ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/SimInfo.cpp
(Generate patch)

Comparing trunk/OOPSE/libmdtools/SimInfo.cpp (file contents):
Revision 458 by gezelter, Fri Apr 4 19:47:19 2003 UTC vs.
Revision 1163 by gezelter, Wed May 12 14:30:12 2004 UTC

# Line 1 | Line 1
1 < #include <cstdlib>
2 < #include <cstring>
1 > #include <stdlib.h>
2 > #include <string.h>
3 > #include <math.h>
4  
5 + #include <iostream>
6 + using namespace std;
7  
8   #include "SimInfo.hpp"
9   #define __C
# Line 9 | Line 12
12  
13   #include "fortranWrappers.hpp"
14  
15 + #include "MatVec3.h"
16 +
17 + #ifdef IS_MPI
18 + #include "mpiSimulation.hpp"
19 + #endif
20 +
21 + inline double roundMe( double x ){
22 +  return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 );
23 + }
24 +          
25 + inline double min( double a, double b ){
26 +  return (a < b ) ? a : b;
27 + }
28 +
29   SimInfo* currentInfo;
30  
31   SimInfo::SimInfo(){
32 <  excludes = NULL;
32 >
33    n_constraints = 0;
34 +  nZconstraints = 0;
35    n_oriented = 0;
36    n_dipoles = 0;
37    ndf = 0;
38    ndfRaw = 0;
39 +  nZconstraints = 0;
40    the_integrator = NULL;
41    setTemp = 0;
42    thermalTime = 0.0;
43 +  currentTime = 0.0;
44    rCut = 0.0;
45 +  rSw = 0.0;
46  
47 +  haveRcut = 0;
48 +  haveRsw = 0;
49 +  boxIsInit = 0;
50 +  
51 +  resetTime = 1e99;
52 +
53 +  orthoRhombic = 0;
54 +  orthoTolerance = 1E-6;
55 +  useInitXSstate = true;
56 +
57    usePBC = 0;
58    useLJ = 0;
59    useSticky = 0;
60 <  useDipole = 0;
60 >  useCharges = 0;
61 >  useDipoles = 0;
62    useReactionField = 0;
63    useGB = 0;
64    useEAM = 0;
65 +  
66 +  haveCutoffGroups = false;
67  
68 +  excludes = Exclude::Instance();
69 +
70 +  myConfiguration = new SimState();
71 +
72 +  has_minimizer = false;
73 +  the_minimizer =NULL;
74 +
75 +  ngroup = 0;
76 +
77    wrapMeSimInfo( this );
78   }
79  
80 +
81 + SimInfo::~SimInfo(){
82 +
83 +  delete myConfiguration;
84 +
85 +  map<string, GenericData*>::iterator i;
86 +  
87 +  for(i = properties.begin(); i != properties.end(); i++)
88 +    delete (*i).second;
89 +  
90 + }
91 +
92   void SimInfo::setBox(double newBox[3]) {
93 <  box_x = newBox[0];
94 <  box_y = newBox[1];
95 <  box_z = newBox[2];
96 <  setFortranBoxSize(newBox);
93 >  
94 >  int i, j;
95 >  double tempMat[3][3];
96 >
97 >  for(i=0; i<3; i++)
98 >    for (j=0; j<3; j++) tempMat[i][j] = 0.0;;
99 >
100 >  tempMat[0][0] = newBox[0];
101 >  tempMat[1][1] = newBox[1];
102 >  tempMat[2][2] = newBox[2];
103 >
104 >  setBoxM( tempMat );
105 >
106   }
107  
108 < void SimInfo::getBox(double theBox[3]) {
109 <  theBox[0] = box_x;
110 <  theBox[1] = box_y;
111 <  theBox[2] = box_z;
108 > void SimInfo::setBoxM( double theBox[3][3] ){
109 >  
110 >  int i, j;
111 >  double FortranHmat[9]; // to preserve compatibility with Fortran the
112 >                         // ordering in the array is as follows:
113 >                         // [ 0 3 6 ]
114 >                         // [ 1 4 7 ]
115 >                         // [ 2 5 8 ]
116 >  double FortranHmatInv[9]; // the inverted Hmat (for Fortran);
117 >
118 >  if( !boxIsInit ) boxIsInit = 1;
119 >
120 >  for(i=0; i < 3; i++)
121 >    for (j=0; j < 3; j++) Hmat[i][j] = theBox[i][j];
122 >  
123 >  calcBoxL();
124 >  calcHmatInv();
125 >
126 >  for(i=0; i < 3; i++) {
127 >    for (j=0; j < 3; j++) {
128 >      FortranHmat[3*j + i] = Hmat[i][j];
129 >      FortranHmatInv[3*j + i] = HmatInv[i][j];
130 >    }
131 >  }
132 >
133 >  setFortranBoxSize(FortranHmat, FortranHmatInv, &orthoRhombic);
134 >
135   }
136  
137 +
138 + void SimInfo::getBoxM (double theBox[3][3]) {
139 +
140 +  int i, j;
141 +  for(i=0; i<3; i++)
142 +    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j];
143 + }
144 +
145 +
146 + void SimInfo::scaleBox(double scale) {
147 +  double theBox[3][3];
148 +  int i, j;
149 +
150 +  // cerr << "Scaling box by " << scale << "\n";
151 +
152 +  for(i=0; i<3; i++)
153 +    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]*scale;
154 +
155 +  setBoxM(theBox);
156 +
157 + }
158 +
159 + void SimInfo::calcHmatInv( void ) {
160 +  
161 +  int oldOrtho;
162 +  int i,j;
163 +  double smallDiag;
164 +  double tol;
165 +  double sanity[3][3];
166 +
167 +  invertMat3( Hmat, HmatInv );
168 +
169 +  // check to see if Hmat is orthorhombic
170 +  
171 +  oldOrtho = orthoRhombic;
172 +
173 +  smallDiag = fabs(Hmat[0][0]);
174 +  if(smallDiag > fabs(Hmat[1][1])) smallDiag = fabs(Hmat[1][1]);
175 +  if(smallDiag > fabs(Hmat[2][2])) smallDiag = fabs(Hmat[2][2]);
176 +  tol = smallDiag * orthoTolerance;
177 +
178 +  orthoRhombic = 1;
179 +  
180 +  for (i = 0; i < 3; i++ ) {
181 +    for (j = 0 ; j < 3; j++) {
182 +      if (i != j) {
183 +        if (orthoRhombic) {
184 +          if ( fabs(Hmat[i][j]) >= tol) orthoRhombic = 0;
185 +        }        
186 +      }
187 +    }
188 +  }
189 +
190 +  if( oldOrtho != orthoRhombic ){
191 +    
192 +    if( orthoRhombic ){
193 +      sprintf( painCave.errMsg,
194 +               "OOPSE is switching from the default Non-Orthorhombic\n"
195 +               "\tto the faster Orthorhombic periodic boundary computations.\n"
196 +               "\tThis is usually a good thing, but if you wan't the\n"
197 +               "\tNon-Orthorhombic computations, make the orthoBoxTolerance\n"
198 +               "\tvariable ( currently set to %G ) smaller.\n",
199 +               orthoTolerance);
200 +      simError();
201 +    }
202 +    else {
203 +      sprintf( painCave.errMsg,
204 +               "OOPSE is switching from the faster Orthorhombic to the more\n"
205 +               "\tflexible Non-Orthorhombic periodic boundary computations.\n"
206 +               "\tThis is usually because the box has deformed under\n"
207 +               "\tNPTf integration. If you wan't to live on the edge with\n"
208 +               "\tthe Orthorhombic computations, make the orthoBoxTolerance\n"
209 +               "\tvariable ( currently set to %G ) larger.\n",
210 +               orthoTolerance);
211 +      simError();
212 +    }
213 +  }
214 + }
215 +
216 + void SimInfo::calcBoxL( void ){
217 +
218 +  double dx, dy, dz, dsq;
219 +
220 +  // boxVol = Determinant of Hmat
221 +
222 +  boxVol = matDet3( Hmat );
223 +
224 +  // boxLx
225 +  
226 +  dx = Hmat[0][0]; dy = Hmat[1][0]; dz = Hmat[2][0];
227 +  dsq = dx*dx + dy*dy + dz*dz;
228 +  boxL[0] = sqrt( dsq );
229 +  //maxCutoff = 0.5 * boxL[0];
230 +
231 +  // boxLy
232 +  
233 +  dx = Hmat[0][1]; dy = Hmat[1][1]; dz = Hmat[2][1];
234 +  dsq = dx*dx + dy*dy + dz*dz;
235 +  boxL[1] = sqrt( dsq );
236 +  //if( (0.5 * boxL[1]) < maxCutoff ) maxCutoff = 0.5 * boxL[1];
237 +
238 +
239 +  // boxLz
240 +  
241 +  dx = Hmat[0][2]; dy = Hmat[1][2]; dz = Hmat[2][2];
242 +  dsq = dx*dx + dy*dy + dz*dz;
243 +  boxL[2] = sqrt( dsq );
244 +  //if( (0.5 * boxL[2]) < maxCutoff ) maxCutoff = 0.5 * boxL[2];
245 +
246 +  //calculate the max cutoff
247 +  maxCutoff =  calcMaxCutOff();
248 +  
249 +  checkCutOffs();
250 +
251 + }
252 +
253 +
254 + double SimInfo::calcMaxCutOff(){
255 +
256 +  double ri[3], rj[3], rk[3];
257 +  double rij[3], rjk[3], rki[3];
258 +  double minDist;
259 +
260 +  ri[0] = Hmat[0][0];
261 +  ri[1] = Hmat[1][0];
262 +  ri[2] = Hmat[2][0];
263 +
264 +  rj[0] = Hmat[0][1];
265 +  rj[1] = Hmat[1][1];
266 +  rj[2] = Hmat[2][1];
267 +
268 +  rk[0] = Hmat[0][2];
269 +  rk[1] = Hmat[1][2];
270 +  rk[2] = Hmat[2][2];
271 +    
272 +  crossProduct3(ri, rj, rij);
273 +  distXY = dotProduct3(rk,rij) / norm3(rij);
274 +
275 +  crossProduct3(rj,rk, rjk);
276 +  distYZ = dotProduct3(ri,rjk) / norm3(rjk);
277 +
278 +  crossProduct3(rk,ri, rki);
279 +  distZX = dotProduct3(rj,rki) / norm3(rki);
280 +
281 +  minDist = min(min(distXY, distYZ), distZX);
282 +  return minDist/2;
283 +  
284 + }
285 +
286 + void SimInfo::wrapVector( double thePos[3] ){
287 +
288 +  int i;
289 +  double scaled[3];
290 +
291 +  if( !orthoRhombic ){
292 +    // calc the scaled coordinates.
293 +  
294 +
295 +    matVecMul3(HmatInv, thePos, scaled);
296 +    
297 +    for(i=0; i<3; i++)
298 +      scaled[i] -= roundMe(scaled[i]);
299 +    
300 +    // calc the wrapped real coordinates from the wrapped scaled coordinates
301 +    
302 +    matVecMul3(Hmat, scaled, thePos);
303 +
304 +  }
305 +  else{
306 +    // calc the scaled coordinates.
307 +    
308 +    for(i=0; i<3; i++)
309 +      scaled[i] = thePos[i]*HmatInv[i][i];
310 +    
311 +    // wrap the scaled coordinates
312 +    
313 +    for(i=0; i<3; i++)
314 +      scaled[i] -= roundMe(scaled[i]);
315 +    
316 +    // calc the wrapped real coordinates from the wrapped scaled coordinates
317 +    
318 +    for(i=0; i<3; i++)
319 +      thePos[i] = scaled[i]*Hmat[i][i];
320 +  }
321 +    
322 + }
323 +
324 +
325   int SimInfo::getNDF(){
326 <  int ndf_local, ndf;
326 >  int ndf_local;
327 >
328 >  ndf_local = 0;
329    
330 <  ndf_local = 3 * n_atoms + 3 * n_oriented - n_constraints;
330 >  for(int i = 0; i < integrableObjects.size(); i++){
331 >    ndf_local += 3;
332 >    if (integrableObjects[i]->isDirectional()) {
333 >      if (integrableObjects[i]->isLinear())
334 >        ndf_local += 2;
335 >      else
336 >        ndf_local += 3;
337 >    }
338 >  }
339  
340 +  // n_constraints is local, so subtract them on each processor:
341 +
342 +  ndf_local -= n_constraints;
343 +
344   #ifdef IS_MPI
345    MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
346   #else
347    ndf = ndf_local;
348   #endif
349  
350 <  ndf = ndf - 3;
350 >  // nZconstraints is global, as are the 3 COM translations for the
351 >  // entire system:
352  
353 +  ndf = ndf - 3 - nZconstraints;
354 +
355    return ndf;
356   }
357  
358   int SimInfo::getNDFraw() {
359 <  int ndfRaw_local, ndfRaw;
359 >  int ndfRaw_local;
360  
361    // Raw degrees of freedom that we have to set
362 <  ndfRaw_local = 3 * n_atoms + 3 * n_oriented;
363 <  
362 >  ndfRaw_local = 0;
363 >
364 >  for(int i = 0; i < integrableObjects.size(); i++){
365 >    ndfRaw_local += 3;
366 >    if (integrableObjects[i]->isDirectional()) {
367 >       if (integrableObjects[i]->isLinear())
368 >        ndfRaw_local += 2;
369 >      else
370 >        ndfRaw_local += 3;
371 >    }
372 >  }
373 >    
374   #ifdef IS_MPI
375    MPI_Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
376   #else
# Line 77 | Line 379 | int SimInfo::getNDFraw() {
379  
380    return ndfRaw;
381   }
382 <
382 >
383 > int SimInfo::getNDFtranslational() {
384 >  int ndfTrans_local;
385 >
386 >  ndfTrans_local = 3 * integrableObjects.size() - n_constraints;
387 >
388 >
389 > #ifdef IS_MPI
390 >  MPI_Allreduce(&ndfTrans_local,&ndfTrans,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
391 > #else
392 >  ndfTrans = ndfTrans_local;
393 > #endif
394 >
395 >  ndfTrans = ndfTrans - 3 - nZconstraints;
396 >
397 >  return ndfTrans;
398 > }
399 >
400 > int SimInfo::getTotIntegrableObjects() {
401 >  int nObjs_local;
402 >  int nObjs;
403 >
404 >  nObjs_local =  integrableObjects.size();
405 >
406 >
407 > #ifdef IS_MPI
408 >  MPI_Allreduce(&nObjs_local,&nObjs,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
409 > #else
410 >  nObjs = nObjs_local;
411 > #endif
412 >
413 >
414 >  return nObjs;
415 > }
416 >
417   void SimInfo::refreshSim(){
418  
419    simtype fInfo;
420    int isError;
421 +  int n_global;
422    int* excl;
423  
424 <  fInfo.box[0] = box_x;
88 <  fInfo.box[1] = box_y;
89 <  fInfo.box[2] = box_z;
424 >  fInfo.dielect = 0.0;
425  
426 <  fInfo.rlist = rList;
427 <  fInfo.rcut = rCut;
428 <  fInfo.rrf = ecr;
94 <  fInfo.rt = ecr - est;
95 <  fInfo.dielect = dielectric;
426 >  if( useDipoles ){
427 >    if( useReactionField )fInfo.dielect = dielectric;
428 >  }
429  
430    fInfo.SIM_uses_PBC = usePBC;
431    //fInfo.SIM_uses_LJ = 0;
432    fInfo.SIM_uses_LJ = useLJ;
433    fInfo.SIM_uses_sticky = useSticky;
434    //fInfo.SIM_uses_sticky = 0;
435 <  fInfo.SIM_uses_dipoles = useDipole;
435 >  fInfo.SIM_uses_charges = useCharges;
436 >  fInfo.SIM_uses_dipoles = useDipoles;
437    //fInfo.SIM_uses_dipoles = 0;
438 <  //fInfo.SIM_uses_RF = useReactionField;
439 <  fInfo.SIM_uses_RF = 0;
438 >  fInfo.SIM_uses_RF = useReactionField;
439 >  //fInfo.SIM_uses_RF = 0;
440    fInfo.SIM_uses_GB = useGB;
441    fInfo.SIM_uses_EAM = useEAM;
442  
443 <  excl = Exclude::getArray();
444 <
443 >  n_exclude = excludes->getSize();
444 >  excl = excludes->getFortranArray();
445 >  
446 > #ifdef IS_MPI
447 >  n_global = mpiSim->getTotAtoms();
448 > #else
449 >  n_global = n_atoms;
450 > #endif
451 >  
452    isError = 0;
453 <
454 < //   fInfo;
455 < //   n_atoms;
456 < //   identArray;
457 < //   n_exclude;
458 < //   excludes;
459 < //   nGlobalExcludes;
460 < //   globalExcludes;
461 < //   isError;
121 <
122 <  setFsimulation( &fInfo, &n_atoms, identArray, &n_exclude, excl,
123 <                  &nGlobalExcludes, globalExcludes, &isError );
124 <
453 >  
454 >  getFortranGroupArray(this, mfact, ngroup, groupList, groupStart);
455 >  //it may not be a good idea to pass the address of first element in vector
456 >  //since c++ standard does not require vector to be stored continously in meomory
457 >  //Most of the compilers will organize the memory of vector continously
458 >  setFsimulation( &fInfo, &n_global, &n_atoms, identArray, &n_exclude, excl,
459 >                  &nGlobalExcludes, globalExcludes, molMembershipArray,
460 >                  &mfact[0], &ngroup, &groupList[0], &groupStart[0], &isError);
461 >  
462    if( isError ){
463 <
463 >    
464      sprintf( painCave.errMsg,
465 <             "There was an error setting the simulation information in fortran.\n" );
465 >             "There was an error setting the simulation information in fortran.\n" );
466      painCave.isFatal = 1;
467      simError();
468    }
469 <
469 >  
470   #ifdef IS_MPI
471    sprintf( checkPointMsg,
472             "succesfully sent the simulation information to fortran.\n");
473    MPIcheckPoint();
474   #endif // is_mpi
475 +  
476 +  this->ndf = this->getNDF();
477 +  this->ndfRaw = this->getNDFraw();
478 +  this->ndfTrans = this->getNDFtranslational();
479 + }
480  
481 <  ndf = this->getNDF();
482 <  ndfRaw = this->getNDFraw();
481 > void SimInfo::setDefaultRcut( double theRcut ){
482 >  
483 >  haveRcut = 1;
484 >  rCut = theRcut;
485 >  rList = rCut + 1.0;
486 >  
487 >  notifyFortranCutOffs( &rCut, &rSw, &rList );
488 > }
489  
490 + void SimInfo::setDefaultRcut( double theRcut, double theRsw ){
491 +
492 +  rSw = theRsw;
493 +  setDefaultRcut( theRcut );
494   }
495  
496 +
497 + void SimInfo::checkCutOffs( void ){
498 +  
499 +  if( boxIsInit ){
500 +    
501 +    //we need to check cutOffs against the box
502 +    
503 +    if( rCut > maxCutoff ){
504 +      sprintf( painCave.errMsg,
505 +               "cutoffRadius is too large for the current periodic box.\n"
506 +               "\tCurrent Value of cutoffRadius = %G at time %G\n "
507 +               "\tThis is larger than half of at least one of the\n"
508 +               "\tperiodic box vectors.  Right now, the Box matrix is:\n"
509 +               "\n"
510 +               "\t[ %G %G %G ]\n"
511 +               "\t[ %G %G %G ]\n"
512 +               "\t[ %G %G %G ]\n",
513 +               rCut, currentTime,
514 +               Hmat[0][0], Hmat[0][1], Hmat[0][2],
515 +               Hmat[1][0], Hmat[1][1], Hmat[1][2],
516 +               Hmat[2][0], Hmat[2][1], Hmat[2][2]);
517 +      painCave.isFatal = 1;
518 +      simError();
519 +    }    
520 +  } else {
521 +    // initialize this stuff before using it, OK?
522 +    sprintf( painCave.errMsg,
523 +             "Trying to check cutoffs without a box.\n"
524 +             "\tOOPSE should have better programmers than that.\n" );
525 +    painCave.isFatal = 1;
526 +    simError();      
527 +  }
528 +  
529 + }
530 +
531 + void SimInfo::addProperty(GenericData* prop){
532 +
533 +  map<string, GenericData*>::iterator result;
534 +  result = properties.find(prop->getID());
535 +  
536 +  //we can't simply use  properties[prop->getID()] = prop,
537 +  //it will cause memory leak if we already contain a propery which has the same name of prop
538 +  
539 +  if(result != properties.end()){
540 +    
541 +    delete (*result).second;
542 +    (*result).second = prop;
543 +      
544 +  }
545 +  else{
546 +
547 +    properties[prop->getID()] = prop;
548 +
549 +  }
550 +    
551 + }
552 +
553 + GenericData* SimInfo::getProperty(const string& propName){
554 +
555 +  map<string, GenericData*>::iterator result;
556 +  
557 +  //string lowerCaseName = ();
558 +  
559 +  result = properties.find(propName);
560 +  
561 +  if(result != properties.end())
562 +    return (*result).second;  
563 +  else  
564 +    return NULL;  
565 + }
566 +
567 +
568 + void getFortranGroupArray(SimInfo* info, vector<double>& mfact, int& ngroup,
569 +                          vector<int>& groupList, vector<int>& groupStart){
570 +  Molecule* myMols;
571 +  Atom** myAtoms;
572 +  int numAtom;
573 +  int curIndex;
574 +  double mtot;
575 +  int numMol;
576 +  int numCutoffGroups;
577 +  CutoffGroup* myCutoffGroup;
578 +  vector<CutoffGroup*>::iterator iterCutoff;
579 +  Atom* cutoffAtom;
580 +  vector<Atom*>::iterator iterAtom;
581 +  int atomIndex;
582 +  double totalMass;
583 +  
584 +  mfact.clear();
585 +  groupList.clear();
586 +  groupStart.clear();
587 +  
588 +  //Be careful, fortran array begin at 1
589 +  curIndex = 1;
590 +
591 +  myMols = info->molecules;
592 +  numMol = info->n_mol;
593 +  for(int i  = 0; i < numMol; i++){
594 +    numAtom = myMols[i].getNAtoms();
595 +    myAtoms = myMols[i].getMyAtoms();
596 +
597 +    
598 +    for(int j = 0; j < numAtom; j++){
599 +
600 +    
601 + #ifdef IS_MPI      
602 +      atomIndex = myAtoms[j]->getGlobalIndex();
603 + #else
604 +      atomIndex = myAtoms[j]->getIndex();
605 + #endif
606 +
607 +      if(myMols[i].belongToCutoffGroup(atomIndex))
608 +        continue;
609 +      else{
610 +        // this is a fraction of the cutoff group's mass, not the mass itself!
611 +        mfact.push_back(1.0);
612 +        groupList.push_back(myAtoms[j]->getIndex() + 1);
613 +        groupStart.push_back(curIndex++);  
614 +      }
615 +    }
616 +      
617 +    numCutoffGroups = myMols[i].getNCutoffGroups();
618 +    for(myCutoffGroup =myMols[i].beginCutoffGroup(iterCutoff); myCutoffGroup != NULL;
619 +                                                  myCutoffGroup =myMols[i].nextCutoffGroup(iterCutoff)){
620 +
621 +      totalMass = myCutoffGroup->getMass();
622 +      
623 +      for(cutoffAtom = myCutoffGroup->beginAtom(iterAtom); cutoffAtom != NULL;
624 +                                           cutoffAtom = myCutoffGroup->nextAtom(iterAtom)){
625 +        mfact.push_back(cutoffAtom->getMass()/totalMass);
626 +        groupList.push_back(cutoffAtom->getIndex() + 1);
627 +      }  
628 +                              
629 +      groupStart.push_back(curIndex);
630 +      curIndex += myCutoffGroup->getNumAtom();
631 +
632 +    }//end for(myCutoffGroup =myMols[i].beginCutoffGroup(iterCutoff))
633 +
634 +  }//end for(int i  = 0; i < numMol; i++)
635 +  
636 +  ngroup = groupStart.size();
637 + }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines