1 |
#include <stdlib.h> |
2 |
#include <string.h> |
3 |
#include <math.h> |
4 |
|
5 |
#include <iostream> |
6 |
using namespace std; |
7 |
|
8 |
#include "SimInfo.hpp" |
9 |
#define __C |
10 |
#include "fSimulation.h" |
11 |
#include "simError.h" |
12 |
|
13 |
#include "fortranWrappers.hpp" |
14 |
|
15 |
#include "MatVec3.h" |
16 |
|
17 |
#ifdef IS_MPI |
18 |
#include "mpiSimulation.hpp" |
19 |
#endif |
20 |
|
21 |
inline double roundMe( double x ){ |
22 |
return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 ); |
23 |
} |
24 |
|
25 |
inline double min( double a, double b ){ |
26 |
return (a < b ) ? a : b; |
27 |
} |
28 |
|
29 |
SimInfo* currentInfo; |
30 |
|
31 |
SimInfo::SimInfo(){ |
32 |
|
33 |
n_constraints = 0; |
34 |
nZconstraints = 0; |
35 |
n_oriented = 0; |
36 |
n_dipoles = 0; |
37 |
ndf = 0; |
38 |
ndfRaw = 0; |
39 |
nZconstraints = 0; |
40 |
the_integrator = NULL; |
41 |
setTemp = 0; |
42 |
thermalTime = 0.0; |
43 |
currentTime = 0.0; |
44 |
rCut = 0.0; |
45 |
rSw = 0.0; |
46 |
|
47 |
haveRcut = 0; |
48 |
haveRsw = 0; |
49 |
boxIsInit = 0; |
50 |
|
51 |
resetTime = 1e99; |
52 |
|
53 |
orthoRhombic = 0; |
54 |
orthoTolerance = 1E-6; |
55 |
useInitXSstate = true; |
56 |
|
57 |
usePBC = 0; |
58 |
useLJ = 0; |
59 |
useSticky = 0; |
60 |
useCharges = 0; |
61 |
useDipoles = 0; |
62 |
useReactionField = 0; |
63 |
useGB = 0; |
64 |
useEAM = 0; |
65 |
useSolidThermInt = 0; |
66 |
useLiquidThermInt = 0; |
67 |
|
68 |
haveCutoffGroups = false; |
69 |
|
70 |
excludes = Exclude::Instance(); |
71 |
|
72 |
myConfiguration = new SimState(); |
73 |
|
74 |
has_minimizer = false; |
75 |
the_minimizer =NULL; |
76 |
|
77 |
ngroup = 0; |
78 |
|
79 |
wrapMeSimInfo( this ); |
80 |
} |
81 |
|
82 |
|
83 |
SimInfo::~SimInfo(){ |
84 |
|
85 |
delete myConfiguration; |
86 |
|
87 |
map<string, GenericData*>::iterator i; |
88 |
|
89 |
for(i = properties.begin(); i != properties.end(); i++) |
90 |
delete (*i).second; |
91 |
|
92 |
} |
93 |
|
94 |
void SimInfo::setBox(double newBox[3]) { |
95 |
|
96 |
int i, j; |
97 |
double tempMat[3][3]; |
98 |
|
99 |
for(i=0; i<3; i++) |
100 |
for (j=0; j<3; j++) tempMat[i][j] = 0.0;; |
101 |
|
102 |
tempMat[0][0] = newBox[0]; |
103 |
tempMat[1][1] = newBox[1]; |
104 |
tempMat[2][2] = newBox[2]; |
105 |
|
106 |
setBoxM( tempMat ); |
107 |
|
108 |
} |
109 |
|
110 |
void SimInfo::setBoxM( double theBox[3][3] ){ |
111 |
|
112 |
int i, j; |
113 |
double FortranHmat[9]; // to preserve compatibility with Fortran the |
114 |
// ordering in the array is as follows: |
115 |
// [ 0 3 6 ] |
116 |
// [ 1 4 7 ] |
117 |
// [ 2 5 8 ] |
118 |
double FortranHmatInv[9]; // the inverted Hmat (for Fortran); |
119 |
|
120 |
if( !boxIsInit ) boxIsInit = 1; |
121 |
|
122 |
for(i=0; i < 3; i++) |
123 |
for (j=0; j < 3; j++) Hmat[i][j] = theBox[i][j]; |
124 |
|
125 |
calcBoxL(); |
126 |
calcHmatInv(); |
127 |
|
128 |
for(i=0; i < 3; i++) { |
129 |
for (j=0; j < 3; j++) { |
130 |
FortranHmat[3*j + i] = Hmat[i][j]; |
131 |
FortranHmatInv[3*j + i] = HmatInv[i][j]; |
132 |
} |
133 |
} |
134 |
|
135 |
setFortranBoxSize(FortranHmat, FortranHmatInv, &orthoRhombic); |
136 |
|
137 |
} |
138 |
|
139 |
|
140 |
void SimInfo::getBoxM (double theBox[3][3]) { |
141 |
|
142 |
int i, j; |
143 |
for(i=0; i<3; i++) |
144 |
for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]; |
145 |
} |
146 |
|
147 |
|
148 |
void SimInfo::scaleBox(double scale) { |
149 |
double theBox[3][3]; |
150 |
int i, j; |
151 |
|
152 |
// cerr << "Scaling box by " << scale << "\n"; |
153 |
|
154 |
for(i=0; i<3; i++) |
155 |
for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]*scale; |
156 |
|
157 |
setBoxM(theBox); |
158 |
|
159 |
} |
160 |
|
161 |
void SimInfo::calcHmatInv( void ) { |
162 |
|
163 |
int oldOrtho; |
164 |
int i,j; |
165 |
double smallDiag; |
166 |
double tol; |
167 |
double sanity[3][3]; |
168 |
|
169 |
invertMat3( Hmat, HmatInv ); |
170 |
|
171 |
// check to see if Hmat is orthorhombic |
172 |
|
173 |
oldOrtho = orthoRhombic; |
174 |
|
175 |
smallDiag = fabs(Hmat[0][0]); |
176 |
if(smallDiag > fabs(Hmat[1][1])) smallDiag = fabs(Hmat[1][1]); |
177 |
if(smallDiag > fabs(Hmat[2][2])) smallDiag = fabs(Hmat[2][2]); |
178 |
tol = smallDiag * orthoTolerance; |
179 |
|
180 |
orthoRhombic = 1; |
181 |
|
182 |
for (i = 0; i < 3; i++ ) { |
183 |
for (j = 0 ; j < 3; j++) { |
184 |
if (i != j) { |
185 |
if (orthoRhombic) { |
186 |
if ( fabs(Hmat[i][j]) >= tol) orthoRhombic = 0; |
187 |
} |
188 |
} |
189 |
} |
190 |
} |
191 |
|
192 |
if( oldOrtho != orthoRhombic ){ |
193 |
|
194 |
if( orthoRhombic ){ |
195 |
sprintf( painCave.errMsg, |
196 |
"OOPSE is switching from the default Non-Orthorhombic\n" |
197 |
"\tto the faster Orthorhombic periodic boundary computations.\n" |
198 |
"\tThis is usually a good thing, but if you wan't the\n" |
199 |
"\tNon-Orthorhombic computations, make the orthoBoxTolerance\n" |
200 |
"\tvariable ( currently set to %G ) smaller.\n", |
201 |
orthoTolerance); |
202 |
simError(); |
203 |
} |
204 |
else { |
205 |
sprintf( painCave.errMsg, |
206 |
"OOPSE is switching from the faster Orthorhombic to the more\n" |
207 |
"\tflexible Non-Orthorhombic periodic boundary computations.\n" |
208 |
"\tThis is usually because the box has deformed under\n" |
209 |
"\tNPTf integration. If you wan't to live on the edge with\n" |
210 |
"\tthe Orthorhombic computations, make the orthoBoxTolerance\n" |
211 |
"\tvariable ( currently set to %G ) larger.\n", |
212 |
orthoTolerance); |
213 |
simError(); |
214 |
} |
215 |
} |
216 |
} |
217 |
|
218 |
void SimInfo::calcBoxL( void ){ |
219 |
|
220 |
double dx, dy, dz, dsq; |
221 |
|
222 |
// boxVol = Determinant of Hmat |
223 |
|
224 |
boxVol = matDet3( Hmat ); |
225 |
|
226 |
// boxLx |
227 |
|
228 |
dx = Hmat[0][0]; dy = Hmat[1][0]; dz = Hmat[2][0]; |
229 |
dsq = dx*dx + dy*dy + dz*dz; |
230 |
boxL[0] = sqrt( dsq ); |
231 |
//maxCutoff = 0.5 * boxL[0]; |
232 |
|
233 |
// boxLy |
234 |
|
235 |
dx = Hmat[0][1]; dy = Hmat[1][1]; dz = Hmat[2][1]; |
236 |
dsq = dx*dx + dy*dy + dz*dz; |
237 |
boxL[1] = sqrt( dsq ); |
238 |
//if( (0.5 * boxL[1]) < maxCutoff ) maxCutoff = 0.5 * boxL[1]; |
239 |
|
240 |
|
241 |
// boxLz |
242 |
|
243 |
dx = Hmat[0][2]; dy = Hmat[1][2]; dz = Hmat[2][2]; |
244 |
dsq = dx*dx + dy*dy + dz*dz; |
245 |
boxL[2] = sqrt( dsq ); |
246 |
//if( (0.5 * boxL[2]) < maxCutoff ) maxCutoff = 0.5 * boxL[2]; |
247 |
|
248 |
//calculate the max cutoff |
249 |
maxCutoff = calcMaxCutOff(); |
250 |
|
251 |
checkCutOffs(); |
252 |
|
253 |
} |
254 |
|
255 |
|
256 |
double SimInfo::calcMaxCutOff(){ |
257 |
|
258 |
double ri[3], rj[3], rk[3]; |
259 |
double rij[3], rjk[3], rki[3]; |
260 |
double minDist; |
261 |
|
262 |
ri[0] = Hmat[0][0]; |
263 |
ri[1] = Hmat[1][0]; |
264 |
ri[2] = Hmat[2][0]; |
265 |
|
266 |
rj[0] = Hmat[0][1]; |
267 |
rj[1] = Hmat[1][1]; |
268 |
rj[2] = Hmat[2][1]; |
269 |
|
270 |
rk[0] = Hmat[0][2]; |
271 |
rk[1] = Hmat[1][2]; |
272 |
rk[2] = Hmat[2][2]; |
273 |
|
274 |
crossProduct3(ri, rj, rij); |
275 |
distXY = dotProduct3(rk,rij) / norm3(rij); |
276 |
|
277 |
crossProduct3(rj,rk, rjk); |
278 |
distYZ = dotProduct3(ri,rjk) / norm3(rjk); |
279 |
|
280 |
crossProduct3(rk,ri, rki); |
281 |
distZX = dotProduct3(rj,rki) / norm3(rki); |
282 |
|
283 |
minDist = min(min(distXY, distYZ), distZX); |
284 |
return minDist/2; |
285 |
|
286 |
} |
287 |
|
288 |
void SimInfo::wrapVector( double thePos[3] ){ |
289 |
|
290 |
int i; |
291 |
double scaled[3]; |
292 |
|
293 |
if( !orthoRhombic ){ |
294 |
// calc the scaled coordinates. |
295 |
|
296 |
|
297 |
matVecMul3(HmatInv, thePos, scaled); |
298 |
|
299 |
for(i=0; i<3; i++) |
300 |
scaled[i] -= roundMe(scaled[i]); |
301 |
|
302 |
// calc the wrapped real coordinates from the wrapped scaled coordinates |
303 |
|
304 |
matVecMul3(Hmat, scaled, thePos); |
305 |
|
306 |
} |
307 |
else{ |
308 |
// calc the scaled coordinates. |
309 |
|
310 |
for(i=0; i<3; i++) |
311 |
scaled[i] = thePos[i]*HmatInv[i][i]; |
312 |
|
313 |
// wrap the scaled coordinates |
314 |
|
315 |
for(i=0; i<3; i++) |
316 |
scaled[i] -= roundMe(scaled[i]); |
317 |
|
318 |
// calc the wrapped real coordinates from the wrapped scaled coordinates |
319 |
|
320 |
for(i=0; i<3; i++) |
321 |
thePos[i] = scaled[i]*Hmat[i][i]; |
322 |
} |
323 |
|
324 |
} |
325 |
|
326 |
|
327 |
int SimInfo::getNDF(){ |
328 |
int ndf_local; |
329 |
|
330 |
ndf_local = 0; |
331 |
|
332 |
for(int i = 0; i < integrableObjects.size(); i++){ |
333 |
ndf_local += 3; |
334 |
if (integrableObjects[i]->isDirectional()) { |
335 |
if (integrableObjects[i]->isLinear()) |
336 |
ndf_local += 2; |
337 |
else |
338 |
ndf_local += 3; |
339 |
} |
340 |
} |
341 |
|
342 |
// n_constraints is local, so subtract them on each processor: |
343 |
|
344 |
ndf_local -= n_constraints; |
345 |
|
346 |
#ifdef IS_MPI |
347 |
MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
348 |
#else |
349 |
ndf = ndf_local; |
350 |
#endif |
351 |
|
352 |
// nZconstraints is global, as are the 3 COM translations for the |
353 |
// entire system: |
354 |
|
355 |
ndf = ndf - 3 - nZconstraints; |
356 |
|
357 |
return ndf; |
358 |
} |
359 |
|
360 |
int SimInfo::getNDFraw() { |
361 |
int ndfRaw_local; |
362 |
|
363 |
// Raw degrees of freedom that we have to set |
364 |
ndfRaw_local = 0; |
365 |
|
366 |
for(int i = 0; i < integrableObjects.size(); i++){ |
367 |
ndfRaw_local += 3; |
368 |
if (integrableObjects[i]->isDirectional()) { |
369 |
if (integrableObjects[i]->isLinear()) |
370 |
ndfRaw_local += 2; |
371 |
else |
372 |
ndfRaw_local += 3; |
373 |
} |
374 |
} |
375 |
|
376 |
#ifdef IS_MPI |
377 |
MPI_Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
378 |
#else |
379 |
ndfRaw = ndfRaw_local; |
380 |
#endif |
381 |
|
382 |
return ndfRaw; |
383 |
} |
384 |
|
385 |
int SimInfo::getNDFtranslational() { |
386 |
int ndfTrans_local; |
387 |
|
388 |
ndfTrans_local = 3 * integrableObjects.size() - n_constraints; |
389 |
|
390 |
|
391 |
#ifdef IS_MPI |
392 |
MPI_Allreduce(&ndfTrans_local,&ndfTrans,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
393 |
#else |
394 |
ndfTrans = ndfTrans_local; |
395 |
#endif |
396 |
|
397 |
ndfTrans = ndfTrans - 3 - nZconstraints; |
398 |
|
399 |
return ndfTrans; |
400 |
} |
401 |
|
402 |
int SimInfo::getTotIntegrableObjects() { |
403 |
int nObjs_local; |
404 |
int nObjs; |
405 |
|
406 |
nObjs_local = integrableObjects.size(); |
407 |
|
408 |
|
409 |
#ifdef IS_MPI |
410 |
MPI_Allreduce(&nObjs_local,&nObjs,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
411 |
#else |
412 |
nObjs = nObjs_local; |
413 |
#endif |
414 |
|
415 |
|
416 |
return nObjs; |
417 |
} |
418 |
|
419 |
void SimInfo::refreshSim(){ |
420 |
|
421 |
simtype fInfo; |
422 |
int isError; |
423 |
int n_global; |
424 |
int* excl; |
425 |
|
426 |
fInfo.dielect = 0.0; |
427 |
|
428 |
if( useDipoles ){ |
429 |
if( useReactionField )fInfo.dielect = dielectric; |
430 |
} |
431 |
|
432 |
fInfo.SIM_uses_PBC = usePBC; |
433 |
//fInfo.SIM_uses_LJ = 0; |
434 |
fInfo.SIM_uses_LJ = useLJ; |
435 |
fInfo.SIM_uses_sticky = useSticky; |
436 |
//fInfo.SIM_uses_sticky = 0; |
437 |
fInfo.SIM_uses_charges = useCharges; |
438 |
fInfo.SIM_uses_dipoles = useDipoles; |
439 |
//fInfo.SIM_uses_dipoles = 0; |
440 |
fInfo.SIM_uses_RF = useReactionField; |
441 |
//fInfo.SIM_uses_RF = 0; |
442 |
fInfo.SIM_uses_GB = useGB; |
443 |
fInfo.SIM_uses_EAM = useEAM; |
444 |
|
445 |
n_exclude = excludes->getSize(); |
446 |
excl = excludes->getFortranArray(); |
447 |
|
448 |
#ifdef IS_MPI |
449 |
n_global = mpiSim->getNAtomsGlobal(); |
450 |
#else |
451 |
n_global = n_atoms; |
452 |
#endif |
453 |
|
454 |
isError = 0; |
455 |
|
456 |
getFortranGroupArray(this, mfact, ngroup, groupList, groupStart); |
457 |
//it may not be a good idea to pass the address of first element in vector |
458 |
//since c++ standard does not require vector to be stored continuously in meomory |
459 |
//Most of the compilers will organize the memory of vector continuously |
460 |
setFsimulation( &fInfo, &n_global, &n_atoms, identArray, &n_exclude, excl, |
461 |
&nGlobalExcludes, globalExcludes, molMembershipArray, |
462 |
&mfact[0], &ngroup, &groupList[0], &groupStart[0], &isError); |
463 |
|
464 |
if( isError ){ |
465 |
|
466 |
sprintf( painCave.errMsg, |
467 |
"There was an error setting the simulation information in fortran.\n" ); |
468 |
painCave.isFatal = 1; |
469 |
simError(); |
470 |
} |
471 |
|
472 |
#ifdef IS_MPI |
473 |
sprintf( checkPointMsg, |
474 |
"succesfully sent the simulation information to fortran.\n"); |
475 |
MPIcheckPoint(); |
476 |
#endif // is_mpi |
477 |
|
478 |
this->ndf = this->getNDF(); |
479 |
this->ndfRaw = this->getNDFraw(); |
480 |
this->ndfTrans = this->getNDFtranslational(); |
481 |
} |
482 |
|
483 |
void SimInfo::setDefaultRcut( double theRcut ){ |
484 |
|
485 |
haveRcut = 1; |
486 |
rCut = theRcut; |
487 |
rList = rCut + 1.0; |
488 |
|
489 |
notifyFortranCutOffs( &rCut, &rSw, &rList ); |
490 |
} |
491 |
|
492 |
void SimInfo::setDefaultRcut( double theRcut, double theRsw ){ |
493 |
|
494 |
rSw = theRsw; |
495 |
setDefaultRcut( theRcut ); |
496 |
} |
497 |
|
498 |
|
499 |
void SimInfo::checkCutOffs( void ){ |
500 |
|
501 |
if( boxIsInit ){ |
502 |
|
503 |
//we need to check cutOffs against the box |
504 |
|
505 |
if( rCut > maxCutoff ){ |
506 |
sprintf( painCave.errMsg, |
507 |
"cutoffRadius is too large for the current periodic box.\n" |
508 |
"\tCurrent Value of cutoffRadius = %G at time %G\n " |
509 |
"\tThis is larger than half of at least one of the\n" |
510 |
"\tperiodic box vectors. Right now, the Box matrix is:\n" |
511 |
"\n" |
512 |
"\t[ %G %G %G ]\n" |
513 |
"\t[ %G %G %G ]\n" |
514 |
"\t[ %G %G %G ]\n", |
515 |
rCut, currentTime, |
516 |
Hmat[0][0], Hmat[0][1], Hmat[0][2], |
517 |
Hmat[1][0], Hmat[1][1], Hmat[1][2], |
518 |
Hmat[2][0], Hmat[2][1], Hmat[2][2]); |
519 |
painCave.isFatal = 1; |
520 |
simError(); |
521 |
} |
522 |
} else { |
523 |
// initialize this stuff before using it, OK? |
524 |
sprintf( painCave.errMsg, |
525 |
"Trying to check cutoffs without a box.\n" |
526 |
"\tOOPSE should have better programmers than that.\n" ); |
527 |
painCave.isFatal = 1; |
528 |
simError(); |
529 |
} |
530 |
|
531 |
} |
532 |
|
533 |
void SimInfo::addProperty(GenericData* prop){ |
534 |
|
535 |
map<string, GenericData*>::iterator result; |
536 |
result = properties.find(prop->getID()); |
537 |
|
538 |
//we can't simply use properties[prop->getID()] = prop, |
539 |
//it will cause memory leak if we already contain a propery which has the same name of prop |
540 |
|
541 |
if(result != properties.end()){ |
542 |
|
543 |
delete (*result).second; |
544 |
(*result).second = prop; |
545 |
|
546 |
} |
547 |
else{ |
548 |
|
549 |
properties[prop->getID()] = prop; |
550 |
|
551 |
} |
552 |
|
553 |
} |
554 |
|
555 |
GenericData* SimInfo::getProperty(const string& propName){ |
556 |
|
557 |
map<string, GenericData*>::iterator result; |
558 |
|
559 |
//string lowerCaseName = (); |
560 |
|
561 |
result = properties.find(propName); |
562 |
|
563 |
if(result != properties.end()) |
564 |
return (*result).second; |
565 |
else |
566 |
return NULL; |
567 |
} |
568 |
|
569 |
|
570 |
void getFortranGroupArray(SimInfo* info, vector<double>& mfact, int& ngroup, |
571 |
vector<int>& groupList, vector<int>& groupStart){ |
572 |
Molecule* myMols; |
573 |
Atom** myAtoms; |
574 |
int numAtom; |
575 |
int curIndex; |
576 |
double mtot; |
577 |
int numMol; |
578 |
int numCutoffGroups; |
579 |
CutoffGroup* myCutoffGroup; |
580 |
vector<CutoffGroup*>::iterator iterCutoff; |
581 |
Atom* cutoffAtom; |
582 |
vector<Atom*>::iterator iterAtom; |
583 |
int atomIndex; |
584 |
double totalMass; |
585 |
|
586 |
mfact.clear(); |
587 |
groupList.clear(); |
588 |
groupStart.clear(); |
589 |
|
590 |
//Be careful, fortran array begin at 1 |
591 |
curIndex = 1; |
592 |
|
593 |
myMols = info->molecules; |
594 |
numMol = info->n_mol; |
595 |
for(int i = 0; i < numMol; i++){ |
596 |
numCutoffGroups = myMols[i].getNCutoffGroups(); |
597 |
for(myCutoffGroup =myMols[i].beginCutoffGroup(iterCutoff); myCutoffGroup != NULL; |
598 |
myCutoffGroup =myMols[i].nextCutoffGroup(iterCutoff)){ |
599 |
|
600 |
totalMass = myCutoffGroup->getMass(); |
601 |
|
602 |
for(cutoffAtom = myCutoffGroup->beginAtom(iterAtom); cutoffAtom != NULL; |
603 |
cutoffAtom = myCutoffGroup->nextAtom(iterAtom)){ |
604 |
mfact.push_back(cutoffAtom->getMass()/totalMass); |
605 |
#ifdef IS_MPI |
606 |
groupList.push_back(cutoffAtom->getGlobalIndex() + 1); |
607 |
#else |
608 |
groupList.push_back(cutoffAtom->getIndex() + 1); |
609 |
#endif |
610 |
} |
611 |
|
612 |
groupStart.push_back(curIndex); |
613 |
curIndex += myCutoffGroup->getNumAtom(); |
614 |
|
615 |
}//end for(myCutoffGroup =myMols[i].beginCutoffGroup(iterCutoff)) |
616 |
|
617 |
}//end for(int i = 0; i < numMol; i++) |
618 |
|
619 |
|
620 |
//The last cutoff group need more element to indicate the end of the cutoff |
621 |
ngroup = groupStart.size(); |
622 |
} |