ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/SimInfo.cpp
(Generate patch)

Comparing trunk/OOPSE/libmdtools/SimInfo.cpp (file contents):
Revision 1031 by tim, Fri Feb 6 18:58:06 2004 UTC vs.
Revision 1234 by tim, Fri Jun 4 03:15:31 2004 UTC

# Line 12 | Line 12 | using namespace std;
12  
13   #include "fortranWrappers.hpp"
14  
15 + #include "MatVec3.h"
16 +
17 + #include "ConstraintManager.hpp"
18 +
19   #ifdef IS_MPI
20   #include "mpiSimulation.hpp"
21   #endif
# Line 27 | Line 31 | SimInfo::SimInfo(){
31   SimInfo* currentInfo;
32  
33   SimInfo::SimInfo(){
34 <  excludes = NULL;
34 >
35    n_constraints = 0;
36    nZconstraints = 0;
37    n_oriented = 0;
# Line 40 | Line 44 | SimInfo::SimInfo(){
44    thermalTime = 0.0;
45    currentTime = 0.0;
46    rCut = 0.0;
47 <  ecr = 0.0;
44 <  est = 0.0;
47 >  rSw = 0.0;
48  
49    haveRcut = 0;
50 <  haveEcr = 0;
50 >  haveRsw = 0;
51    boxIsInit = 0;
52    
53    resetTime = 1e99;
54  
55 +  orthoRhombic = 0;
56    orthoTolerance = 1E-6;
57    useInitXSstate = true;
58  
# Line 60 | Line 64 | SimInfo::SimInfo(){
64    useReactionField = 0;
65    useGB = 0;
66    useEAM = 0;
67 +  useSolidThermInt = 0;
68 +  useLiquidThermInt = 0;
69  
70 +  haveCutoffGroups = false;
71 +
72 +  excludes = Exclude::Instance();
73 +
74    myConfiguration = new SimState();
75  
76    has_minimizer = false;
77    the_minimizer =NULL;
78  
79 +  ngroup = 0;
80 +
81 +  consMan = NULL;
82 +  
83    wrapMeSimInfo( this );
84   }
85  
# Line 78 | Line 92 | SimInfo::~SimInfo(){
92    
93    for(i = properties.begin(); i != properties.end(); i++)
94      delete (*i).second;
95 <    
95 >
96 >  if (!consMan)
97 >    delete consMan;  
98   }
99  
100   void SimInfo::setBox(double newBox[3]) {
# Line 181 | Line 197 | void SimInfo::calcHmatInv( void ) {
197  
198    if( oldOrtho != orthoRhombic ){
199      
200 <    if( orthoRhombic ){
200 >    if( orthoRhombic ) {
201        sprintf( painCave.errMsg,
202 <               "Hmat is switching from Non-Orthorhombic to Orthorhombic Box.\n"
203 <               "\tIf this is a bad thing, change the orthoBoxTolerance\n"
204 <               "\tvariable ( currently set to %G ).\n",
202 >               "OOPSE is switching from the default Non-Orthorhombic\n"
203 >               "\tto the faster Orthorhombic periodic boundary computations.\n"
204 >               "\tThis is usually a good thing, but if you wan't the\n"
205 >               "\tNon-Orthorhombic computations, make the orthoBoxTolerance\n"
206 >               "\tvariable ( currently set to %G ) smaller.\n",
207                 orthoTolerance);
208 +      painCave.severity = OOPSE_INFO;
209        simError();
210      }
211      else {
212        sprintf( painCave.errMsg,
213 <               "Hmat is switching from Orthorhombic to Non-Orthorhombic Box.\n"
214 <               "\tIf this is a bad thing, change the orthoBoxTolerance\n"
215 <               "\tvariable ( currently set to %G ).\n",
213 >               "OOPSE is switching from the faster Orthorhombic to the more\n"
214 >               "\tflexible Non-Orthorhombic periodic boundary computations.\n"
215 >               "\tThis is usually because the box has deformed under\n"
216 >               "\tNPTf integration. If you wan't to live on the edge with\n"
217 >               "\tthe Orthorhombic computations, make the orthoBoxTolerance\n"
218 >               "\tvariable ( currently set to %G ) larger.\n",
219                 orthoTolerance);
220 +      painCave.severity = OOPSE_WARNING;
221        simError();
199    }
200  }
201 }
202
203 double SimInfo::matDet3(double a[3][3]) {
204  int i, j, k;
205  double determinant;
206
207  determinant = 0.0;
208
209  for(i = 0; i < 3; i++) {
210    j = (i+1)%3;
211    k = (i+2)%3;
212
213    determinant += a[0][i] * (a[1][j]*a[2][k] - a[1][k]*a[2][j]);
214  }
215
216  return determinant;
217 }
218
219 void SimInfo::invertMat3(double a[3][3], double b[3][3]) {
220  
221  int  i, j, k, l, m, n;
222  double determinant;
223
224  determinant = matDet3( a );
225
226  if (determinant == 0.0) {
227    sprintf( painCave.errMsg,
228             "Can't invert a matrix with a zero determinant!\n");
229    painCave.isFatal = 1;
230    simError();
231  }
232
233  for (i=0; i < 3; i++) {
234    j = (i+1)%3;
235    k = (i+2)%3;
236    for(l = 0; l < 3; l++) {
237      m = (l+1)%3;
238      n = (l+2)%3;
239      
240      b[l][i] = (a[j][m]*a[k][n] - a[j][n]*a[k][m]) / determinant;
241    }
242  }
243 }
244
245 void SimInfo::matMul3(double a[3][3], double b[3][3], double c[3][3]) {
246  double r00, r01, r02, r10, r11, r12, r20, r21, r22;
247
248  r00 = a[0][0]*b[0][0] + a[0][1]*b[1][0] + a[0][2]*b[2][0];
249  r01 = a[0][0]*b[0][1] + a[0][1]*b[1][1] + a[0][2]*b[2][1];
250  r02 = a[0][0]*b[0][2] + a[0][1]*b[1][2] + a[0][2]*b[2][2];
251  
252  r10 = a[1][0]*b[0][0] + a[1][1]*b[1][0] + a[1][2]*b[2][0];
253  r11 = a[1][0]*b[0][1] + a[1][1]*b[1][1] + a[1][2]*b[2][1];
254  r12 = a[1][0]*b[0][2] + a[1][1]*b[1][2] + a[1][2]*b[2][2];
255  
256  r20 = a[2][0]*b[0][0] + a[2][1]*b[1][0] + a[2][2]*b[2][0];
257  r21 = a[2][0]*b[0][1] + a[2][1]*b[1][1] + a[2][2]*b[2][1];
258  r22 = a[2][0]*b[0][2] + a[2][1]*b[1][2] + a[2][2]*b[2][2];
259  
260  c[0][0] = r00; c[0][1] = r01; c[0][2] = r02;
261  c[1][0] = r10; c[1][1] = r11; c[1][2] = r12;
262  c[2][0] = r20; c[2][1] = r21; c[2][2] = r22;
263 }
264
265 void SimInfo::matVecMul3(double m[3][3], double inVec[3], double outVec[3]) {
266  double a0, a1, a2;
267
268  a0 = inVec[0];  a1 = inVec[1];  a2 = inVec[2];
269
270  outVec[0] = m[0][0]*a0 + m[0][1]*a1 + m[0][2]*a2;
271  outVec[1] = m[1][0]*a0 + m[1][1]*a1 + m[1][2]*a2;
272  outVec[2] = m[2][0]*a0 + m[2][1]*a1 + m[2][2]*a2;
273 }
274
275 void SimInfo::transposeMat3(double in[3][3], double out[3][3]) {
276  double temp[3][3];
277  int i, j;
278
279  for (i = 0; i < 3; i++) {
280    for (j = 0; j < 3; j++) {
281      temp[j][i] = in[i][j];
222      }
223    }
284  for (i = 0; i < 3; i++) {
285    for (j = 0; j < 3; j++) {
286      out[i][j] = temp[i][j];
287    }
288  }
224   }
290  
291 void SimInfo::printMat3(double A[3][3] ){
225  
293  std::cerr
294            << "[ " << A[0][0] << ", " << A[0][1] << ", " << A[0][2] << " ]\n"
295            << "[ " << A[1][0] << ", " << A[1][1] << ", " << A[1][2] << " ]\n"
296            << "[ " << A[2][0] << ", " << A[2][1] << ", " << A[2][2] << " ]\n";
297 }
298
299 void SimInfo::printMat9(double A[9] ){
300
301  std::cerr
302            << "[ " << A[0] << ", " << A[1] << ", " << A[2] << " ]\n"
303            << "[ " << A[3] << ", " << A[4] << ", " << A[5] << " ]\n"
304            << "[ " << A[6] << ", " << A[7] << ", " << A[8] << " ]\n";
305 }
306
307
308 void SimInfo::crossProduct3(double a[3],double b[3], double out[3]){
309
310      out[0] = a[1] * b[2] - a[2] * b[1];
311      out[1] = a[2] * b[0] - a[0] * b[2] ;
312      out[2] = a[0] * b[1] - a[1] * b[0];
313      
314 }
315
316 double SimInfo::dotProduct3(double a[3], double b[3]){
317  return a[0]*b[0] + a[1]*b[1]+ a[2]*b[2];
318 }
319
320 double SimInfo::length3(double a[3]){
321  return sqrt(a[0]*a[0] + a[1]*a[1] + a[2]*a[2]);
322 }
323
226   void SimInfo::calcBoxL( void ){
227  
228    double dx, dy, dz, dsq;
# Line 376 | Line 278 | double SimInfo::calcMaxCutOff(){
278    rk[0] = Hmat[0][2];
279    rk[1] = Hmat[1][2];
280    rk[2] = Hmat[2][2];
281 <  
282 <  crossProduct3(ri,rj, rij);
283 <  distXY = dotProduct3(rk,rij) / length3(rij);
281 >    
282 >  crossProduct3(ri, rj, rij);
283 >  distXY = dotProduct3(rk,rij) / norm3(rij);
284  
285    crossProduct3(rj,rk, rjk);
286 <  distYZ = dotProduct3(ri,rjk) / length3(rjk);
286 >  distYZ = dotProduct3(ri,rjk) / norm3(rjk);
287  
288    crossProduct3(rk,ri, rki);
289 <  distZX = dotProduct3(rj,rki) / length3(rki);
289 >  distZX = dotProduct3(rj,rki) / norm3(rki);
290  
291    minDist = min(min(distXY, distYZ), distZX);
292    return minDist/2;
# Line 432 | Line 334 | int SimInfo::getNDF(){
334  
335   int SimInfo::getNDF(){
336    int ndf_local;
337 +
338 +  ndf_local = 0;
339    
340 <  ndf_local = 3 * n_atoms + 3 * n_oriented - n_constraints;
340 >  for(int i = 0; i < integrableObjects.size(); i++){
341 >    ndf_local += 3;
342 >    if (integrableObjects[i]->isDirectional()) {
343 >      if (integrableObjects[i]->isLinear())
344 >        ndf_local += 2;
345 >      else
346 >        ndf_local += 3;
347 >    }
348 >  }
349 >
350 >  // n_constraints is local, so subtract them on each processor:
351 >
352 >  ndf_local -= n_constraints;
353  
354   #ifdef IS_MPI
355    MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
# Line 441 | Line 357 | int SimInfo::getNDF(){
357    ndf = ndf_local;
358   #endif
359  
360 +  // nZconstraints is global, as are the 3 COM translations for the
361 +  // entire system:
362 +
363    ndf = ndf - 3 - nZconstraints;
364  
365    return ndf;
# Line 450 | Line 369 | int SimInfo::getNDFraw() {
369    int ndfRaw_local;
370  
371    // Raw degrees of freedom that we have to set
372 <  ndfRaw_local = 3 * n_atoms + 3 * n_oriented;
373 <  
372 >  ndfRaw_local = 0;
373 >
374 >  for(int i = 0; i < integrableObjects.size(); i++){
375 >    ndfRaw_local += 3;
376 >    if (integrableObjects[i]->isDirectional()) {
377 >       if (integrableObjects[i]->isLinear())
378 >        ndfRaw_local += 2;
379 >      else
380 >        ndfRaw_local += 3;
381 >    }
382 >  }
383 >    
384   #ifdef IS_MPI
385    MPI_Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
386   #else
# Line 464 | Line 393 | int SimInfo::getNDFtranslational() {
393   int SimInfo::getNDFtranslational() {
394    int ndfTrans_local;
395  
396 <  ndfTrans_local = 3 * n_atoms - n_constraints;
396 >  ndfTrans_local = 3 * integrableObjects.size() - n_constraints;
397  
398 +
399   #ifdef IS_MPI
400    MPI_Allreduce(&ndfTrans_local,&ndfTrans,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
401   #else
# Line 477 | Line 407 | int SimInfo::getNDFtranslational() {
407    return ndfTrans;
408   }
409  
410 + int SimInfo::getTotIntegrableObjects() {
411 +  int nObjs_local;
412 +  int nObjs;
413 +
414 +  nObjs_local =  integrableObjects.size();
415 +
416 +
417 + #ifdef IS_MPI
418 +  MPI_Allreduce(&nObjs_local,&nObjs,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
419 + #else
420 +  nObjs = nObjs_local;
421 + #endif
422 +
423 +
424 +  return nObjs;
425 + }
426 +
427   void SimInfo::refreshSim(){
428  
429    simtype fInfo;
# Line 503 | Line 450 | void SimInfo::refreshSim(){
450    fInfo.SIM_uses_GB = useGB;
451    fInfo.SIM_uses_EAM = useEAM;
452  
453 <  excl = Exclude::getArray();
454 <
453 >  n_exclude = excludes->getSize();
454 >  excl = excludes->getFortranArray();
455 >  
456   #ifdef IS_MPI
457 <  n_global = mpiSim->getTotAtoms();
457 >  n_global = mpiSim->getNAtomsGlobal();
458   #else
459    n_global = n_atoms;
460   #endif
461 <
461 >  
462    isError = 0;
463 <
463 >  
464 >  getFortranGroupArrays(this, FglobalGroupMembership, mfact);
465 >  //it may not be a good idea to pass the address of first element in vector
466 >  //since c++ standard does not require vector to be stored continuously in meomory
467 >  //Most of the compilers will organize the memory of vector continuously
468    setFsimulation( &fInfo, &n_global, &n_atoms, identArray, &n_exclude, excl,
469 <                  &nGlobalExcludes, globalExcludes, molMembershipArray,
470 <                  &isError );
469 >                  &nGlobalExcludes, globalExcludes, molMembershipArray,
470 >                  &mfact[0], &ngroup, &FglobalGroupMembership[0], &isError);
471  
472    if( isError ){
473 <
473 >    
474      sprintf( painCave.errMsg,
475 <             "There was an error setting the simulation information in fortran.\n" );
475 >             "There was an error setting the simulation information in fortran.\n" );
476      painCave.isFatal = 1;
477 +    painCave.severity = OOPSE_ERROR;
478      simError();
479    }
480 <
480 >  
481   #ifdef IS_MPI
482    sprintf( checkPointMsg,
483             "succesfully sent the simulation information to fortran.\n");
484    MPIcheckPoint();
485   #endif // is_mpi
486 <
486 >  
487    this->ndf = this->getNDF();
488    this->ndfRaw = this->getNDFraw();
489    this->ndfTrans = this->getNDFtranslational();
490   }
491  
492   void SimInfo::setDefaultRcut( double theRcut ){
493 <
493 >  
494    haveRcut = 1;
495    rCut = theRcut;
496 <
544 <  ( rCut > ecr )? rList = rCut + 1.0: rList = ecr + 1.0;
545 <
546 <  notifyFortranCutOffs( &rCut, &rList, &ecr, &est );
547 < }
548 <
549 < void SimInfo::setDefaultEcr( double theEcr ){
550 <
551 <  haveEcr = 1;
552 <  ecr = theEcr;
496 >  rList = rCut + 1.0;
497    
498 <  ( rCut > ecr )? rList = rCut + 1.0: rList = ecr + 1.0;
555 <
556 <  notifyFortranCutOffs( &rCut, &rList, &ecr, &est );
498 >  notifyFortranCutOffs( &rCut, &rSw, &rList );
499   }
500  
501 < void SimInfo::setDefaultEcr( double theEcr, double theEst ){
501 > void SimInfo::setDefaultRcut( double theRcut, double theRsw ){
502  
503 <  est = theEst;
504 <  setDefaultEcr( theEcr );
503 >  rSw = theRsw;
504 >  setDefaultRcut( theRcut );
505   }
506  
507  
# Line 571 | Line 513 | void SimInfo::checkCutOffs( void ){
513      
514      if( rCut > maxCutoff ){
515        sprintf( painCave.errMsg,
516 <               "Box size is too small for the long range cutoff radius, "
517 <               "%G, at time %G\n"
516 >               "cutoffRadius is too large for the current periodic box.\n"
517 >               "\tCurrent Value of cutoffRadius = %G at time %G\n "
518 >               "\tThis is larger than half of at least one of the\n"
519 >               "\tperiodic box vectors.  Right now, the Box matrix is:\n"
520 >               "\n"
521                 "\t[ %G %G %G ]\n"
522                 "\t[ %G %G %G ]\n"
523                 "\t[ %G %G %G ]\n",
# Line 580 | Line 525 | void SimInfo::checkCutOffs( void ){
525                 Hmat[0][0], Hmat[0][1], Hmat[0][2],
526                 Hmat[1][0], Hmat[1][1], Hmat[1][2],
527                 Hmat[2][0], Hmat[2][1], Hmat[2][2]);
528 +      painCave.severity = OOPSE_ERROR;
529        painCave.isFatal = 1;
530        simError();
531 <    }
586 <    
587 <    if( haveEcr ){
588 <      if( ecr > maxCutoff ){
589 <        sprintf( painCave.errMsg,
590 <                 "Box size is too small for the electrostatic cutoff radius, "
591 <                 "%G, at time %G\n"
592 <                 "\t[ %G %G %G ]\n"
593 <                 "\t[ %G %G %G ]\n"
594 <                 "\t[ %G %G %G ]\n",
595 <                 ecr, currentTime,
596 <                 Hmat[0][0], Hmat[0][1], Hmat[0][2],
597 <                 Hmat[1][0], Hmat[1][1], Hmat[1][2],
598 <                 Hmat[2][0], Hmat[2][1], Hmat[2][2]);
599 <        painCave.isFatal = 1;
600 <        simError();
601 <      }
602 <    }
531 >    }    
532    } else {
533      // initialize this stuff before using it, OK?
534      sprintf( painCave.errMsg,
535               "Trying to check cutoffs without a box.\n"
536               "\tOOPSE should have better programmers than that.\n" );
537 +    painCave.severity = OOPSE_ERROR;
538      painCave.isFatal = 1;
539      simError();      
540    }
# Line 647 | Line 577 | GenericData* SimInfo::getProperty(const string& propNa
577      return NULL;  
578   }
579  
650 vector<GenericData*> SimInfo::getProperties(){
580  
581 <  vector<GenericData*> result;
582 <  map<string, GenericData*>::iterator i;
581 > void SimInfo::getFortranGroupArrays(SimInfo* info,
582 >                                    vector<int>& FglobalGroupMembership,
583 >                                    vector<double>& mfact){
584    
585 <  for(i = properties.begin(); i != properties.end(); i++)
586 <    result.push_back((*i).second);
587 <    
588 <  return result;
589 < }
585 >  Molecule* myMols;
586 >  Atom** myAtoms;
587 >  int numAtom;
588 >  double mtot;
589 >  int numMol;
590 >  int numCutoffGroups;
591 >  CutoffGroup* myCutoffGroup;
592 >  vector<CutoffGroup*>::iterator iterCutoff;
593 >  Atom* cutoffAtom;
594 >  vector<Atom*>::iterator iterAtom;
595 >  int atomIndex;
596 >  double totalMass;
597 >  
598 >  mfact.clear();
599 >  FglobalGroupMembership.clear();
600 >  
601  
602 < double SimInfo::matTrace3(double m[3][3]){
603 <  double trace;
604 <  trace = m[0][0] + m[1][1] + m[2][2];
602 >  // Fix the silly fortran indexing problem
603 > #ifdef IS_MPI
604 >  numAtom = mpiSim->getNAtomsGlobal();
605 > #else
606 >  numAtom = n_atoms;
607 > #endif
608 >  for (int i = 0; i < numAtom; i++)
609 >    FglobalGroupMembership.push_back(globalGroupMembership[i] + 1);
610 >  
611  
612 <  return trace;
612 >  myMols = info->molecules;
613 >  numMol = info->n_mol;
614 >  for(int i  = 0; i < numMol; i++){
615 >    numCutoffGroups = myMols[i].getNCutoffGroups();
616 >    for(myCutoffGroup =myMols[i].beginCutoffGroup(iterCutoff);
617 >        myCutoffGroup != NULL;
618 >        myCutoffGroup =myMols[i].nextCutoffGroup(iterCutoff)){
619 >
620 >      totalMass = myCutoffGroup->getMass();
621 >      
622 >      for(cutoffAtom = myCutoffGroup->beginAtom(iterAtom);
623 >          cutoffAtom != NULL;
624 >          cutoffAtom = myCutoffGroup->nextAtom(iterAtom)){
625 >        mfact.push_back(cutoffAtom->getMass()/totalMass);
626 >      }  
627 >    }
628 >  }
629 >
630   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines