1 |
< |
#include <cstdlib> |
2 |
< |
#include <cstring> |
3 |
< |
#include <cmath> |
1 |
> |
#include <stdlib.h> |
2 |
> |
#include <string.h> |
3 |
> |
#include <math.h> |
4 |
|
|
5 |
|
#include <iostream> |
6 |
|
using namespace std; |
12 |
|
|
13 |
|
#include "fortranWrappers.hpp" |
14 |
|
|
15 |
+ |
#include "MatVec3.h" |
16 |
+ |
|
17 |
+ |
#include "ConstraintManager.hpp" |
18 |
+ |
|
19 |
|
#ifdef IS_MPI |
20 |
|
#include "mpiSimulation.hpp" |
21 |
|
#endif |
24 |
|
return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 ); |
25 |
|
} |
26 |
|
|
27 |
+ |
inline double min( double a, double b ){ |
28 |
+ |
return (a < b ) ? a : b; |
29 |
+ |
} |
30 |
|
|
31 |
|
SimInfo* currentInfo; |
32 |
|
|
33 |
|
SimInfo::SimInfo(){ |
34 |
< |
excludes = NULL; |
34 |
> |
|
35 |
|
n_constraints = 0; |
36 |
+ |
nZconstraints = 0; |
37 |
|
n_oriented = 0; |
38 |
|
n_dipoles = 0; |
39 |
|
ndf = 0; |
40 |
|
ndfRaw = 0; |
41 |
+ |
nZconstraints = 0; |
42 |
|
the_integrator = NULL; |
43 |
|
setTemp = 0; |
44 |
|
thermalTime = 0.0; |
45 |
+ |
currentTime = 0.0; |
46 |
|
rCut = 0.0; |
47 |
+ |
rSw = 0.0; |
48 |
|
|
49 |
+ |
haveRcut = 0; |
50 |
+ |
haveRsw = 0; |
51 |
+ |
boxIsInit = 0; |
52 |
+ |
|
53 |
+ |
resetTime = 1e99; |
54 |
+ |
|
55 |
+ |
orthoRhombic = 0; |
56 |
+ |
orthoTolerance = 1E-6; |
57 |
+ |
useInitXSstate = true; |
58 |
+ |
|
59 |
|
usePBC = 0; |
60 |
|
useLJ = 0; |
61 |
|
useSticky = 0; |
62 |
< |
useDipole = 0; |
62 |
> |
useCharges = 0; |
63 |
> |
useDipoles = 0; |
64 |
|
useReactionField = 0; |
65 |
|
useGB = 0; |
66 |
|
useEAM = 0; |
67 |
+ |
useSolidThermInt = 0; |
68 |
+ |
useLiquidThermInt = 0; |
69 |
|
|
70 |
+ |
haveCutoffGroups = false; |
71 |
+ |
|
72 |
+ |
excludes = Exclude::Instance(); |
73 |
+ |
|
74 |
+ |
myConfiguration = new SimState(); |
75 |
+ |
|
76 |
+ |
has_minimizer = false; |
77 |
+ |
the_minimizer =NULL; |
78 |
+ |
|
79 |
+ |
ngroup = 0; |
80 |
+ |
|
81 |
+ |
consMan = NULL; |
82 |
+ |
|
83 |
|
wrapMeSimInfo( this ); |
84 |
|
} |
85 |
|
|
86 |
+ |
|
87 |
+ |
SimInfo::~SimInfo(){ |
88 |
+ |
|
89 |
+ |
delete myConfiguration; |
90 |
+ |
|
91 |
+ |
map<string, GenericData*>::iterator i; |
92 |
+ |
|
93 |
+ |
for(i = properties.begin(); i != properties.end(); i++) |
94 |
+ |
delete (*i).second; |
95 |
+ |
|
96 |
+ |
if (!consMan) |
97 |
+ |
delete consMan; |
98 |
+ |
} |
99 |
+ |
|
100 |
|
void SimInfo::setBox(double newBox[3]) { |
101 |
|
|
102 |
|
int i, j; |
115 |
|
|
116 |
|
void SimInfo::setBoxM( double theBox[3][3] ){ |
117 |
|
|
118 |
< |
int i, j, status; |
68 |
< |
double smallestBoxL, maxCutoff; |
118 |
> |
int i, j; |
119 |
|
double FortranHmat[9]; // to preserve compatibility with Fortran the |
120 |
|
// ordering in the array is as follows: |
121 |
|
// [ 0 3 6 ] |
123 |
|
// [ 2 5 8 ] |
124 |
|
double FortranHmatInv[9]; // the inverted Hmat (for Fortran); |
125 |
|
|
126 |
+ |
if( !boxIsInit ) boxIsInit = 1; |
127 |
|
|
128 |
|
for(i=0; i < 3; i++) |
129 |
|
for (j=0; j < 3; j++) Hmat[i][j] = theBox[i][j]; |
130 |
|
|
80 |
– |
// cerr |
81 |
– |
// << "setting Hmat ->\n" |
82 |
– |
// << "[ " << Hmat[0][0] << ", " << Hmat[0][1] << ", " << Hmat[0][2] << " ]\n" |
83 |
– |
// << "[ " << Hmat[1][0] << ", " << Hmat[1][1] << ", " << Hmat[1][2] << " ]\n" |
84 |
– |
// << "[ " << Hmat[2][0] << ", " << Hmat[2][1] << ", " << Hmat[2][2] << " ]\n"; |
85 |
– |
|
131 |
|
calcBoxL(); |
132 |
|
calcHmatInv(); |
133 |
|
|
140 |
|
|
141 |
|
setFortranBoxSize(FortranHmat, FortranHmatInv, &orthoRhombic); |
142 |
|
|
98 |
– |
smallestBoxL = boxLx; |
99 |
– |
if (boxLy < smallestBoxL) smallestBoxL = boxLy; |
100 |
– |
if (boxLz < smallestBoxL) smallestBoxL = boxLz; |
101 |
– |
|
102 |
– |
maxCutoff = smallestBoxL / 2.0; |
103 |
– |
|
104 |
– |
if (rList > maxCutoff) { |
105 |
– |
sprintf( painCave.errMsg, |
106 |
– |
"New Box size is forcing neighborlist radius down to %lf\n", |
107 |
– |
maxCutoff ); |
108 |
– |
painCave.isFatal = 0; |
109 |
– |
simError(); |
110 |
– |
|
111 |
– |
rList = maxCutoff; |
112 |
– |
|
113 |
– |
sprintf( painCave.errMsg, |
114 |
– |
"New Box size is forcing cutoff radius down to %lf\n", |
115 |
– |
maxCutoff - 1.0 ); |
116 |
– |
painCave.isFatal = 0; |
117 |
– |
simError(); |
118 |
– |
|
119 |
– |
rCut = rList - 1.0; |
120 |
– |
|
121 |
– |
// list radius changed so we have to refresh the simulation structure. |
122 |
– |
refreshSim(); |
123 |
– |
} |
124 |
– |
|
125 |
– |
if (rCut > maxCutoff) { |
126 |
– |
sprintf( painCave.errMsg, |
127 |
– |
"New Box size is forcing cutoff radius down to %lf\n", |
128 |
– |
maxCutoff ); |
129 |
– |
painCave.isFatal = 0; |
130 |
– |
simError(); |
131 |
– |
|
132 |
– |
status = 0; |
133 |
– |
LJ_new_rcut(&rCut, &status); |
134 |
– |
if (status != 0) { |
135 |
– |
sprintf( painCave.errMsg, |
136 |
– |
"Error in recomputing LJ shifts based on new rcut\n"); |
137 |
– |
painCave.isFatal = 1; |
138 |
– |
simError(); |
139 |
– |
} |
140 |
– |
} |
143 |
|
} |
144 |
|
|
145 |
|
|
166 |
|
|
167 |
|
void SimInfo::calcHmatInv( void ) { |
168 |
|
|
169 |
+ |
int oldOrtho; |
170 |
|
int i,j; |
171 |
|
double smallDiag; |
172 |
|
double tol; |
174 |
|
|
175 |
|
invertMat3( Hmat, HmatInv ); |
176 |
|
|
174 |
– |
// Check the inverse to make sure it is sane: |
175 |
– |
|
176 |
– |
matMul3( Hmat, HmatInv, sanity ); |
177 |
– |
|
177 |
|
// check to see if Hmat is orthorhombic |
178 |
|
|
179 |
< |
smallDiag = Hmat[0][0]; |
181 |
< |
if(smallDiag > Hmat[1][1]) smallDiag = Hmat[1][1]; |
182 |
< |
if(smallDiag > Hmat[2][2]) smallDiag = Hmat[2][2]; |
183 |
< |
tol = smallDiag * 1E-6; |
179 |
> |
oldOrtho = orthoRhombic; |
180 |
|
|
181 |
+ |
smallDiag = fabs(Hmat[0][0]); |
182 |
+ |
if(smallDiag > fabs(Hmat[1][1])) smallDiag = fabs(Hmat[1][1]); |
183 |
+ |
if(smallDiag > fabs(Hmat[2][2])) smallDiag = fabs(Hmat[2][2]); |
184 |
+ |
tol = smallDiag * orthoTolerance; |
185 |
+ |
|
186 |
|
orthoRhombic = 1; |
187 |
|
|
188 |
|
for (i = 0; i < 3; i++ ) { |
189 |
|
for (j = 0 ; j < 3; j++) { |
190 |
|
if (i != j) { |
191 |
|
if (orthoRhombic) { |
192 |
< |
if (Hmat[i][j] >= tol) orthoRhombic = 0; |
192 |
> |
if ( fabs(Hmat[i][j]) >= tol) orthoRhombic = 0; |
193 |
|
} |
194 |
|
} |
195 |
|
} |
195 |
– |
} |
196 |
– |
} |
197 |
– |
|
198 |
– |
double SimInfo::matDet3(double a[3][3]) { |
199 |
– |
int i, j, k; |
200 |
– |
double determinant; |
201 |
– |
|
202 |
– |
determinant = 0.0; |
203 |
– |
|
204 |
– |
for(i = 0; i < 3; i++) { |
205 |
– |
j = (i+1)%3; |
206 |
– |
k = (i+2)%3; |
207 |
– |
|
208 |
– |
determinant += a[0][i] * (a[1][j]*a[2][k] - a[1][k]*a[2][j]); |
209 |
– |
} |
210 |
– |
|
211 |
– |
return determinant; |
212 |
– |
} |
213 |
– |
|
214 |
– |
void SimInfo::invertMat3(double a[3][3], double b[3][3]) { |
215 |
– |
|
216 |
– |
int i, j, k, l, m, n; |
217 |
– |
double determinant; |
218 |
– |
|
219 |
– |
determinant = matDet3( a ); |
220 |
– |
|
221 |
– |
if (determinant == 0.0) { |
222 |
– |
sprintf( painCave.errMsg, |
223 |
– |
"Can't invert a matrix with a zero determinant!\n"); |
224 |
– |
painCave.isFatal = 1; |
225 |
– |
simError(); |
196 |
|
} |
197 |
|
|
198 |
< |
for (i=0; i < 3; i++) { |
199 |
< |
j = (i+1)%3; |
200 |
< |
k = (i+2)%3; |
201 |
< |
for(l = 0; l < 3; l++) { |
202 |
< |
m = (l+1)%3; |
203 |
< |
n = (l+2)%3; |
204 |
< |
|
205 |
< |
b[l][i] = (a[j][m]*a[k][n] - a[j][n]*a[k][m]) / determinant; |
198 |
> |
if( oldOrtho != orthoRhombic ){ |
199 |
> |
|
200 |
> |
if( orthoRhombic ) { |
201 |
> |
sprintf( painCave.errMsg, |
202 |
> |
"OOPSE is switching from the default Non-Orthorhombic\n" |
203 |
> |
"\tto the faster Orthorhombic periodic boundary computations.\n" |
204 |
> |
"\tThis is usually a good thing, but if you wan't the\n" |
205 |
> |
"\tNon-Orthorhombic computations, make the orthoBoxTolerance\n" |
206 |
> |
"\tvariable ( currently set to %G ) smaller.\n", |
207 |
> |
orthoTolerance); |
208 |
> |
painCave.severity = OOPSE_INFO; |
209 |
> |
simError(); |
210 |
|
} |
211 |
< |
} |
212 |
< |
} |
213 |
< |
|
214 |
< |
void SimInfo::matMul3(double a[3][3], double b[3][3], double c[3][3]) { |
215 |
< |
double r00, r01, r02, r10, r11, r12, r20, r21, r22; |
216 |
< |
|
217 |
< |
r00 = a[0][0]*b[0][0] + a[0][1]*b[1][0] + a[0][2]*b[2][0]; |
218 |
< |
r01 = a[0][0]*b[0][1] + a[0][1]*b[1][1] + a[0][2]*b[2][1]; |
219 |
< |
r02 = a[0][0]*b[0][2] + a[0][1]*b[1][2] + a[0][2]*b[2][2]; |
220 |
< |
|
221 |
< |
r10 = a[1][0]*b[0][0] + a[1][1]*b[1][0] + a[1][2]*b[2][0]; |
248 |
< |
r11 = a[1][0]*b[0][1] + a[1][1]*b[1][1] + a[1][2]*b[2][1]; |
249 |
< |
r12 = a[1][0]*b[0][2] + a[1][1]*b[1][2] + a[1][2]*b[2][2]; |
250 |
< |
|
251 |
< |
r20 = a[2][0]*b[0][0] + a[2][1]*b[1][0] + a[2][2]*b[2][0]; |
252 |
< |
r21 = a[2][0]*b[0][1] + a[2][1]*b[1][1] + a[2][2]*b[2][1]; |
253 |
< |
r22 = a[2][0]*b[0][2] + a[2][1]*b[1][2] + a[2][2]*b[2][2]; |
254 |
< |
|
255 |
< |
c[0][0] = r00; c[0][1] = r01; c[0][2] = r02; |
256 |
< |
c[1][0] = r10; c[1][1] = r11; c[1][2] = r12; |
257 |
< |
c[2][0] = r20; c[2][1] = r21; c[2][2] = r22; |
258 |
< |
} |
259 |
< |
|
260 |
< |
void SimInfo::matVecMul3(double m[3][3], double inVec[3], double outVec[3]) { |
261 |
< |
double a0, a1, a2; |
262 |
< |
|
263 |
< |
a0 = inVec[0]; a1 = inVec[1]; a2 = inVec[2]; |
264 |
< |
|
265 |
< |
outVec[0] = m[0][0]*a0 + m[0][1]*a1 + m[0][2]*a2; |
266 |
< |
outVec[1] = m[1][0]*a0 + m[1][1]*a1 + m[1][2]*a2; |
267 |
< |
outVec[2] = m[2][0]*a0 + m[2][1]*a1 + m[2][2]*a2; |
268 |
< |
} |
269 |
< |
|
270 |
< |
void SimInfo::transposeMat3(double in[3][3], double out[3][3]) { |
271 |
< |
double temp[3][3]; |
272 |
< |
int i, j; |
273 |
< |
|
274 |
< |
for (i = 0; i < 3; i++) { |
275 |
< |
for (j = 0; j < 3; j++) { |
276 |
< |
temp[j][i] = in[i][j]; |
211 |
> |
else { |
212 |
> |
sprintf( painCave.errMsg, |
213 |
> |
"OOPSE is switching from the faster Orthorhombic to the more\n" |
214 |
> |
"\tflexible Non-Orthorhombic periodic boundary computations.\n" |
215 |
> |
"\tThis is usually because the box has deformed under\n" |
216 |
> |
"\tNPTf integration. If you wan't to live on the edge with\n" |
217 |
> |
"\tthe Orthorhombic computations, make the orthoBoxTolerance\n" |
218 |
> |
"\tvariable ( currently set to %G ) larger.\n", |
219 |
> |
orthoTolerance); |
220 |
> |
painCave.severity = OOPSE_WARNING; |
221 |
> |
simError(); |
222 |
|
} |
223 |
|
} |
279 |
– |
for (i = 0; i < 3; i++) { |
280 |
– |
for (j = 0; j < 3; j++) { |
281 |
– |
out[i][j] = temp[i][j]; |
282 |
– |
} |
283 |
– |
} |
224 |
|
} |
285 |
– |
|
286 |
– |
void SimInfo::printMat3(double A[3][3] ){ |
225 |
|
|
288 |
– |
std::cerr |
289 |
– |
<< "[ " << A[0][0] << ", " << A[0][1] << ", " << A[0][2] << " ]\n" |
290 |
– |
<< "[ " << A[1][0] << ", " << A[1][1] << ", " << A[1][2] << " ]\n" |
291 |
– |
<< "[ " << A[2][0] << ", " << A[2][1] << ", " << A[2][2] << " ]\n"; |
292 |
– |
} |
293 |
– |
|
294 |
– |
void SimInfo::printMat9(double A[9] ){ |
295 |
– |
|
296 |
– |
std::cerr |
297 |
– |
<< "[ " << A[0] << ", " << A[1] << ", " << A[2] << " ]\n" |
298 |
– |
<< "[ " << A[3] << ", " << A[4] << ", " << A[5] << " ]\n" |
299 |
– |
<< "[ " << A[6] << ", " << A[7] << ", " << A[8] << " ]\n"; |
300 |
– |
} |
301 |
– |
|
226 |
|
void SimInfo::calcBoxL( void ){ |
227 |
|
|
228 |
|
double dx, dy, dz, dsq; |
305 |
– |
int i; |
229 |
|
|
230 |
|
// boxVol = Determinant of Hmat |
231 |
|
|
235 |
|
|
236 |
|
dx = Hmat[0][0]; dy = Hmat[1][0]; dz = Hmat[2][0]; |
237 |
|
dsq = dx*dx + dy*dy + dz*dz; |
238 |
< |
boxLx = sqrt( dsq ); |
238 |
> |
boxL[0] = sqrt( dsq ); |
239 |
> |
//maxCutoff = 0.5 * boxL[0]; |
240 |
|
|
241 |
|
// boxLy |
242 |
|
|
243 |
|
dx = Hmat[0][1]; dy = Hmat[1][1]; dz = Hmat[2][1]; |
244 |
|
dsq = dx*dx + dy*dy + dz*dz; |
245 |
< |
boxLy = sqrt( dsq ); |
245 |
> |
boxL[1] = sqrt( dsq ); |
246 |
> |
//if( (0.5 * boxL[1]) < maxCutoff ) maxCutoff = 0.5 * boxL[1]; |
247 |
|
|
248 |
+ |
|
249 |
|
// boxLz |
250 |
|
|
251 |
|
dx = Hmat[0][2]; dy = Hmat[1][2]; dz = Hmat[2][2]; |
252 |
|
dsq = dx*dx + dy*dy + dz*dz; |
253 |
< |
boxLz = sqrt( dsq ); |
253 |
> |
boxL[2] = sqrt( dsq ); |
254 |
> |
//if( (0.5 * boxL[2]) < maxCutoff ) maxCutoff = 0.5 * boxL[2]; |
255 |
> |
|
256 |
> |
//calculate the max cutoff |
257 |
> |
maxCutoff = calcMaxCutOff(); |
258 |
|
|
259 |
+ |
checkCutOffs(); |
260 |
+ |
|
261 |
|
} |
262 |
+ |
|
263 |
+ |
|
264 |
+ |
double SimInfo::calcMaxCutOff(){ |
265 |
+ |
|
266 |
+ |
double ri[3], rj[3], rk[3]; |
267 |
+ |
double rij[3], rjk[3], rki[3]; |
268 |
+ |
double minDist; |
269 |
+ |
|
270 |
+ |
ri[0] = Hmat[0][0]; |
271 |
+ |
ri[1] = Hmat[1][0]; |
272 |
+ |
ri[2] = Hmat[2][0]; |
273 |
+ |
|
274 |
+ |
rj[0] = Hmat[0][1]; |
275 |
+ |
rj[1] = Hmat[1][1]; |
276 |
+ |
rj[2] = Hmat[2][1]; |
277 |
+ |
|
278 |
+ |
rk[0] = Hmat[0][2]; |
279 |
+ |
rk[1] = Hmat[1][2]; |
280 |
+ |
rk[2] = Hmat[2][2]; |
281 |
+ |
|
282 |
+ |
crossProduct3(ri, rj, rij); |
283 |
+ |
distXY = dotProduct3(rk,rij) / norm3(rij); |
284 |
|
|
285 |
+ |
crossProduct3(rj,rk, rjk); |
286 |
+ |
distYZ = dotProduct3(ri,rjk) / norm3(rjk); |
287 |
|
|
288 |
+ |
crossProduct3(rk,ri, rki); |
289 |
+ |
distZX = dotProduct3(rj,rki) / norm3(rki); |
290 |
+ |
|
291 |
+ |
minDist = min(min(distXY, distYZ), distZX); |
292 |
+ |
return minDist/2; |
293 |
+ |
|
294 |
+ |
} |
295 |
+ |
|
296 |
|
void SimInfo::wrapVector( double thePos[3] ){ |
297 |
|
|
298 |
< |
int i, j, k; |
298 |
> |
int i; |
299 |
|
double scaled[3]; |
300 |
|
|
301 |
|
if( !orthoRhombic ){ |
333 |
|
|
334 |
|
|
335 |
|
int SimInfo::getNDF(){ |
336 |
< |
int ndf_local, ndf; |
336 |
> |
int ndf_local; |
337 |
> |
|
338 |
> |
ndf_local = 0; |
339 |
|
|
340 |
< |
ndf_local = 3 * n_atoms + 3 * n_oriented - n_constraints; |
340 |
> |
for(int i = 0; i < integrableObjects.size(); i++){ |
341 |
> |
ndf_local += 3; |
342 |
> |
if (integrableObjects[i]->isDirectional()) { |
343 |
> |
if (integrableObjects[i]->isLinear()) |
344 |
> |
ndf_local += 2; |
345 |
> |
else |
346 |
> |
ndf_local += 3; |
347 |
> |
} |
348 |
> |
} |
349 |
|
|
350 |
+ |
// n_constraints is local, so subtract them on each processor: |
351 |
+ |
|
352 |
+ |
ndf_local -= n_constraints; |
353 |
+ |
|
354 |
|
#ifdef IS_MPI |
355 |
|
MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
356 |
|
#else |
357 |
|
ndf = ndf_local; |
358 |
|
#endif |
359 |
|
|
360 |
< |
ndf = ndf - 3; |
360 |
> |
// nZconstraints is global, as are the 3 COM translations for the |
361 |
> |
// entire system: |
362 |
|
|
363 |
+ |
ndf = ndf - 3 - nZconstraints; |
364 |
+ |
|
365 |
|
return ndf; |
366 |
|
} |
367 |
|
|
368 |
|
int SimInfo::getNDFraw() { |
369 |
< |
int ndfRaw_local, ndfRaw; |
369 |
> |
int ndfRaw_local; |
370 |
|
|
371 |
|
// Raw degrees of freedom that we have to set |
372 |
< |
ndfRaw_local = 3 * n_atoms + 3 * n_oriented; |
373 |
< |
|
372 |
> |
ndfRaw_local = 0; |
373 |
> |
|
374 |
> |
for(int i = 0; i < integrableObjects.size(); i++){ |
375 |
> |
ndfRaw_local += 3; |
376 |
> |
if (integrableObjects[i]->isDirectional()) { |
377 |
> |
if (integrableObjects[i]->isLinear()) |
378 |
> |
ndfRaw_local += 2; |
379 |
> |
else |
380 |
> |
ndfRaw_local += 3; |
381 |
> |
} |
382 |
> |
} |
383 |
> |
|
384 |
|
#ifdef IS_MPI |
385 |
|
MPI_Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
386 |
|
#else |
389 |
|
|
390 |
|
return ndfRaw; |
391 |
|
} |
392 |
< |
|
392 |
> |
|
393 |
> |
int SimInfo::getNDFtranslational() { |
394 |
> |
int ndfTrans_local; |
395 |
> |
|
396 |
> |
ndfTrans_local = 3 * integrableObjects.size() - n_constraints; |
397 |
> |
|
398 |
> |
|
399 |
> |
#ifdef IS_MPI |
400 |
> |
MPI_Allreduce(&ndfTrans_local,&ndfTrans,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
401 |
> |
#else |
402 |
> |
ndfTrans = ndfTrans_local; |
403 |
> |
#endif |
404 |
> |
|
405 |
> |
ndfTrans = ndfTrans - 3 - nZconstraints; |
406 |
> |
|
407 |
> |
return ndfTrans; |
408 |
> |
} |
409 |
> |
|
410 |
> |
int SimInfo::getTotIntegrableObjects() { |
411 |
> |
int nObjs_local; |
412 |
> |
int nObjs; |
413 |
> |
|
414 |
> |
nObjs_local = integrableObjects.size(); |
415 |
> |
|
416 |
> |
|
417 |
> |
#ifdef IS_MPI |
418 |
> |
MPI_Allreduce(&nObjs_local,&nObjs,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
419 |
> |
#else |
420 |
> |
nObjs = nObjs_local; |
421 |
> |
#endif |
422 |
> |
|
423 |
> |
|
424 |
> |
return nObjs; |
425 |
> |
} |
426 |
> |
|
427 |
|
void SimInfo::refreshSim(){ |
428 |
|
|
429 |
|
simtype fInfo; |
430 |
|
int isError; |
431 |
|
int n_global; |
432 |
|
int* excl; |
433 |
< |
|
409 |
< |
fInfo.rrf = 0.0; |
410 |
< |
fInfo.rt = 0.0; |
433 |
> |
|
434 |
|
fInfo.dielect = 0.0; |
435 |
|
|
436 |
< |
fInfo.rlist = rList; |
414 |
< |
fInfo.rcut = rCut; |
415 |
< |
|
416 |
< |
if( useDipole ){ |
417 |
< |
fInfo.rrf = ecr; |
418 |
< |
fInfo.rt = ecr - est; |
436 |
> |
if( useDipoles ){ |
437 |
|
if( useReactionField )fInfo.dielect = dielectric; |
438 |
|
} |
439 |
|
|
442 |
|
fInfo.SIM_uses_LJ = useLJ; |
443 |
|
fInfo.SIM_uses_sticky = useSticky; |
444 |
|
//fInfo.SIM_uses_sticky = 0; |
445 |
< |
fInfo.SIM_uses_dipoles = useDipole; |
445 |
> |
fInfo.SIM_uses_charges = useCharges; |
446 |
> |
fInfo.SIM_uses_dipoles = useDipoles; |
447 |
|
//fInfo.SIM_uses_dipoles = 0; |
448 |
< |
//fInfo.SIM_uses_RF = useReactionField; |
449 |
< |
fInfo.SIM_uses_RF = 0; |
448 |
> |
fInfo.SIM_uses_RF = useReactionField; |
449 |
> |
//fInfo.SIM_uses_RF = 0; |
450 |
|
fInfo.SIM_uses_GB = useGB; |
451 |
|
fInfo.SIM_uses_EAM = useEAM; |
452 |
|
|
453 |
< |
excl = Exclude::getArray(); |
454 |
< |
|
453 |
> |
n_exclude = excludes->getSize(); |
454 |
> |
excl = excludes->getFortranArray(); |
455 |
> |
|
456 |
|
#ifdef IS_MPI |
457 |
< |
n_global = mpiSim->getTotAtoms(); |
457 |
> |
n_global = mpiSim->getNAtomsGlobal(); |
458 |
|
#else |
459 |
|
n_global = n_atoms; |
460 |
|
#endif |
461 |
< |
|
461 |
> |
|
462 |
|
isError = 0; |
463 |
< |
|
463 |
> |
|
464 |
> |
getFortranGroupArrays(this, FglobalGroupMembership, mfact); |
465 |
> |
//it may not be a good idea to pass the address of first element in vector |
466 |
> |
//since c++ standard does not require vector to be stored continuously in meomory |
467 |
> |
//Most of the compilers will organize the memory of vector continuously |
468 |
|
setFsimulation( &fInfo, &n_global, &n_atoms, identArray, &n_exclude, excl, |
469 |
< |
&nGlobalExcludes, globalExcludes, molMembershipArray, |
470 |
< |
&isError ); |
469 |
> |
&nGlobalExcludes, globalExcludes, molMembershipArray, |
470 |
> |
&mfact[0], &ngroup, &FglobalGroupMembership[0], &isError); |
471 |
|
|
472 |
|
if( isError ){ |
473 |
< |
|
473 |
> |
|
474 |
|
sprintf( painCave.errMsg, |
475 |
< |
"There was an error setting the simulation information in fortran.\n" ); |
475 |
> |
"There was an error setting the simulation information in fortran.\n" ); |
476 |
|
painCave.isFatal = 1; |
477 |
+ |
painCave.severity = OOPSE_ERROR; |
478 |
|
simError(); |
479 |
|
} |
480 |
< |
|
480 |
> |
|
481 |
|
#ifdef IS_MPI |
482 |
|
sprintf( checkPointMsg, |
483 |
|
"succesfully sent the simulation information to fortran.\n"); |
484 |
|
MPIcheckPoint(); |
485 |
|
#endif // is_mpi |
486 |
< |
|
486 |
> |
|
487 |
|
this->ndf = this->getNDF(); |
488 |
|
this->ndfRaw = this->getNDFraw(); |
489 |
+ |
this->ndfTrans = this->getNDFtranslational(); |
490 |
+ |
} |
491 |
|
|
492 |
+ |
void SimInfo::setDefaultRcut( double theRcut ){ |
493 |
+ |
|
494 |
+ |
haveRcut = 1; |
495 |
+ |
rCut = theRcut; |
496 |
+ |
rList = rCut + 1.0; |
497 |
+ |
|
498 |
+ |
notifyFortranCutOffs( &rCut, &rSw, &rList ); |
499 |
|
} |
500 |
|
|
501 |
+ |
void SimInfo::setDefaultRcut( double theRcut, double theRsw ){ |
502 |
+ |
|
503 |
+ |
rSw = theRsw; |
504 |
+ |
setDefaultRcut( theRcut ); |
505 |
+ |
} |
506 |
+ |
|
507 |
+ |
|
508 |
+ |
void SimInfo::checkCutOffs( void ){ |
509 |
+ |
|
510 |
+ |
if( boxIsInit ){ |
511 |
+ |
|
512 |
+ |
//we need to check cutOffs against the box |
513 |
+ |
|
514 |
+ |
if( rCut > maxCutoff ){ |
515 |
+ |
sprintf( painCave.errMsg, |
516 |
+ |
"cutoffRadius is too large for the current periodic box.\n" |
517 |
+ |
"\tCurrent Value of cutoffRadius = %G at time %G\n " |
518 |
+ |
"\tThis is larger than half of at least one of the\n" |
519 |
+ |
"\tperiodic box vectors. Right now, the Box matrix is:\n" |
520 |
+ |
"\n" |
521 |
+ |
"\t[ %G %G %G ]\n" |
522 |
+ |
"\t[ %G %G %G ]\n" |
523 |
+ |
"\t[ %G %G %G ]\n", |
524 |
+ |
rCut, currentTime, |
525 |
+ |
Hmat[0][0], Hmat[0][1], Hmat[0][2], |
526 |
+ |
Hmat[1][0], Hmat[1][1], Hmat[1][2], |
527 |
+ |
Hmat[2][0], Hmat[2][1], Hmat[2][2]); |
528 |
+ |
painCave.severity = OOPSE_ERROR; |
529 |
+ |
painCave.isFatal = 1; |
530 |
+ |
simError(); |
531 |
+ |
} |
532 |
+ |
} else { |
533 |
+ |
// initialize this stuff before using it, OK? |
534 |
+ |
sprintf( painCave.errMsg, |
535 |
+ |
"Trying to check cutoffs without a box.\n" |
536 |
+ |
"\tOOPSE should have better programmers than that.\n" ); |
537 |
+ |
painCave.severity = OOPSE_ERROR; |
538 |
+ |
painCave.isFatal = 1; |
539 |
+ |
simError(); |
540 |
+ |
} |
541 |
+ |
|
542 |
+ |
} |
543 |
+ |
|
544 |
+ |
void SimInfo::addProperty(GenericData* prop){ |
545 |
+ |
|
546 |
+ |
map<string, GenericData*>::iterator result; |
547 |
+ |
result = properties.find(prop->getID()); |
548 |
+ |
|
549 |
+ |
//we can't simply use properties[prop->getID()] = prop, |
550 |
+ |
//it will cause memory leak if we already contain a propery which has the same name of prop |
551 |
+ |
|
552 |
+ |
if(result != properties.end()){ |
553 |
+ |
|
554 |
+ |
delete (*result).second; |
555 |
+ |
(*result).second = prop; |
556 |
+ |
|
557 |
+ |
} |
558 |
+ |
else{ |
559 |
+ |
|
560 |
+ |
properties[prop->getID()] = prop; |
561 |
+ |
|
562 |
+ |
} |
563 |
+ |
|
564 |
+ |
} |
565 |
+ |
|
566 |
+ |
GenericData* SimInfo::getProperty(const string& propName){ |
567 |
+ |
|
568 |
+ |
map<string, GenericData*>::iterator result; |
569 |
+ |
|
570 |
+ |
//string lowerCaseName = (); |
571 |
+ |
|
572 |
+ |
result = properties.find(propName); |
573 |
+ |
|
574 |
+ |
if(result != properties.end()) |
575 |
+ |
return (*result).second; |
576 |
+ |
else |
577 |
+ |
return NULL; |
578 |
+ |
} |
579 |
+ |
|
580 |
+ |
|
581 |
+ |
void SimInfo::getFortranGroupArrays(SimInfo* info, |
582 |
+ |
vector<int>& FglobalGroupMembership, |
583 |
+ |
vector<double>& mfact){ |
584 |
+ |
|
585 |
+ |
Molecule* myMols; |
586 |
+ |
Atom** myAtoms; |
587 |
+ |
int numAtom; |
588 |
+ |
double mtot; |
589 |
+ |
int numMol; |
590 |
+ |
int numCutoffGroups; |
591 |
+ |
CutoffGroup* myCutoffGroup; |
592 |
+ |
vector<CutoffGroup*>::iterator iterCutoff; |
593 |
+ |
Atom* cutoffAtom; |
594 |
+ |
vector<Atom*>::iterator iterAtom; |
595 |
+ |
int atomIndex; |
596 |
+ |
double totalMass; |
597 |
+ |
|
598 |
+ |
mfact.clear(); |
599 |
+ |
FglobalGroupMembership.clear(); |
600 |
+ |
|
601 |
+ |
|
602 |
+ |
// Fix the silly fortran indexing problem |
603 |
+ |
#ifdef IS_MPI |
604 |
+ |
numAtom = mpiSim->getNAtomsGlobal(); |
605 |
+ |
#else |
606 |
+ |
numAtom = n_atoms; |
607 |
+ |
#endif |
608 |
+ |
for (int i = 0; i < numAtom; i++) |
609 |
+ |
FglobalGroupMembership.push_back(globalGroupMembership[i] + 1); |
610 |
+ |
|
611 |
+ |
|
612 |
+ |
myMols = info->molecules; |
613 |
+ |
numMol = info->n_mol; |
614 |
+ |
for(int i = 0; i < numMol; i++){ |
615 |
+ |
numCutoffGroups = myMols[i].getNCutoffGroups(); |
616 |
+ |
for(myCutoffGroup =myMols[i].beginCutoffGroup(iterCutoff); |
617 |
+ |
myCutoffGroup != NULL; |
618 |
+ |
myCutoffGroup =myMols[i].nextCutoffGroup(iterCutoff)){ |
619 |
+ |
|
620 |
+ |
totalMass = myCutoffGroup->getMass(); |
621 |
+ |
|
622 |
+ |
for(cutoffAtom = myCutoffGroup->beginAtom(iterAtom); |
623 |
+ |
cutoffAtom != NULL; |
624 |
+ |
cutoffAtom = myCutoffGroup->nextAtom(iterAtom)){ |
625 |
+ |
mfact.push_back(cutoffAtom->getMass()/totalMass); |
626 |
+ |
} |
627 |
+ |
} |
628 |
+ |
} |
629 |
+ |
|
630 |
+ |
} |