 3; i++) { |
| 275 |
– |
for (j = 0; j < 3; j++) { |
| 276 |
– |
temp[j][i] = in[i][j]; |
| 213 |
|
} |
| 214 |
|
} |
| 279 |
– |
for (i = 0; i < 3; i++) { |
| 280 |
– |
for (j = 0; j < 3; j++) { |
| 281 |
– |
out[i][j] = temp[i][j]; |
| 282 |
– |
} |
| 283 |
– |
} |
| 215 |
|
} |
| 285 |
– |
|
| 286 |
– |
void SimInfo::printMat3(double A[3][3] ){ |
| 216 |
|
|
| 288 |
– |
std::cerr |
| 289 |
– |
<< "[ " << A[0][0] << ", " << A[0][1] << ", " << A[0][2] << " ]\n" |
| 290 |
– |
<< "[ " << A[1][0] << ", " << A[1][1] << ", " << A[1][2] << " ]\n" |
| 291 |
– |
<< "[ " << A[2][0] << ", " << A[2][1] << ", " << A[2][2] << " ]\n"; |
| 292 |
– |
} |
| 293 |
– |
|
| 294 |
– |
void SimInfo::printMat9(double A[9] ){ |
| 295 |
– |
|
| 296 |
– |
std::cerr |
| 297 |
– |
<< "[ " << A[0] << ", " << A[1] << ", " << A[2] << " ]\n" |
| 298 |
– |
<< "[ " << A[3] << ", " << A[4] << ", " << A[5] << " ]\n" |
| 299 |
– |
<< "[ " << A[6] << ", " << A[7] << ", " << A[8] << " ]\n"; |
| 300 |
– |
} |
| 301 |
– |
|
| 302 |
– |
|
| 303 |
– |
void SimInfo::crossProduct3(double a[3],double b[3], double out[3]){ |
| 304 |
– |
|
| 305 |
– |
out[0] = a[1] * b[2] - a[2] * b[1]; |
| 306 |
– |
out[1] = a[2] * b[0] - a[0] * b[2] ; |
| 307 |
– |
out[2] = a[0] * b[1] - a[1] * b[0]; |
| 308 |
– |
|
| 309 |
– |
} |
| 310 |
– |
|
| 311 |
– |
double SimInfo::dotProduct3(double a[3], double b[3]){ |
| 312 |
– |
return a[0]*b[0] + a[1]*b[1]+ a[2]*b[2]; |
| 313 |
– |
} |
| 314 |
– |
|
| 315 |
– |
double SimInfo::length3(double a[3]){ |
| 316 |
– |
return sqrt(a[0]*a[0] + a[1]*a[1] + a[2]*a[2]); |
| 317 |
– |
} |
| 318 |
– |
|
| 217 |
|
void SimInfo::calcBoxL( void ){ |
| 218 |
|
|
| 219 |
|
double dx, dy, dz, dsq; |
| 269 |
|
rk[0] = Hmat[0][2]; |
| 270 |
|
rk[1] = Hmat[1][2]; |
| 271 |
|
rk[2] = Hmat[2][2]; |
| 272 |
< |
|
| 273 |
< |
crossProduct3(ri,rj, rij); |
| 274 |
< |
distXY = dotProduct3(rk,rij) / length3(rij); |
| 272 |
> |
|
| 273 |
> |
crossProduct3(ri, rj, rij); |
| 274 |
> |
distXY = dotProduct3(rk,rij) / norm3(rij); |
| 275 |
|
|
| 276 |
|
crossProduct3(rj,rk, rjk); |
| 277 |
< |
distYZ = dotProduct3(ri,rjk) / length3(rjk); |
| 277 |
> |
distYZ = dotProduct3(ri,rjk) / norm3(rjk); |
| 278 |
|
|
| 279 |
|
crossProduct3(rk,ri, rki); |
| 280 |
< |
distZX = dotProduct3(rj,rki) / length3(rki); |
| 280 |
> |
distZX = dotProduct3(rj,rki) / norm3(rki); |
| 281 |
|
|
| 282 |
|
minDist = min(min(distXY, distYZ), distZX); |
| 283 |
|
return minDist/2; |
| 325 |
|
|
| 326 |
|
int SimInfo::getNDF(){ |
| 327 |
|
int ndf_local; |
| 328 |
+ |
|
| 329 |
+ |
ndf_local = 0; |
| 330 |
|
|
| 331 |
< |
ndf_local = 3 * n_atoms + 3 * n_oriented - n_constraints; |
| 331 |
> |
for(int i = 0; i < integrableObjects.size(); i++){ |
| 332 |
> |
ndf_local += 3; |
| 333 |
> |
if (integrableObjects[i]->isDirectional()) { |
| 334 |
> |
if (integrableObjects[i]->isLinear()) |
| 335 |
> |
ndf_local += 2; |
| 336 |
> |
else |
| 337 |
> |
ndf_local += 3; |
| 338 |
> |
} |
| 339 |
> |
} |
| 340 |
|
|
| 341 |
+ |
// n_constraints is local, so subtract them on each processor: |
| 342 |
+ |
|
| 343 |
+ |
ndf_local -= n_constraints; |
| 344 |
+ |
|
| 345 |
|
#ifdef IS_MPI |
| 346 |
|
MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
| 347 |
|
#else |
| 348 |
|
ndf = ndf_local; |
| 349 |
|
#endif |
| 350 |
|
|
| 351 |
+ |
// nZconstraints is global, as are the 3 COM translations for the |
| 352 |
+ |
// entire system: |
| 353 |
+ |
|
| 354 |
|
ndf = ndf - 3 - nZconstraints; |
| 355 |
|
|
| 356 |
|
return ndf; |
| 360 |
|
int ndfRaw_local; |
| 361 |
|
|
| 362 |
|
// Raw degrees of freedom that we have to set |
| 363 |
< |
ndfRaw_local = 3 * n_atoms + 3 * n_oriented; |
| 364 |
< |
|
| 363 |
> |
ndfRaw_local = 0; |
| 364 |
> |
|
| 365 |
> |
for(int i = 0; i < integrableObjects.size(); i++){ |
| 366 |
> |
ndfRaw_local += 3; |
| 367 |
> |
if (integrableObjects[i]->isDirectional()) { |
| 368 |
> |
if (integrableObjects[i]->isLinear()) |
| 369 |
> |
ndfRaw_local += 2; |
| 370 |
> |
else |
| 371 |
> |
ndfRaw_local += 3; |
| 372 |
> |
} |
| 373 |
> |
} |
| 374 |
> |
|
| 375 |
|
#ifdef IS_MPI |
| 376 |
|
MPI_Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
| 377 |
|
#else |
| 384 |
|
int SimInfo::getNDFtranslational() { |
| 385 |
|
int ndfTrans_local; |
| 386 |
|
|
| 387 |
< |
ndfTrans_local = 3 * n_atoms - n_constraints; |
| 387 |
> |
ndfTrans_local = 3 * integrableObjects.size() - n_constraints; |
| 388 |
|
|
| 389 |
+ |
|
| 390 |
|
#ifdef IS_MPI |
| 391 |
|
MPI_Allreduce(&ndfTrans_local,&ndfTrans,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
| 392 |
|
#else |
| 398 |
|
return ndfTrans; |
| 399 |
|
} |
| 400 |
|
|
| 401 |
+ |
int SimInfo::getTotIntegrableObjects() { |
| 402 |
+ |
int nObjs_local; |
| 403 |
+ |
int nObjs; |
| 404 |
+ |
|
| 405 |
+ |
nObjs_local = integrableObjects.size(); |
| 406 |
+ |
|
| 407 |
+ |
|
| 408 |
+ |
#ifdef IS_MPI |
| 409 |
+ |
MPI_Allreduce(&nObjs_local,&nObjs,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
| 410 |
+ |
#else |
| 411 |
+ |
nObjs = nObjs_local; |
| 412 |
+ |
#endif |
| 413 |
+ |
|
| 414 |
+ |
|
| 415 |
+ |
return nObjs; |
| 416 |
+ |
} |
| 417 |
+ |
|
| 418 |
|
void SimInfo::refreshSim(){ |
| 419 |
|
|
| 420 |
|
simtype fInfo; |
| 436 |
|
fInfo.SIM_uses_charges = useCharges; |
| 437 |
|
fInfo.SIM_uses_dipoles = useDipoles; |
| 438 |
|
//fInfo.SIM_uses_dipoles = 0; |
| 439 |
< |
//fInfo.SIM_uses_RF = useReactionField; |
| 440 |
< |
fInfo.SIM_uses_RF = 0; |
| 439 |
> |
fInfo.SIM_uses_RF = useReactionField; |
| 440 |
> |
//fInfo.SIM_uses_RF = 0; |
| 441 |
|
fInfo.SIM_uses_GB = useGB; |
| 442 |
|
fInfo.SIM_uses_EAM = useEAM; |
| 443 |
|
|
| 444 |
< |
excl = Exclude::getArray(); |
| 445 |
< |
|
| 444 |
> |
n_exclude = excludes->getSize(); |
| 445 |
> |
excl = excludes->getFortranArray(); |
| 446 |
> |
|
| 447 |
|
#ifdef IS_MPI |
| 448 |
|
n_global = mpiSim->getTotAtoms(); |
| 449 |
|
#else |
| 450 |
|
n_global = n_atoms; |
| 451 |
|
#endif |
| 452 |
< |
|
| 452 |
> |
|
| 453 |
|
isError = 0; |
| 454 |
< |
|
| 454 |
> |
|
| 455 |
> |
getFortranGroupArray(this, mfact, ngroup, groupList, groupStart); |
| 456 |
> |
//it may not be a good idea to pass the address of first element in vector |
| 457 |
> |
//since c++ standard does not require vector to be stored continuously in meomory |
| 458 |
> |
//Most of the compilers will organize the memory of vector continuously |
| 459 |
|
setFsimulation( &fInfo, &n_global, &n_atoms, identArray, &n_exclude, excl, |
| 460 |
< |
&nGlobalExcludes, globalExcludes, molMembershipArray, |
| 461 |
< |
&isError ); |
| 462 |
< |
|
| 460 |
> |
&nGlobalExcludes, globalExcludes, molMembershipArray, |
| 461 |
> |
&mfact[0], &ngroup, &groupList[0], &groupStart[0], &isError); |
| 462 |
> |
|
| 463 |
|
if( isError ){ |
| 464 |
< |
|
| 464 |
> |
|
| 465 |
|
sprintf( painCave.errMsg, |
| 466 |
< |
"There was an error setting the simulation information in fortran.\n" ); |
| 466 |
> |
"There was an error setting the simulation information in fortran.\n" ); |
| 467 |
|
painCave.isFatal = 1; |
| 468 |
|
simError(); |
| 469 |
|
} |
| 470 |
< |
|
| 470 |
> |
|
| 471 |
|
#ifdef IS_MPI |
| 472 |
|
sprintf( checkPointMsg, |
| 473 |
|
"succesfully sent the simulation information to fortran.\n"); |
| 474 |
|
MPIcheckPoint(); |
| 475 |
|
#endif // is_mpi |
| 476 |
< |
|
| 476 |
> |
|
| 477 |
|
this->ndf = this->getNDF(); |
| 478 |
|
this->ndfRaw = this->getNDFraw(); |
| 479 |
|
this->ndfTrans = this->getNDFtranslational(); |
| 480 |
|
} |
| 481 |
|
|
| 482 |
|
void SimInfo::setDefaultRcut( double theRcut ){ |
| 483 |
< |
|
| 483 |
> |
|
| 484 |
|
haveRcut = 1; |
| 485 |
|
rCut = theRcut; |
| 486 |
< |
|
| 539 |
< |
( rCut > ecr )? rList = rCut + 1.0: rList = ecr + 1.0; |
| 540 |
< |
|
| 541 |
< |
notifyFortranCutOffs( &rCut, &rList, &ecr, &est ); |
| 542 |
< |
} |
| 543 |
< |
|
| 544 |
< |
void SimInfo::setDefaultEcr( double theEcr ){ |
| 545 |
< |
|
| 546 |
< |
haveEcr = 1; |
| 547 |
< |
ecr = theEcr; |
| 486 |
> |
rList = rCut + 1.0; |
| 487 |
|
|
| 488 |
< |
( rCut > ecr )? rList = rCut + 1.0: rList = ecr + 1.0; |
| 550 |
< |
|
| 551 |
< |
notifyFortranCutOffs( &rCut, &rList, &ecr, &est ); |
| 488 |
> |
notifyFortranCutOffs( &rCut, &rSw, &rList ); |
| 489 |
|
} |
| 490 |
|
|
| 491 |
< |
void SimInfo::setDefaultEcr( double theEcr, double theEst ){ |
| 491 |
> |
void SimInfo::setDefaultRcut( double theRcut, double theRsw ){ |
| 492 |
|
|
| 493 |
< |
est = theEst; |
| 494 |
< |
setDefaultEcr( theEcr ); |
| 493 |
> |
rSw = theRsw; |
| 494 |
> |
setDefaultRcut( theRcut ); |
| 495 |
|
} |
| 496 |
|
|
| 497 |
|
|
| 503 |
|
|
| 504 |
|
if( rCut > maxCutoff ){ |
| 505 |
|
sprintf( painCave.errMsg, |
| 506 |
< |
"Box size is too small for the long range cutoff radius, " |
| 507 |
< |
"%G, at time %G\n" |
| 508 |
< |
" [ %G %G %G ]\n" |
| 509 |
< |
" [ %G %G %G ]\n" |
| 510 |
< |
" [ %G %G %G ]\n", |
| 506 |
> |
"cutoffRadius is too large for the current periodic box.\n" |
| 507 |
> |
"\tCurrent Value of cutoffRadius = %G at time %G\n " |
| 508 |
> |
"\tThis is larger than half of at least one of the\n" |
| 509 |
> |
"\tperiodic box vectors. Right now, the Box matrix is:\n" |
| 510 |
> |
"\n" |
| 511 |
> |
"\t[ %G %G %G ]\n" |
| 512 |
> |
"\t[ %G %G %G ]\n" |
| 513 |
> |
"\t[ %G %G %G ]\n", |
| 514 |
|
rCut, currentTime, |
| 515 |
|
Hmat[0][0], Hmat[0][1], Hmat[0][2], |
| 516 |
|
Hmat[1][0], Hmat[1][1], Hmat[1][2], |
| 517 |
|
Hmat[2][0], Hmat[2][1], Hmat[2][2]); |
| 518 |
|
painCave.isFatal = 1; |
| 519 |
|
simError(); |
| 520 |
< |
} |
| 581 |
< |
|
| 582 |
< |
if( haveEcr ){ |
| 583 |
< |
if( ecr > maxCutoff ){ |
| 584 |
< |
sprintf( painCave.errMsg, |
| 585 |
< |
"Box size is too small for the electrostatic cutoff radius, " |
| 586 |
< |
"%G, at time %G\n" |
| 587 |
< |
" [ %G %G %G ]\n" |
| 588 |
< |
" [ %G %G %G ]\n" |
| 589 |
< |
" [ %G %G %G ]\n", |
| 590 |
< |
ecr, currentTime, |
| 591 |
< |
Hmat[0][0], Hmat[0][1], Hmat[0][2], |
| 592 |
< |
Hmat[1][0], Hmat[1][1], Hmat[1][2], |
| 593 |
< |
Hmat[2][0], Hmat[2][1], Hmat[2][2]); |
| 594 |
< |
painCave.isFatal = 1; |
| 595 |
< |
simError(); |
| 596 |
< |
} |
| 597 |
< |
} |
| 520 |
> |
} |
| 521 |
|
} else { |
| 522 |
|
// initialize this stuff before using it, OK? |
| 523 |
|
sprintf( painCave.errMsg, |
| 524 |
< |
"Trying to check cutoffs without a box. Be smarter.\n" ); |
| 524 |
> |
"Trying to check cutoffs without a box.\n" |
| 525 |
> |
"\tOOPSE should have better programmers than that.\n" ); |
| 526 |
|
painCave.isFatal = 1; |
| 527 |
|
simError(); |
| 528 |
|
} |
| 565 |
|
return NULL; |
| 566 |
|
} |
| 567 |
|
|
| 644 |
– |
vector<GenericData*> SimInfo::getProperties(){ |
| 568 |
|
|
| 569 |
< |
vector<GenericData*> result; |
| 570 |
< |
map<string, GenericData*>::iterator i; |
| 569 |
> |
void getFortranGroupArray(SimInfo* info, vector<double>& mfact, int& ngroup, |
| 570 |
> |
vector<int>& groupList, vector<int>& groupStart){ |
| 571 |
> |
Molecule* myMols; |
| 572 |
> |
Atom** myAtoms; |
| 573 |
> |
int numAtom; |
| 574 |
> |
int curIndex; |
| 575 |
> |
double mtot; |
| 576 |
> |
int numMol; |
| 577 |
> |
int numCutoffGroups; |
| 578 |
> |
CutoffGroup* myCutoffGroup; |
| 579 |
> |
vector<CutoffGroup*>::iterator iterCutoff; |
| 580 |
> |
Atom* cutoffAtom; |
| 581 |
> |
vector<Atom*>::iterator iterAtom; |
| 582 |
> |
int atomIndex; |
| 583 |
> |
double totalMass; |
| 584 |
|
|
| 585 |
< |
for(i = properties.begin(); i != properties.end(); i++) |
| 586 |
< |
result.push_back((*i).second); |
| 587 |
< |
|
| 588 |
< |
return result; |
| 589 |
< |
} |
| 585 |
> |
mfact.clear(); |
| 586 |
> |
groupList.clear(); |
| 587 |
> |
groupStart.clear(); |
| 588 |
> |
|
| 589 |
> |
//Be careful, fortran array begin at 1 |
| 590 |
> |
curIndex = 1; |
| 591 |
|
|
| 592 |
< |
double SimInfo::matTrace3(double m[3][3]){ |
| 593 |
< |
double trace; |
| 594 |
< |
trace = m[0][0] + m[1][1] + m[2][2]; |
| 592 |
> |
myMols = info->molecules; |
| 593 |
> |
numMol = info->n_mol; |
| 594 |
> |
for(int i = 0; i < numMol; i++){ |
| 595 |
> |
numCutoffGroups = myMols[i].getNCutoffGroups(); |
| 596 |
> |
for(myCutoffGroup =myMols[i].beginCutoffGroup(iterCutoff); myCutoffGroup != NULL; |
| 597 |
> |
myCutoffGroup =myMols[i].nextCutoffGroup(iterCutoff)){ |
| 598 |
|
|
| 599 |
< |
return trace; |
| 599 |
> |
totalMass = myCutoffGroup->getMass(); |
| 600 |
> |
|
| 601 |
> |
for(cutoffAtom = myCutoffGroup->beginAtom(iterAtom); cutoffAtom != NULL; |
| 602 |
> |
cutoffAtom = myCutoffGroup->nextAtom(iterAtom)){ |
| 603 |
> |
mfact.push_back(cutoffAtom->getMass()/totalMass); |
| 604 |
> |
#ifdef IS_MPI |
| 605 |
> |
groupList.push_back(cutoffAtom->getGlobalIndex() + 1); |
| 606 |
> |
#else |
| 607 |
> |
groupList.push_back(cutoffAtom->getIndex() + 1); |
| 608 |
> |
#endif |
| 609 |
> |
} |
| 610 |
> |
|
| 611 |
> |
groupStart.push_back(curIndex); |
| 612 |
> |
curIndex += myCutoffGroup->getNumAtom(); |
| 613 |
> |
|
| 614 |
> |
}//end for(myCutoffGroup =myMols[i].beginCutoffGroup(iterCutoff)) |
| 615 |
> |
|
| 616 |
> |
}//end for(int i = 0; i < numMol; i++) |
| 617 |
> |
|
| 618 |
> |
|
| 619 |
> |
//The last cutoff group need more element to indicate the end of the cutoff |
| 620 |
> |
ngroup = groupStart.size(); |
| 621 |
|
} |