1 |
< |
#include <cstdlib> |
2 |
< |
#include <cstring> |
3 |
< |
#include <cmath> |
1 |
> |
#include <stdlib.h> |
2 |
> |
#include <string.h> |
3 |
> |
#include <math.h> |
4 |
|
|
5 |
|
#include <iostream> |
6 |
|
using namespace std; |
12 |
|
|
13 |
|
#include "fortranWrappers.hpp" |
14 |
|
|
15 |
+ |
#include "MatVec3.h" |
16 |
+ |
|
17 |
|
#ifdef IS_MPI |
18 |
|
#include "mpiSimulation.hpp" |
19 |
|
#endif |
22 |
|
return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 ); |
23 |
|
} |
24 |
|
|
25 |
+ |
inline double min( double a, double b ){ |
26 |
+ |
return (a < b ) ? a : b; |
27 |
+ |
} |
28 |
|
|
29 |
|
SimInfo* currentInfo; |
30 |
|
|
31 |
|
SimInfo::SimInfo(){ |
32 |
< |
excludes = NULL; |
32 |
> |
|
33 |
|
n_constraints = 0; |
34 |
+ |
nZconstraints = 0; |
35 |
|
n_oriented = 0; |
36 |
|
n_dipoles = 0; |
37 |
|
ndf = 0; |
38 |
|
ndfRaw = 0; |
39 |
+ |
nZconstraints = 0; |
40 |
|
the_integrator = NULL; |
41 |
|
setTemp = 0; |
42 |
|
thermalTime = 0.0; |
43 |
+ |
currentTime = 0.0; |
44 |
|
rCut = 0.0; |
45 |
+ |
rSw = 0.0; |
46 |
|
|
47 |
+ |
haveRcut = 0; |
48 |
+ |
haveRsw = 0; |
49 |
+ |
boxIsInit = 0; |
50 |
+ |
|
51 |
+ |
resetTime = 1e99; |
52 |
+ |
|
53 |
+ |
orthoRhombic = 0; |
54 |
+ |
orthoTolerance = 1E-6; |
55 |
+ |
useInitXSstate = true; |
56 |
+ |
|
57 |
|
usePBC = 0; |
58 |
|
useLJ = 0; |
59 |
|
useSticky = 0; |
60 |
< |
useDipole = 0; |
60 |
> |
useCharges = 0; |
61 |
> |
useDipoles = 0; |
62 |
|
useReactionField = 0; |
63 |
|
useGB = 0; |
64 |
|
useEAM = 0; |
65 |
+ |
useThermInt = 0; |
66 |
|
|
67 |
< |
wrapMeSimInfo( this ); |
47 |
< |
} |
67 |
> |
haveCutoffGroups = false; |
68 |
|
|
69 |
< |
void SimInfo::setBox(double newBox[3]) { |
69 |
> |
excludes = Exclude::Instance(); |
70 |
|
|
71 |
< |
double smallestBoxL, maxCutoff; |
52 |
< |
int status; |
53 |
< |
int i; |
71 |
> |
myConfiguration = new SimState(); |
72 |
|
|
73 |
< |
for(i=0; i<9; i++) Hmat[i] = 0.0;; |
73 |
> |
has_minimizer = false; |
74 |
> |
the_minimizer =NULL; |
75 |
|
|
76 |
< |
Hmat[0] = newBox[0]; |
58 |
< |
Hmat[4] = newBox[1]; |
59 |
< |
Hmat[8] = newBox[2]; |
76 |
> |
ngroup = 0; |
77 |
|
|
78 |
< |
calcHmatI(); |
79 |
< |
calcBoxL(); |
78 |
> |
wrapMeSimInfo( this ); |
79 |
> |
} |
80 |
|
|
64 |
– |
setFortranBoxSize(Hmat, HmatI, &orthoRhombic); |
81 |
|
|
82 |
< |
smallestBoxL = boxLx; |
67 |
< |
if (boxLy < smallestBoxL) smallestBoxL = boxLy; |
68 |
< |
if (boxLz < smallestBoxL) smallestBoxL = boxLz; |
82 |
> |
SimInfo::~SimInfo(){ |
83 |
|
|
84 |
< |
maxCutoff = smallestBoxL / 2.0; |
84 |
> |
delete myConfiguration; |
85 |
|
|
86 |
< |
if (rList > maxCutoff) { |
87 |
< |
sprintf( painCave.errMsg, |
88 |
< |
"New Box size is forcing neighborlist radius down to %lf\n", |
89 |
< |
maxCutoff ); |
90 |
< |
painCave.isFatal = 0; |
91 |
< |
simError(); |
86 |
> |
map<string, GenericData*>::iterator i; |
87 |
> |
|
88 |
> |
for(i = properties.begin(); i != properties.end(); i++) |
89 |
> |
delete (*i).second; |
90 |
> |
|
91 |
> |
} |
92 |
|
|
93 |
< |
rList = maxCutoff; |
93 |
> |
void SimInfo::setBox(double newBox[3]) { |
94 |
> |
|
95 |
> |
int i, j; |
96 |
> |
double tempMat[3][3]; |
97 |
|
|
98 |
< |
sprintf( painCave.errMsg, |
99 |
< |
"New Box size is forcing cutoff radius down to %lf\n", |
83 |
< |
maxCutoff - 1.0 ); |
84 |
< |
painCave.isFatal = 0; |
85 |
< |
simError(); |
98 |
> |
for(i=0; i<3; i++) |
99 |
> |
for (j=0; j<3; j++) tempMat[i][j] = 0.0;; |
100 |
|
|
101 |
< |
rCut = rList - 1.0; |
101 |
> |
tempMat[0][0] = newBox[0]; |
102 |
> |
tempMat[1][1] = newBox[1]; |
103 |
> |
tempMat[2][2] = newBox[2]; |
104 |
|
|
105 |
< |
// list radius changed so we have to refresh the simulation structure. |
90 |
< |
refreshSim(); |
91 |
< |
} |
105 |
> |
setBoxM( tempMat ); |
106 |
|
|
93 |
– |
if (rCut > maxCutoff) { |
94 |
– |
sprintf( painCave.errMsg, |
95 |
– |
"New Box size is forcing cutoff radius down to %lf\n", |
96 |
– |
maxCutoff ); |
97 |
– |
painCave.isFatal = 0; |
98 |
– |
simError(); |
99 |
– |
|
100 |
– |
status = 0; |
101 |
– |
LJ_new_rcut(&rCut, &status); |
102 |
– |
if (status != 0) { |
103 |
– |
sprintf( painCave.errMsg, |
104 |
– |
"Error in recomputing LJ shifts based on new rcut\n"); |
105 |
– |
painCave.isFatal = 1; |
106 |
– |
simError(); |
107 |
– |
} |
108 |
– |
} |
107 |
|
} |
108 |
|
|
109 |
< |
void SimInfo::setBoxM( double theBox[9] ){ |
109 |
> |
void SimInfo::setBoxM( double theBox[3][3] ){ |
110 |
|
|
111 |
< |
int i, status; |
112 |
< |
double smallestBoxL, maxCutoff; |
111 |
> |
int i, j; |
112 |
> |
double FortranHmat[9]; // to preserve compatibility with Fortran the |
113 |
> |
// ordering in the array is as follows: |
114 |
> |
// [ 0 3 6 ] |
115 |
> |
// [ 1 4 7 ] |
116 |
> |
// [ 2 5 8 ] |
117 |
> |
double FortranHmatInv[9]; // the inverted Hmat (for Fortran); |
118 |
|
|
119 |
< |
for(i=0; i<9; i++) Hmat[i] = theBox[i]; |
120 |
< |
calcHmatI(); |
119 |
> |
if( !boxIsInit ) boxIsInit = 1; |
120 |
> |
|
121 |
> |
for(i=0; i < 3; i++) |
122 |
> |
for (j=0; j < 3; j++) Hmat[i][j] = theBox[i][j]; |
123 |
> |
|
124 |
|
calcBoxL(); |
125 |
+ |
calcHmatInv(); |
126 |
|
|
127 |
< |
setFortranBoxSize(Hmat, HmatI, &orthoRhombic); |
128 |
< |
|
129 |
< |
smallestBoxL = boxLx; |
130 |
< |
if (boxLy < smallestBoxL) smallestBoxL = boxLy; |
124 |
< |
if (boxLz < smallestBoxL) smallestBoxL = boxLz; |
125 |
< |
|
126 |
< |
maxCutoff = smallestBoxL / 2.0; |
127 |
< |
|
128 |
< |
if (rList > maxCutoff) { |
129 |
< |
sprintf( painCave.errMsg, |
130 |
< |
"New Box size is forcing neighborlist radius down to %lf\n", |
131 |
< |
maxCutoff ); |
132 |
< |
painCave.isFatal = 0; |
133 |
< |
simError(); |
134 |
< |
|
135 |
< |
rList = maxCutoff; |
136 |
< |
|
137 |
< |
sprintf( painCave.errMsg, |
138 |
< |
"New Box size is forcing cutoff radius down to %lf\n", |
139 |
< |
maxCutoff - 1.0 ); |
140 |
< |
painCave.isFatal = 0; |
141 |
< |
simError(); |
142 |
< |
|
143 |
< |
rCut = rList - 1.0; |
144 |
< |
|
145 |
< |
// list radius changed so we have to refresh the simulation structure. |
146 |
< |
refreshSim(); |
147 |
< |
} |
148 |
< |
|
149 |
< |
if (rCut > maxCutoff) { |
150 |
< |
sprintf( painCave.errMsg, |
151 |
< |
"New Box size is forcing cutoff radius down to %lf\n", |
152 |
< |
maxCutoff ); |
153 |
< |
painCave.isFatal = 0; |
154 |
< |
simError(); |
155 |
< |
|
156 |
< |
status = 0; |
157 |
< |
LJ_new_rcut(&rCut, &status); |
158 |
< |
if (status != 0) { |
159 |
< |
sprintf( painCave.errMsg, |
160 |
< |
"Error in recomputing LJ shifts based on new rcut\n"); |
161 |
< |
painCave.isFatal = 1; |
162 |
< |
simError(); |
127 |
> |
for(i=0; i < 3; i++) { |
128 |
> |
for (j=0; j < 3; j++) { |
129 |
> |
FortranHmat[3*j + i] = Hmat[i][j]; |
130 |
> |
FortranHmatInv[3*j + i] = HmatInv[i][j]; |
131 |
|
} |
132 |
|
} |
133 |
+ |
|
134 |
+ |
setFortranBoxSize(FortranHmat, FortranHmatInv, &orthoRhombic); |
135 |
+ |
|
136 |
|
} |
137 |
|
|
138 |
|
|
139 |
< |
void SimInfo::getBoxM (double theBox[9]) { |
139 |
> |
void SimInfo::getBoxM (double theBox[3][3]) { |
140 |
|
|
141 |
< |
int i; |
142 |
< |
for(i=0; i<9; i++) theBox[i] = Hmat[i]; |
141 |
> |
int i, j; |
142 |
> |
for(i=0; i<3; i++) |
143 |
> |
for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]; |
144 |
|
} |
145 |
|
|
146 |
|
|
147 |
|
void SimInfo::scaleBox(double scale) { |
148 |
< |
double theBox[9]; |
149 |
< |
int i; |
148 |
> |
double theBox[3][3]; |
149 |
> |
int i, j; |
150 |
|
|
151 |
< |
for(i=0; i<9; i++) theBox[i] = Hmat[i]*scale; |
151 |
> |
// cerr << "Scaling box by " << scale << "\n"; |
152 |
|
|
153 |
+ |
for(i=0; i<3; i++) |
154 |
+ |
for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]*scale; |
155 |
+ |
|
156 |
|
setBoxM(theBox); |
157 |
|
|
158 |
|
} |
159 |
|
|
160 |
< |
void SimInfo::calcHmatI( void ) { |
161 |
< |
|
162 |
< |
double C[3][3]; |
163 |
< |
double detHmat; |
189 |
< |
int i, j, k; |
160 |
> |
void SimInfo::calcHmatInv( void ) { |
161 |
> |
|
162 |
> |
int oldOrtho; |
163 |
> |
int i,j; |
164 |
|
double smallDiag; |
165 |
|
double tol; |
166 |
|
double sanity[3][3]; |
167 |
|
|
168 |
< |
// calculate the adjunct of Hmat; |
168 |
> |
invertMat3( Hmat, HmatInv ); |
169 |
|
|
170 |
< |
C[0][0] = ( Hmat[4]*Hmat[8]) - (Hmat[7]*Hmat[5]); |
197 |
< |
C[1][0] = -( Hmat[1]*Hmat[8]) + (Hmat[7]*Hmat[2]); |
198 |
< |
C[2][0] = ( Hmat[1]*Hmat[5]) - (Hmat[4]*Hmat[2]); |
199 |
< |
|
200 |
< |
C[0][1] = -( Hmat[3]*Hmat[8]) + (Hmat[6]*Hmat[5]); |
201 |
< |
C[1][1] = ( Hmat[0]*Hmat[8]) - (Hmat[6]*Hmat[2]); |
202 |
< |
C[2][1] = -( Hmat[0]*Hmat[5]) + (Hmat[3]*Hmat[2]); |
203 |
< |
|
204 |
< |
C[0][2] = ( Hmat[3]*Hmat[7]) - (Hmat[6]*Hmat[4]); |
205 |
< |
C[1][2] = -( Hmat[0]*Hmat[7]) + (Hmat[6]*Hmat[1]); |
206 |
< |
C[2][2] = ( Hmat[0]*Hmat[4]) - (Hmat[3]*Hmat[1]); |
207 |
< |
|
208 |
< |
// calcutlate the determinant of Hmat |
170 |
> |
// check to see if Hmat is orthorhombic |
171 |
|
|
172 |
< |
detHmat = 0.0; |
211 |
< |
for(i=0; i<3; i++) detHmat += Hmat[i] * C[i][0]; |
172 |
> |
oldOrtho = orthoRhombic; |
173 |
|
|
174 |
< |
|
175 |
< |
// H^-1 = C^T / det(H) |
176 |
< |
|
177 |
< |
i=0; |
217 |
< |
for(j=0; j<3; j++){ |
218 |
< |
for(k=0; k<3; k++){ |
174 |
> |
smallDiag = fabs(Hmat[0][0]); |
175 |
> |
if(smallDiag > fabs(Hmat[1][1])) smallDiag = fabs(Hmat[1][1]); |
176 |
> |
if(smallDiag > fabs(Hmat[2][2])) smallDiag = fabs(Hmat[2][2]); |
177 |
> |
tol = smallDiag * orthoTolerance; |
178 |
|
|
179 |
< |
HmatI[i] = C[j][k] / detHmat; |
180 |
< |
i++; |
181 |
< |
} |
182 |
< |
} |
183 |
< |
|
184 |
< |
// sanity check |
185 |
< |
|
186 |
< |
for(i=0; i<3; i++){ |
228 |
< |
for(j=0; j<3; j++){ |
229 |
< |
|
230 |
< |
sanity[i][j] = 0.0; |
231 |
< |
for(k=0; k<3; k++){ |
232 |
< |
sanity[i][j] += Hmat[3*k+i] * HmatI[3*j+k]; |
179 |
> |
orthoRhombic = 1; |
180 |
> |
|
181 |
> |
for (i = 0; i < 3; i++ ) { |
182 |
> |
for (j = 0 ; j < 3; j++) { |
183 |
> |
if (i != j) { |
184 |
> |
if (orthoRhombic) { |
185 |
> |
if ( fabs(Hmat[i][j]) >= tol) orthoRhombic = 0; |
186 |
> |
} |
187 |
|
} |
188 |
|
} |
189 |
|
} |
190 |
|
|
191 |
< |
cerr << "sanity => \n" |
238 |
< |
<< sanity[0][0] << "\t" << sanity[0][1] << "\t" << sanity [0][2] << "\n" |
239 |
< |
<< sanity[1][0] << "\t" << sanity[1][1] << "\t" << sanity [1][2] << "\n" |
240 |
< |
<< sanity[2][0] << "\t" << sanity[2][1] << "\t" << sanity [2][2] |
241 |
< |
<< "\n"; |
191 |
> |
if( oldOrtho != orthoRhombic ){ |
192 |
|
|
193 |
< |
|
194 |
< |
// check to see if Hmat is orthorhombic |
195 |
< |
|
196 |
< |
smallDiag = Hmat[0]; |
197 |
< |
if(smallDiag > Hmat[4]) smallDiag = Hmat[4]; |
198 |
< |
if(smallDiag > Hmat[8]) smallDiag = Hmat[8]; |
199 |
< |
tol = smallDiag * 1E-6; |
200 |
< |
|
201 |
< |
orthoRhombic = 1; |
252 |
< |
for(i=0; (i<9) && orthoRhombic; i++){ |
253 |
< |
|
254 |
< |
if( (i%4) ){ // ignore the diagonals (0, 4, and 8) |
255 |
< |
orthoRhombic = (Hmat[i] <= tol); |
193 |
> |
if( orthoRhombic ){ |
194 |
> |
sprintf( painCave.errMsg, |
195 |
> |
"OOPSE is switching from the default Non-Orthorhombic\n" |
196 |
> |
"\tto the faster Orthorhombic periodic boundary computations.\n" |
197 |
> |
"\tThis is usually a good thing, but if you wan't the\n" |
198 |
> |
"\tNon-Orthorhombic computations, make the orthoBoxTolerance\n" |
199 |
> |
"\tvariable ( currently set to %G ) smaller.\n", |
200 |
> |
orthoTolerance); |
201 |
> |
simError(); |
202 |
|
} |
203 |
+ |
else { |
204 |
+ |
sprintf( painCave.errMsg, |
205 |
+ |
"OOPSE is switching from the faster Orthorhombic to the more\n" |
206 |
+ |
"\tflexible Non-Orthorhombic periodic boundary computations.\n" |
207 |
+ |
"\tThis is usually because the box has deformed under\n" |
208 |
+ |
"\tNPTf integration. If you wan't to live on the edge with\n" |
209 |
+ |
"\tthe Orthorhombic computations, make the orthoBoxTolerance\n" |
210 |
+ |
"\tvariable ( currently set to %G ) larger.\n", |
211 |
+ |
orthoTolerance); |
212 |
+ |
simError(); |
213 |
+ |
} |
214 |
|
} |
258 |
– |
|
215 |
|
} |
216 |
|
|
217 |
|
void SimInfo::calcBoxL( void ){ |
218 |
|
|
219 |
|
double dx, dy, dz, dsq; |
264 |
– |
int i; |
220 |
|
|
221 |
< |
// boxVol = h1 (dot) h2 (cross) h3 |
221 |
> |
// boxVol = Determinant of Hmat |
222 |
|
|
223 |
< |
boxVol = Hmat[0] * ( (Hmat[4]*Hmat[8]) - (Hmat[7]*Hmat[5]) ) |
269 |
< |
+ Hmat[1] * ( (Hmat[5]*Hmat[6]) - (Hmat[8]*Hmat[3]) ) |
270 |
< |
+ Hmat[2] * ( (Hmat[3]*Hmat[7]) - (Hmat[6]*Hmat[4]) ); |
223 |
> |
boxVol = matDet3( Hmat ); |
224 |
|
|
272 |
– |
|
225 |
|
// boxLx |
226 |
|
|
227 |
< |
dx = Hmat[0]; dy = Hmat[1]; dz = Hmat[2]; |
227 |
> |
dx = Hmat[0][0]; dy = Hmat[1][0]; dz = Hmat[2][0]; |
228 |
|
dsq = dx*dx + dy*dy + dz*dz; |
229 |
< |
boxLx = sqrt( dsq ); |
229 |
> |
boxL[0] = sqrt( dsq ); |
230 |
> |
//maxCutoff = 0.5 * boxL[0]; |
231 |
|
|
232 |
|
// boxLy |
233 |
|
|
234 |
< |
dx = Hmat[3]; dy = Hmat[4]; dz = Hmat[5]; |
234 |
> |
dx = Hmat[0][1]; dy = Hmat[1][1]; dz = Hmat[2][1]; |
235 |
|
dsq = dx*dx + dy*dy + dz*dz; |
236 |
< |
boxLy = sqrt( dsq ); |
236 |
> |
boxL[1] = sqrt( dsq ); |
237 |
> |
//if( (0.5 * boxL[1]) < maxCutoff ) maxCutoff = 0.5 * boxL[1]; |
238 |
|
|
239 |
+ |
|
240 |
|
// boxLz |
241 |
|
|
242 |
< |
dx = Hmat[6]; dy = Hmat[7]; dz = Hmat[8]; |
242 |
> |
dx = Hmat[0][2]; dy = Hmat[1][2]; dz = Hmat[2][2]; |
243 |
|
dsq = dx*dx + dy*dy + dz*dz; |
244 |
< |
boxLz = sqrt( dsq ); |
244 |
> |
boxL[2] = sqrt( dsq ); |
245 |
> |
//if( (0.5 * boxL[2]) < maxCutoff ) maxCutoff = 0.5 * boxL[2]; |
246 |
> |
|
247 |
> |
//calculate the max cutoff |
248 |
> |
maxCutoff = calcMaxCutOff(); |
249 |
|
|
250 |
+ |
checkCutOffs(); |
251 |
+ |
|
252 |
|
} |
253 |
|
|
254 |
|
|
255 |
+ |
double SimInfo::calcMaxCutOff(){ |
256 |
+ |
|
257 |
+ |
double ri[3], rj[3], rk[3]; |
258 |
+ |
double rij[3], rjk[3], rki[3]; |
259 |
+ |
double minDist; |
260 |
+ |
|
261 |
+ |
ri[0] = Hmat[0][0]; |
262 |
+ |
ri[1] = Hmat[1][0]; |
263 |
+ |
ri[2] = Hmat[2][0]; |
264 |
+ |
|
265 |
+ |
rj[0] = Hmat[0][1]; |
266 |
+ |
rj[1] = Hmat[1][1]; |
267 |
+ |
rj[2] = Hmat[2][1]; |
268 |
+ |
|
269 |
+ |
rk[0] = Hmat[0][2]; |
270 |
+ |
rk[1] = Hmat[1][2]; |
271 |
+ |
rk[2] = Hmat[2][2]; |
272 |
+ |
|
273 |
+ |
crossProduct3(ri, rj, rij); |
274 |
+ |
distXY = dotProduct3(rk,rij) / norm3(rij); |
275 |
+ |
|
276 |
+ |
crossProduct3(rj,rk, rjk); |
277 |
+ |
distYZ = dotProduct3(ri,rjk) / norm3(rjk); |
278 |
+ |
|
279 |
+ |
crossProduct3(rk,ri, rki); |
280 |
+ |
distZX = dotProduct3(rj,rki) / norm3(rki); |
281 |
+ |
|
282 |
+ |
minDist = min(min(distXY, distYZ), distZX); |
283 |
+ |
return minDist/2; |
284 |
+ |
|
285 |
+ |
} |
286 |
+ |
|
287 |
|
void SimInfo::wrapVector( double thePos[3] ){ |
288 |
|
|
289 |
< |
int i, j, k; |
289 |
> |
int i; |
290 |
|
double scaled[3]; |
291 |
|
|
292 |
|
if( !orthoRhombic ){ |
293 |
|
// calc the scaled coordinates. |
294 |
+ |
|
295 |
+ |
|
296 |
+ |
matVecMul3(HmatInv, thePos, scaled); |
297 |
|
|
298 |
|
for(i=0; i<3; i++) |
303 |
– |
scaled[i] = |
304 |
– |
thePos[0]*HmatI[i] + thePos[1]*HmatI[i+3] + thePos[3]*HmatI[i+6]; |
305 |
– |
|
306 |
– |
// wrap the scaled coordinates |
307 |
– |
|
308 |
– |
for(i=0; i<3; i++) |
299 |
|
scaled[i] -= roundMe(scaled[i]); |
300 |
|
|
301 |
|
// calc the wrapped real coordinates from the wrapped scaled coordinates |
302 |
|
|
303 |
< |
for(i=0; i<3; i++) |
304 |
< |
thePos[i] = |
315 |
< |
scaled[0]*Hmat[i] + scaled[1]*Hmat[i+3] + scaled[2]*Hmat[i+6]; |
303 |
> |
matVecMul3(Hmat, scaled, thePos); |
304 |
> |
|
305 |
|
} |
306 |
|
else{ |
307 |
|
// calc the scaled coordinates. |
308 |
|
|
309 |
|
for(i=0; i<3; i++) |
310 |
< |
scaled[i] = thePos[i]*HmatI[i*4]; |
310 |
> |
scaled[i] = thePos[i]*HmatInv[i][i]; |
311 |
|
|
312 |
|
// wrap the scaled coordinates |
313 |
|
|
317 |
|
// calc the wrapped real coordinates from the wrapped scaled coordinates |
318 |
|
|
319 |
|
for(i=0; i<3; i++) |
320 |
< |
thePos[i] = scaled[i]*Hmat[i*4]; |
320 |
> |
thePos[i] = scaled[i]*Hmat[i][i]; |
321 |
|
} |
322 |
|
|
334 |
– |
|
323 |
|
} |
324 |
|
|
325 |
|
|
326 |
|
int SimInfo::getNDF(){ |
327 |
< |
int ndf_local, ndf; |
327 |
> |
int ndf_local; |
328 |
> |
|
329 |
> |
ndf_local = 0; |
330 |
|
|
331 |
< |
ndf_local = 3 * n_atoms + 3 * n_oriented - n_constraints; |
331 |
> |
for(int i = 0; i < integrableObjects.size(); i++){ |
332 |
> |
ndf_local += 3; |
333 |
> |
if (integrableObjects[i]->isDirectional()) { |
334 |
> |
if (integrableObjects[i]->isLinear()) |
335 |
> |
ndf_local += 2; |
336 |
> |
else |
337 |
> |
ndf_local += 3; |
338 |
> |
} |
339 |
> |
} |
340 |
|
|
341 |
+ |
// n_constraints is local, so subtract them on each processor: |
342 |
+ |
|
343 |
+ |
ndf_local -= n_constraints; |
344 |
+ |
|
345 |
|
#ifdef IS_MPI |
346 |
|
MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
347 |
|
#else |
348 |
|
ndf = ndf_local; |
349 |
|
#endif |
350 |
|
|
351 |
< |
ndf = ndf - 3; |
351 |
> |
// nZconstraints is global, as are the 3 COM translations for the |
352 |
> |
// entire system: |
353 |
|
|
354 |
+ |
ndf = ndf - 3 - nZconstraints; |
355 |
+ |
|
356 |
|
return ndf; |
357 |
|
} |
358 |
|
|
359 |
|
int SimInfo::getNDFraw() { |
360 |
< |
int ndfRaw_local, ndfRaw; |
360 |
> |
int ndfRaw_local; |
361 |
|
|
362 |
|
// Raw degrees of freedom that we have to set |
363 |
< |
ndfRaw_local = 3 * n_atoms + 3 * n_oriented; |
364 |
< |
|
363 |
> |
ndfRaw_local = 0; |
364 |
> |
|
365 |
> |
for(int i = 0; i < integrableObjects.size(); i++){ |
366 |
> |
ndfRaw_local += 3; |
367 |
> |
if (integrableObjects[i]->isDirectional()) { |
368 |
> |
if (integrableObjects[i]->isLinear()) |
369 |
> |
ndfRaw_local += 2; |
370 |
> |
else |
371 |
> |
ndfRaw_local += 3; |
372 |
> |
} |
373 |
> |
} |
374 |
> |
|
375 |
|
#ifdef IS_MPI |
376 |
|
MPI_Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
377 |
|
#else |
380 |
|
|
381 |
|
return ndfRaw; |
382 |
|
} |
383 |
< |
|
383 |
> |
|
384 |
> |
int SimInfo::getNDFtranslational() { |
385 |
> |
int ndfTrans_local; |
386 |
> |
|
387 |
> |
ndfTrans_local = 3 * integrableObjects.size() - n_constraints; |
388 |
> |
|
389 |
> |
|
390 |
> |
#ifdef IS_MPI |
391 |
> |
MPI_Allreduce(&ndfTrans_local,&ndfTrans,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
392 |
> |
#else |
393 |
> |
ndfTrans = ndfTrans_local; |
394 |
> |
#endif |
395 |
> |
|
396 |
> |
ndfTrans = ndfTrans - 3 - nZconstraints; |
397 |
> |
|
398 |
> |
return ndfTrans; |
399 |
> |
} |
400 |
> |
|
401 |
> |
int SimInfo::getTotIntegrableObjects() { |
402 |
> |
int nObjs_local; |
403 |
> |
int nObjs; |
404 |
> |
|
405 |
> |
nObjs_local = integrableObjects.size(); |
406 |
> |
|
407 |
> |
|
408 |
> |
#ifdef IS_MPI |
409 |
> |
MPI_Allreduce(&nObjs_local,&nObjs,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
410 |
> |
#else |
411 |
> |
nObjs = nObjs_local; |
412 |
> |
#endif |
413 |
> |
|
414 |
> |
|
415 |
> |
return nObjs; |
416 |
> |
} |
417 |
> |
|
418 |
|
void SimInfo::refreshSim(){ |
419 |
|
|
420 |
|
simtype fInfo; |
421 |
|
int isError; |
422 |
|
int n_global; |
423 |
|
int* excl; |
424 |
< |
|
376 |
< |
fInfo.rrf = 0.0; |
377 |
< |
fInfo.rt = 0.0; |
424 |
> |
|
425 |
|
fInfo.dielect = 0.0; |
426 |
|
|
427 |
< |
fInfo.rlist = rList; |
381 |
< |
fInfo.rcut = rCut; |
382 |
< |
|
383 |
< |
if( useDipole ){ |
384 |
< |
fInfo.rrf = ecr; |
385 |
< |
fInfo.rt = ecr - est; |
427 |
> |
if( useDipoles ){ |
428 |
|
if( useReactionField )fInfo.dielect = dielectric; |
429 |
|
} |
430 |
|
|
433 |
|
fInfo.SIM_uses_LJ = useLJ; |
434 |
|
fInfo.SIM_uses_sticky = useSticky; |
435 |
|
//fInfo.SIM_uses_sticky = 0; |
436 |
< |
fInfo.SIM_uses_dipoles = useDipole; |
436 |
> |
fInfo.SIM_uses_charges = useCharges; |
437 |
> |
fInfo.SIM_uses_dipoles = useDipoles; |
438 |
|
//fInfo.SIM_uses_dipoles = 0; |
439 |
< |
//fInfo.SIM_uses_RF = useReactionField; |
440 |
< |
fInfo.SIM_uses_RF = 0; |
439 |
> |
fInfo.SIM_uses_RF = useReactionField; |
440 |
> |
//fInfo.SIM_uses_RF = 0; |
441 |
|
fInfo.SIM_uses_GB = useGB; |
442 |
|
fInfo.SIM_uses_EAM = useEAM; |
443 |
|
|
444 |
< |
excl = Exclude::getArray(); |
445 |
< |
|
444 |
> |
n_exclude = excludes->getSize(); |
445 |
> |
excl = excludes->getFortranArray(); |
446 |
> |
|
447 |
|
#ifdef IS_MPI |
448 |
|
n_global = mpiSim->getTotAtoms(); |
449 |
|
#else |
450 |
|
n_global = n_atoms; |
451 |
|
#endif |
452 |
< |
|
452 |
> |
|
453 |
|
isError = 0; |
454 |
< |
|
454 |
> |
|
455 |
> |
getFortranGroupArray(this, mfact, ngroup, groupList, groupStart); |
456 |
> |
//it may not be a good idea to pass the address of first element in vector |
457 |
> |
//since c++ standard does not require vector to be stored continuously in meomory |
458 |
> |
//Most of the compilers will organize the memory of vector continuously |
459 |
|
setFsimulation( &fInfo, &n_global, &n_atoms, identArray, &n_exclude, excl, |
460 |
< |
&nGlobalExcludes, globalExcludes, molMembershipArray, |
461 |
< |
&isError ); |
462 |
< |
|
460 |
> |
&nGlobalExcludes, globalExcludes, molMembershipArray, |
461 |
> |
&mfact[0], &ngroup, &groupList[0], &groupStart[0], &isError); |
462 |
> |
|
463 |
|
if( isError ){ |
464 |
< |
|
464 |
> |
|
465 |
|
sprintf( painCave.errMsg, |
466 |
< |
"There was an error setting the simulation information in fortran.\n" ); |
466 |
> |
"There was an error setting the simulation information in fortran.\n" ); |
467 |
|
painCave.isFatal = 1; |
468 |
|
simError(); |
469 |
|
} |
470 |
< |
|
470 |
> |
|
471 |
|
#ifdef IS_MPI |
472 |
|
sprintf( checkPointMsg, |
473 |
|
"succesfully sent the simulation information to fortran.\n"); |
474 |
|
MPIcheckPoint(); |
475 |
|
#endif // is_mpi |
476 |
< |
|
476 |
> |
|
477 |
|
this->ndf = this->getNDF(); |
478 |
|
this->ndfRaw = this->getNDFraw(); |
479 |
+ |
this->ndfTrans = this->getNDFtranslational(); |
480 |
+ |
} |
481 |
|
|
482 |
+ |
void SimInfo::setDefaultRcut( double theRcut ){ |
483 |
+ |
|
484 |
+ |
haveRcut = 1; |
485 |
+ |
rCut = theRcut; |
486 |
+ |
rList = rCut + 1.0; |
487 |
+ |
|
488 |
+ |
notifyFortranCutOffs( &rCut, &rSw, &rList ); |
489 |
|
} |
490 |
|
|
491 |
+ |
void SimInfo::setDefaultRcut( double theRcut, double theRsw ){ |
492 |
+ |
|
493 |
+ |
rSw = theRsw; |
494 |
+ |
setDefaultRcut( theRcut ); |
495 |
+ |
} |
496 |
+ |
|
497 |
+ |
|
498 |
+ |
void SimInfo::checkCutOffs( void ){ |
499 |
+ |
|
500 |
+ |
if( boxIsInit ){ |
501 |
+ |
|
502 |
+ |
//we need to check cutOffs against the box |
503 |
+ |
|
504 |
+ |
if( rCut > maxCutoff ){ |
505 |
+ |
sprintf( painCave.errMsg, |
506 |
+ |
"cutoffRadius is too large for the current periodic box.\n" |
507 |
+ |
"\tCurrent Value of cutoffRadius = %G at time %G\n " |
508 |
+ |
"\tThis is larger than half of at least one of the\n" |
509 |
+ |
"\tperiodic box vectors. Right now, the Box matrix is:\n" |
510 |
+ |
"\n" |
511 |
+ |
"\t[ %G %G %G ]\n" |
512 |
+ |
"\t[ %G %G %G ]\n" |
513 |
+ |
"\t[ %G %G %G ]\n", |
514 |
+ |
rCut, currentTime, |
515 |
+ |
Hmat[0][0], Hmat[0][1], Hmat[0][2], |
516 |
+ |
Hmat[1][0], Hmat[1][1], Hmat[1][2], |
517 |
+ |
Hmat[2][0], Hmat[2][1], Hmat[2][2]); |
518 |
+ |
painCave.isFatal = 1; |
519 |
+ |
simError(); |
520 |
+ |
} |
521 |
+ |
} else { |
522 |
+ |
// initialize this stuff before using it, OK? |
523 |
+ |
sprintf( painCave.errMsg, |
524 |
+ |
"Trying to check cutoffs without a box.\n" |
525 |
+ |
"\tOOPSE should have better programmers than that.\n" ); |
526 |
+ |
painCave.isFatal = 1; |
527 |
+ |
simError(); |
528 |
+ |
} |
529 |
+ |
|
530 |
+ |
} |
531 |
+ |
|
532 |
+ |
void SimInfo::addProperty(GenericData* prop){ |
533 |
+ |
|
534 |
+ |
map<string, GenericData*>::iterator result; |
535 |
+ |
result = properties.find(prop->getID()); |
536 |
+ |
|
537 |
+ |
//we can't simply use properties[prop->getID()] = prop, |
538 |
+ |
//it will cause memory leak if we already contain a propery which has the same name of prop |
539 |
+ |
|
540 |
+ |
if(result != properties.end()){ |
541 |
+ |
|
542 |
+ |
delete (*result).second; |
543 |
+ |
(*result).second = prop; |
544 |
+ |
|
545 |
+ |
} |
546 |
+ |
else{ |
547 |
+ |
|
548 |
+ |
properties[prop->getID()] = prop; |
549 |
+ |
|
550 |
+ |
} |
551 |
+ |
|
552 |
+ |
} |
553 |
+ |
|
554 |
+ |
GenericData* SimInfo::getProperty(const string& propName){ |
555 |
+ |
|
556 |
+ |
map<string, GenericData*>::iterator result; |
557 |
+ |
|
558 |
+ |
//string lowerCaseName = (); |
559 |
+ |
|
560 |
+ |
result = properties.find(propName); |
561 |
+ |
|
562 |
+ |
if(result != properties.end()) |
563 |
+ |
return (*result).second; |
564 |
+ |
else |
565 |
+ |
return NULL; |
566 |
+ |
} |
567 |
+ |
|
568 |
+ |
|
569 |
+ |
void getFortranGroupArray(SimInfo* info, vector<double>& mfact, int& ngroup, |
570 |
+ |
vector<int>& groupList, vector<int>& groupStart){ |
571 |
+ |
Molecule* myMols; |
572 |
+ |
Atom** myAtoms; |
573 |
+ |
int numAtom; |
574 |
+ |
int curIndex; |
575 |
+ |
double mtot; |
576 |
+ |
int numMol; |
577 |
+ |
int numCutoffGroups; |
578 |
+ |
CutoffGroup* myCutoffGroup; |
579 |
+ |
vector<CutoffGroup*>::iterator iterCutoff; |
580 |
+ |
Atom* cutoffAtom; |
581 |
+ |
vector<Atom*>::iterator iterAtom; |
582 |
+ |
int atomIndex; |
583 |
+ |
double totalMass; |
584 |
+ |
|
585 |
+ |
mfact.clear(); |
586 |
+ |
groupList.clear(); |
587 |
+ |
groupStart.clear(); |
588 |
+ |
|
589 |
+ |
//Be careful, fortran array begin at 1 |
590 |
+ |
curIndex = 1; |
591 |
+ |
|
592 |
+ |
myMols = info->molecules; |
593 |
+ |
numMol = info->n_mol; |
594 |
+ |
for(int i = 0; i < numMol; i++){ |
595 |
+ |
numCutoffGroups = myMols[i].getNCutoffGroups(); |
596 |
+ |
for(myCutoffGroup =myMols[i].beginCutoffGroup(iterCutoff); myCutoffGroup != NULL; |
597 |
+ |
myCutoffGroup =myMols[i].nextCutoffGroup(iterCutoff)){ |
598 |
+ |
|
599 |
+ |
totalMass = myCutoffGroup->getMass(); |
600 |
+ |
|
601 |
+ |
for(cutoffAtom = myCutoffGroup->beginAtom(iterAtom); cutoffAtom != NULL; |
602 |
+ |
cutoffAtom = myCutoffGroup->nextAtom(iterAtom)){ |
603 |
+ |
mfact.push_back(cutoffAtom->getMass()/totalMass); |
604 |
+ |
groupList.push_back(cutoffAtom->getIndex() + 1); |
605 |
+ |
} |
606 |
+ |
|
607 |
+ |
groupStart.push_back(curIndex); |
608 |
+ |
curIndex += myCutoffGroup->getNumAtom(); |
609 |
+ |
|
610 |
+ |
}//end for(myCutoffGroup =myMols[i].beginCutoffGroup(iterCutoff)) |
611 |
+ |
|
612 |
+ |
}//end for(int i = 0; i < numMol; i++) |
613 |
+ |
|
614 |
+ |
|
615 |
+ |
//The last cutoff group need more element to indicate the end of the cutoff |
616 |
+ |
groupStart.push_back(curIndex); |
617 |
+ |
ngroup = groupStart.size() - 1; |
618 |
+ |
} |