ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/SimInfo.cpp
(Generate patch)

Comparing trunk/OOPSE/libmdtools/SimInfo.cpp (file contents):
Revision 441 by chuckv, Tue Apr 1 16:50:14 2003 UTC vs.
Revision 1221 by chrisfen, Wed Jun 2 14:56:18 2004 UTC

# Line 1 | Line 1
1 < #include <cstdlib>
2 < #include <cstring>
1 > #include <stdlib.h>
2 > #include <string.h>
3 > #include <math.h>
4  
5 + #include <iostream>
6 + using namespace std;
7  
8   #include "SimInfo.hpp"
9   #define __C
# Line 9 | Line 12
12  
13   #include "fortranWrappers.hpp"
14  
15 + #include "MatVec3.h"
16 +
17 + #ifdef IS_MPI
18 + #include "mpiSimulation.hpp"
19 + #endif
20 +
21 + inline double roundMe( double x ){
22 +  return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 );
23 + }
24 +          
25 + inline double min( double a, double b ){
26 +  return (a < b ) ? a : b;
27 + }
28 +
29   SimInfo* currentInfo;
30  
31   SimInfo::SimInfo(){
32 <  excludes = NULL;
32 >
33    n_constraints = 0;
34 +  nZconstraints = 0;
35    n_oriented = 0;
36    n_dipoles = 0;
37 +  ndf = 0;
38 +  ndfRaw = 0;
39 +  nZconstraints = 0;
40    the_integrator = NULL;
41    setTemp = 0;
42    thermalTime = 0.0;
43 +  currentTime = 0.0;
44    rCut = 0.0;
45 +  rSw = 0.0;
46  
47 +  haveRcut = 0;
48 +  haveRsw = 0;
49 +  boxIsInit = 0;
50 +  
51 +  resetTime = 1e99;
52 +
53 +  orthoRhombic = 0;
54 +  orthoTolerance = 1E-6;
55 +  useInitXSstate = true;
56 +
57    usePBC = 0;
58    useLJ = 0;
59    useSticky = 0;
60 <  useDipole = 0;
60 >  useCharges = 0;
61 >  useDipoles = 0;
62    useReactionField = 0;
63    useGB = 0;
64    useEAM = 0;
65 +  useSolidThermInt = 0;
66 +  useLiquidThermInt = 0;
67  
68 +  haveCutoffGroups = false;
69  
70 +  excludes = Exclude::Instance();
71  
72 +  myConfiguration = new SimState();
73 +
74 +  has_minimizer = false;
75 +  the_minimizer =NULL;
76 +
77 +  ngroup = 0;
78 +
79    wrapMeSimInfo( this );
80 + }
81 +
82 +
83 + SimInfo::~SimInfo(){
84 +
85 +  delete myConfiguration;
86 +
87 +  map<string, GenericData*>::iterator i;
88 +  
89 +  for(i = properties.begin(); i != properties.end(); i++)
90 +    delete (*i).second;
91 +  
92 + }
93 +
94 + void SimInfo::setBox(double newBox[3]) {
95 +  
96 +  int i, j;
97 +  double tempMat[3][3];
98 +
99 +  for(i=0; i<3; i++)
100 +    for (j=0; j<3; j++) tempMat[i][j] = 0.0;;
101 +
102 +  tempMat[0][0] = newBox[0];
103 +  tempMat[1][1] = newBox[1];
104 +  tempMat[2][2] = newBox[2];
105 +
106 +  setBoxM( tempMat );
107 +
108 + }
109 +
110 + void SimInfo::setBoxM( double theBox[3][3] ){
111 +  
112 +  int i, j;
113 +  double FortranHmat[9]; // to preserve compatibility with Fortran the
114 +                         // ordering in the array is as follows:
115 +                         // [ 0 3 6 ]
116 +                         // [ 1 4 7 ]
117 +                         // [ 2 5 8 ]
118 +  double FortranHmatInv[9]; // the inverted Hmat (for Fortran);
119 +
120 +  if( !boxIsInit ) boxIsInit = 1;
121 +
122 +  for(i=0; i < 3; i++)
123 +    for (j=0; j < 3; j++) Hmat[i][j] = theBox[i][j];
124 +  
125 +  calcBoxL();
126 +  calcHmatInv();
127 +
128 +  for(i=0; i < 3; i++) {
129 +    for (j=0; j < 3; j++) {
130 +      FortranHmat[3*j + i] = Hmat[i][j];
131 +      FortranHmatInv[3*j + i] = HmatInv[i][j];
132 +    }
133 +  }
134 +
135 +  setFortranBoxSize(FortranHmat, FortranHmatInv, &orthoRhombic);
136 +
137 + }
138 +
139 +
140 + void SimInfo::getBoxM (double theBox[3][3]) {
141 +
142 +  int i, j;
143 +  for(i=0; i<3; i++)
144 +    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j];
145 + }
146 +
147 +
148 + void SimInfo::scaleBox(double scale) {
149 +  double theBox[3][3];
150 +  int i, j;
151 +
152 +  // cerr << "Scaling box by " << scale << "\n";
153 +
154 +  for(i=0; i<3; i++)
155 +    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]*scale;
156 +
157 +  setBoxM(theBox);
158 +
159 + }
160 +
161 + void SimInfo::calcHmatInv( void ) {
162 +  
163 +  int oldOrtho;
164 +  int i,j;
165 +  double smallDiag;
166 +  double tol;
167 +  double sanity[3][3];
168 +
169 +  invertMat3( Hmat, HmatInv );
170 +
171 +  // check to see if Hmat is orthorhombic
172 +  
173 +  oldOrtho = orthoRhombic;
174 +
175 +  smallDiag = fabs(Hmat[0][0]);
176 +  if(smallDiag > fabs(Hmat[1][1])) smallDiag = fabs(Hmat[1][1]);
177 +  if(smallDiag > fabs(Hmat[2][2])) smallDiag = fabs(Hmat[2][2]);
178 +  tol = smallDiag * orthoTolerance;
179 +
180 +  orthoRhombic = 1;
181 +  
182 +  for (i = 0; i < 3; i++ ) {
183 +    for (j = 0 ; j < 3; j++) {
184 +      if (i != j) {
185 +        if (orthoRhombic) {
186 +          if ( fabs(Hmat[i][j]) >= tol) orthoRhombic = 0;
187 +        }        
188 +      }
189 +    }
190 +  }
191 +
192 +  if( oldOrtho != orthoRhombic ){
193 +    
194 +    if( orthoRhombic ) {
195 +      sprintf( painCave.errMsg,
196 +               "OOPSE is switching from the default Non-Orthorhombic\n"
197 +               "\tto the faster Orthorhombic periodic boundary computations.\n"
198 +               "\tThis is usually a good thing, but if you wan't the\n"
199 +               "\tNon-Orthorhombic computations, make the orthoBoxTolerance\n"
200 +               "\tvariable ( currently set to %G ) smaller.\n",
201 +               orthoTolerance);
202 +      painCave.severity = OOPSE_INFO;
203 +      simError();
204 +    }
205 +    else {
206 +      sprintf( painCave.errMsg,
207 +               "OOPSE is switching from the faster Orthorhombic to the more\n"
208 +               "\tflexible Non-Orthorhombic periodic boundary computations.\n"
209 +               "\tThis is usually because the box has deformed under\n"
210 +               "\tNPTf integration. If you wan't to live on the edge with\n"
211 +               "\tthe Orthorhombic computations, make the orthoBoxTolerance\n"
212 +               "\tvariable ( currently set to %G ) larger.\n",
213 +               orthoTolerance);
214 +      painCave.severity = OOPSE_WARNING;
215 +      simError();
216 +    }
217 +  }
218 + }
219 +
220 + void SimInfo::calcBoxL( void ){
221 +
222 +  double dx, dy, dz, dsq;
223 +
224 +  // boxVol = Determinant of Hmat
225 +
226 +  boxVol = matDet3( Hmat );
227 +
228 +  // boxLx
229 +  
230 +  dx = Hmat[0][0]; dy = Hmat[1][0]; dz = Hmat[2][0];
231 +  dsq = dx*dx + dy*dy + dz*dz;
232 +  boxL[0] = sqrt( dsq );
233 +  //maxCutoff = 0.5 * boxL[0];
234 +
235 +  // boxLy
236 +  
237 +  dx = Hmat[0][1]; dy = Hmat[1][1]; dz = Hmat[2][1];
238 +  dsq = dx*dx + dy*dy + dz*dz;
239 +  boxL[1] = sqrt( dsq );
240 +  //if( (0.5 * boxL[1]) < maxCutoff ) maxCutoff = 0.5 * boxL[1];
241 +
242 +
243 +  // boxLz
244 +  
245 +  dx = Hmat[0][2]; dy = Hmat[1][2]; dz = Hmat[2][2];
246 +  dsq = dx*dx + dy*dy + dz*dz;
247 +  boxL[2] = sqrt( dsq );
248 +  //if( (0.5 * boxL[2]) < maxCutoff ) maxCutoff = 0.5 * boxL[2];
249 +
250 +  //calculate the max cutoff
251 +  maxCutoff =  calcMaxCutOff();
252 +  
253 +  checkCutOffs();
254 +
255 + }
256 +
257 +
258 + double SimInfo::calcMaxCutOff(){
259 +
260 +  double ri[3], rj[3], rk[3];
261 +  double rij[3], rjk[3], rki[3];
262 +  double minDist;
263 +
264 +  ri[0] = Hmat[0][0];
265 +  ri[1] = Hmat[1][0];
266 +  ri[2] = Hmat[2][0];
267 +
268 +  rj[0] = Hmat[0][1];
269 +  rj[1] = Hmat[1][1];
270 +  rj[2] = Hmat[2][1];
271 +
272 +  rk[0] = Hmat[0][2];
273 +  rk[1] = Hmat[1][2];
274 +  rk[2] = Hmat[2][2];
275 +    
276 +  crossProduct3(ri, rj, rij);
277 +  distXY = dotProduct3(rk,rij) / norm3(rij);
278 +
279 +  crossProduct3(rj,rk, rjk);
280 +  distYZ = dotProduct3(ri,rjk) / norm3(rjk);
281 +
282 +  crossProduct3(rk,ri, rki);
283 +  distZX = dotProduct3(rj,rki) / norm3(rki);
284 +
285 +  minDist = min(min(distXY, distYZ), distZX);
286 +  return minDist/2;
287 +  
288 + }
289 +
290 + void SimInfo::wrapVector( double thePos[3] ){
291 +
292 +  int i;
293 +  double scaled[3];
294 +
295 +  if( !orthoRhombic ){
296 +    // calc the scaled coordinates.
297 +  
298 +
299 +    matVecMul3(HmatInv, thePos, scaled);
300 +    
301 +    for(i=0; i<3; i++)
302 +      scaled[i] -= roundMe(scaled[i]);
303 +    
304 +    // calc the wrapped real coordinates from the wrapped scaled coordinates
305 +    
306 +    matVecMul3(Hmat, scaled, thePos);
307 +
308 +  }
309 +  else{
310 +    // calc the scaled coordinates.
311 +    
312 +    for(i=0; i<3; i++)
313 +      scaled[i] = thePos[i]*HmatInv[i][i];
314 +    
315 +    // wrap the scaled coordinates
316 +    
317 +    for(i=0; i<3; i++)
318 +      scaled[i] -= roundMe(scaled[i]);
319 +    
320 +    // calc the wrapped real coordinates from the wrapped scaled coordinates
321 +    
322 +    for(i=0; i<3; i++)
323 +      thePos[i] = scaled[i]*Hmat[i][i];
324 +  }
325 +    
326 + }
327 +
328 +
329 + int SimInfo::getNDF(){
330 +  int ndf_local;
331 +
332 +  ndf_local = 0;
333 +  
334 +  for(int i = 0; i < integrableObjects.size(); i++){
335 +    ndf_local += 3;
336 +    if (integrableObjects[i]->isDirectional()) {
337 +      if (integrableObjects[i]->isLinear())
338 +        ndf_local += 2;
339 +      else
340 +        ndf_local += 3;
341 +    }
342 +  }
343 +
344 +  // n_constraints is local, so subtract them on each processor:
345 +
346 +  ndf_local -= n_constraints;
347 +
348 + #ifdef IS_MPI
349 +  MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
350 + #else
351 +  ndf = ndf_local;
352 + #endif
353 +
354 +  // nZconstraints is global, as are the 3 COM translations for the
355 +  // entire system:
356 +
357 +  ndf = ndf - 3 - nZconstraints;
358 +
359 +  return ndf;
360   }
361  
362 + int SimInfo::getNDFraw() {
363 +  int ndfRaw_local;
364 +
365 +  // Raw degrees of freedom that we have to set
366 +  ndfRaw_local = 0;
367 +
368 +  for(int i = 0; i < integrableObjects.size(); i++){
369 +    ndfRaw_local += 3;
370 +    if (integrableObjects[i]->isDirectional()) {
371 +       if (integrableObjects[i]->isLinear())
372 +        ndfRaw_local += 2;
373 +      else
374 +        ndfRaw_local += 3;
375 +    }
376 +  }
377 +    
378 + #ifdef IS_MPI
379 +  MPI_Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
380 + #else
381 +  ndfRaw = ndfRaw_local;
382 + #endif
383 +
384 +  return ndfRaw;
385 + }
386 +
387 + int SimInfo::getNDFtranslational() {
388 +  int ndfTrans_local;
389 +
390 +  ndfTrans_local = 3 * integrableObjects.size() - n_constraints;
391 +
392 +
393 + #ifdef IS_MPI
394 +  MPI_Allreduce(&ndfTrans_local,&ndfTrans,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
395 + #else
396 +  ndfTrans = ndfTrans_local;
397 + #endif
398 +
399 +  ndfTrans = ndfTrans - 3 - nZconstraints;
400 +
401 +  return ndfTrans;
402 + }
403 +
404 + int SimInfo::getTotIntegrableObjects() {
405 +  int nObjs_local;
406 +  int nObjs;
407 +
408 +  nObjs_local =  integrableObjects.size();
409 +
410 +
411 + #ifdef IS_MPI
412 +  MPI_Allreduce(&nObjs_local,&nObjs,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
413 + #else
414 +  nObjs = nObjs_local;
415 + #endif
416 +
417 +
418 +  return nObjs;
419 + }
420 +
421   void SimInfo::refreshSim(){
422  
423    simtype fInfo;
424    int isError;
425 +  int n_global;
426    int* excl;
427  
428 <  fInfo.box[0] = box_x;
44 <  fInfo.box[1] = box_y;
45 <  fInfo.box[2] = box_z;
428 >  fInfo.dielect = 0.0;
429  
430 <  fInfo.rlist = rList;
431 <  fInfo.rcut = rCut;
432 <  fInfo.rrf = ecr;
50 <  fInfo.rt = ecr - est;
51 <  fInfo.dielect = dielectric;
430 >  if( useDipoles ){
431 >    if( useReactionField )fInfo.dielect = dielectric;
432 >  }
433  
434    fInfo.SIM_uses_PBC = usePBC;
435 +  //fInfo.SIM_uses_LJ = 0;
436    fInfo.SIM_uses_LJ = useLJ;
437 <
438 <  //fInfo.SIM_uses_sticky = useSticky;
439 <  fInfo.SIM_uses_sticky = 0;
440 <  fInfo.SIM_uses_dipoles = useDipole;
437 >  fInfo.SIM_uses_sticky = useSticky;
438 >  //fInfo.SIM_uses_sticky = 0;
439 >  fInfo.SIM_uses_charges = useCharges;
440 >  fInfo.SIM_uses_dipoles = useDipoles;
441    //fInfo.SIM_uses_dipoles = 0;
442    fInfo.SIM_uses_RF = useReactionField;
443 +  //fInfo.SIM_uses_RF = 0;
444    fInfo.SIM_uses_GB = useGB;
445    fInfo.SIM_uses_EAM = useEAM;
446  
447 <  excl = Exclude::getArray();
448 <
447 >  n_exclude = excludes->getSize();
448 >  excl = excludes->getFortranArray();
449 >  
450 > #ifdef IS_MPI
451 >  n_global = mpiSim->getNAtomsGlobal();
452 > #else
453 >  n_global = n_atoms;
454 > #endif
455 >  
456    isError = 0;
457 +  
458 +  getFortranGroupArrays(this, FglobalGroupMembership, mfact);
459 +  //it may not be a good idea to pass the address of first element in vector
460 +  //since c++ standard does not require vector to be stored continuously in meomory
461 +  //Most of the compilers will organize the memory of vector continuously
462 +  setFsimulation( &fInfo, &n_global, &n_atoms, identArray, &n_exclude, excl,
463 +                  &nGlobalExcludes, globalExcludes, molMembershipArray,
464 +                  &mfact[0], &ngroup, &FglobalGroupMembership[0], &isError);
465  
68 //   fInfo;
69 //   n_atoms;
70 //   identArray;
71 //   n_exclude;
72 //   excludes;
73 //   nGlobalExcludes;
74 //   globalExcludes;
75 //   isError;
76
77  setFsimulation( &fInfo, &n_atoms, identArray, &n_exclude, excl,
78                  &nGlobalExcludes, globalExcludes, &isError );
79
466    if( isError ){
467 <
467 >    
468      sprintf( painCave.errMsg,
469 <             "There was an error setting the simulation information in fortran.\n" );
469 >             "There was an error setting the simulation information in fortran.\n" );
470      painCave.isFatal = 1;
471 +    painCave.severity = OOPSE_ERROR;
472      simError();
473    }
474 <
474 >  
475   #ifdef IS_MPI
476    sprintf( checkPointMsg,
477             "succesfully sent the simulation information to fortran.\n");
478    MPIcheckPoint();
479   #endif // is_mpi
480 +  
481 +  this->ndf = this->getNDF();
482 +  this->ndfRaw = this->getNDFraw();
483 +  this->ndfTrans = this->getNDFtranslational();
484   }
485  
486 + void SimInfo::setDefaultRcut( double theRcut ){
487 +  
488 +  haveRcut = 1;
489 +  rCut = theRcut;
490 +  rList = rCut + 1.0;
491 +  
492 +  notifyFortranCutOffs( &rCut, &rSw, &rList );
493 + }
494 +
495 + void SimInfo::setDefaultRcut( double theRcut, double theRsw ){
496 +
497 +  rSw = theRsw;
498 +  setDefaultRcut( theRcut );
499 + }
500 +
501 +
502 + void SimInfo::checkCutOffs( void ){
503 +  
504 +  if( boxIsInit ){
505 +    
506 +    //we need to check cutOffs against the box
507 +    
508 +    if( rCut > maxCutoff ){
509 +      sprintf( painCave.errMsg,
510 +               "cutoffRadius is too large for the current periodic box.\n"
511 +               "\tCurrent Value of cutoffRadius = %G at time %G\n "
512 +               "\tThis is larger than half of at least one of the\n"
513 +               "\tperiodic box vectors.  Right now, the Box matrix is:\n"
514 +               "\n"
515 +               "\t[ %G %G %G ]\n"
516 +               "\t[ %G %G %G ]\n"
517 +               "\t[ %G %G %G ]\n",
518 +               rCut, currentTime,
519 +               Hmat[0][0], Hmat[0][1], Hmat[0][2],
520 +               Hmat[1][0], Hmat[1][1], Hmat[1][2],
521 +               Hmat[2][0], Hmat[2][1], Hmat[2][2]);
522 +      painCave.severity = OOPSE_ERROR;
523 +      painCave.isFatal = 1;
524 +      simError();
525 +    }    
526 +  } else {
527 +    // initialize this stuff before using it, OK?
528 +    sprintf( painCave.errMsg,
529 +             "Trying to check cutoffs without a box.\n"
530 +             "\tOOPSE should have better programmers than that.\n" );
531 +    painCave.severity = OOPSE_ERROR;
532 +    painCave.isFatal = 1;
533 +    simError();      
534 +  }
535 +  
536 + }
537 +
538 + void SimInfo::addProperty(GenericData* prop){
539 +
540 +  map<string, GenericData*>::iterator result;
541 +  result = properties.find(prop->getID());
542 +  
543 +  //we can't simply use  properties[prop->getID()] = prop,
544 +  //it will cause memory leak if we already contain a propery which has the same name of prop
545 +  
546 +  if(result != properties.end()){
547 +    
548 +    delete (*result).second;
549 +    (*result).second = prop;
550 +      
551 +  }
552 +  else{
553 +
554 +    properties[prop->getID()] = prop;
555 +
556 +  }
557 +    
558 + }
559 +
560 + GenericData* SimInfo::getProperty(const string& propName){
561 +
562 +  map<string, GenericData*>::iterator result;
563 +  
564 +  //string lowerCaseName = ();
565 +  
566 +  result = properties.find(propName);
567 +  
568 +  if(result != properties.end())
569 +    return (*result).second;  
570 +  else  
571 +    return NULL;  
572 + }
573 +
574 +
575 + void SimInfo::getFortranGroupArrays(SimInfo* info,
576 +                                    vector<int>& FglobalGroupMembership,
577 +                                    vector<double>& mfact){
578 +  
579 +  Molecule* myMols;
580 +  Atom** myAtoms;
581 +  int numAtom;
582 +  double mtot;
583 +  int numMol;
584 +  int numCutoffGroups;
585 +  CutoffGroup* myCutoffGroup;
586 +  vector<CutoffGroup*>::iterator iterCutoff;
587 +  Atom* cutoffAtom;
588 +  vector<Atom*>::iterator iterAtom;
589 +  int atomIndex;
590 +  double totalMass;
591 +  
592 +  mfact.clear();
593 +  FglobalGroupMembership.clear();
594 +  
595 +
596 +  // Fix the silly fortran indexing problem
597 + #ifdef IS_MPI
598 +  numAtom = mpiSim->getNAtomsGlobal();
599 + #else
600 +  numAtom = n_atoms;
601 + #endif
602 +  for (int i = 0; i < numAtom; i++)
603 +    FglobalGroupMembership.push_back(globalGroupMembership[i] + 1);
604 +  
605 +
606 +  myMols = info->molecules;
607 +  numMol = info->n_mol;
608 +  for(int i  = 0; i < numMol; i++){
609 +    numCutoffGroups = myMols[i].getNCutoffGroups();
610 +    for(myCutoffGroup =myMols[i].beginCutoffGroup(iterCutoff);
611 +        myCutoffGroup != NULL;
612 +        myCutoffGroup =myMols[i].nextCutoffGroup(iterCutoff)){
613 +
614 +      totalMass = myCutoffGroup->getMass();
615 +      
616 +      for(cutoffAtom = myCutoffGroup->beginAtom(iterAtom);
617 +          cutoffAtom != NULL;
618 +          cutoffAtom = myCutoffGroup->nextAtom(iterAtom)){
619 +        mfact.push_back(cutoffAtom->getMass()/totalMass);
620 +      }  
621 +    }
622 +  }
623 +
624 + }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines