ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/SimInfo.cpp
(Generate patch)

Comparing trunk/OOPSE/libmdtools/SimInfo.cpp (file contents):
Revision 402 by mmeineke, Wed Mar 26 14:55:50 2003 UTC vs.
Revision 1198 by tim, Thu May 27 00:48:12 2004 UTC

# Line 1 | Line 1
1 < #include <cstdlib>
2 < #include <cstring>
1 > #include <stdlib.h>
2 > #include <string.h>
3 > #include <math.h>
4  
5 + #include <iostream>
6 + using namespace std;
7  
8   #include "SimInfo.hpp"
9   #define __C
# Line 9 | Line 12
12  
13   #include "fortranWrappers.hpp"
14  
15 + #include "MatVec3.h"
16 +
17 + #ifdef IS_MPI
18 + #include "mpiSimulation.hpp"
19 + #endif
20 +
21 + inline double roundMe( double x ){
22 +  return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 );
23 + }
24 +          
25 + inline double min( double a, double b ){
26 +  return (a < b ) ? a : b;
27 + }
28 +
29   SimInfo* currentInfo;
30  
31   SimInfo::SimInfo(){
32 <  excludes = NULL;
32 >
33    n_constraints = 0;
34 +  nZconstraints = 0;
35    n_oriented = 0;
36    n_dipoles = 0;
37 +  ndf = 0;
38 +  ndfRaw = 0;
39 +  nZconstraints = 0;
40    the_integrator = NULL;
41    setTemp = 0;
42    thermalTime = 0.0;
43 +  currentTime = 0.0;
44 +  rCut = 0.0;
45 +  rSw = 0.0;
46  
47 +  haveRcut = 0;
48 +  haveRsw = 0;
49 +  boxIsInit = 0;
50 +  
51 +  resetTime = 1e99;
52 +
53 +  orthoRhombic = 0;
54 +  orthoTolerance = 1E-6;
55 +  useInitXSstate = true;
56 +
57    usePBC = 0;
58    useLJ = 0;
59    useSticky = 0;
60 <  useDipole = 0;
60 >  useCharges = 0;
61 >  useDipoles = 0;
62    useReactionField = 0;
63    useGB = 0;
64    useEAM = 0;
65 +  useThermInt = 0;
66  
67 +  haveCutoffGroups = false;
68  
69 +  excludes = Exclude::Instance();
70  
71 +  myConfiguration = new SimState();
72 +
73 +  has_minimizer = false;
74 +  the_minimizer =NULL;
75 +
76 +  ngroup = 0;
77 +
78    wrapMeSimInfo( this );
79   }
80  
81 +
82 + SimInfo::~SimInfo(){
83 +
84 +  delete myConfiguration;
85 +
86 +  map<string, GenericData*>::iterator i;
87 +  
88 +  for(i = properties.begin(); i != properties.end(); i++)
89 +    delete (*i).second;
90 +  
91 + }
92 +
93 + void SimInfo::setBox(double newBox[3]) {
94 +  
95 +  int i, j;
96 +  double tempMat[3][3];
97 +
98 +  for(i=0; i<3; i++)
99 +    for (j=0; j<3; j++) tempMat[i][j] = 0.0;;
100 +
101 +  tempMat[0][0] = newBox[0];
102 +  tempMat[1][1] = newBox[1];
103 +  tempMat[2][2] = newBox[2];
104 +
105 +  setBoxM( tempMat );
106 +
107 + }
108 +
109 + void SimInfo::setBoxM( double theBox[3][3] ){
110 +  
111 +  int i, j;
112 +  double FortranHmat[9]; // to preserve compatibility with Fortran the
113 +                         // ordering in the array is as follows:
114 +                         // [ 0 3 6 ]
115 +                         // [ 1 4 7 ]
116 +                         // [ 2 5 8 ]
117 +  double FortranHmatInv[9]; // the inverted Hmat (for Fortran);
118 +
119 +  if( !boxIsInit ) boxIsInit = 1;
120 +
121 +  for(i=0; i < 3; i++)
122 +    for (j=0; j < 3; j++) Hmat[i][j] = theBox[i][j];
123 +  
124 +  calcBoxL();
125 +  calcHmatInv();
126 +
127 +  for(i=0; i < 3; i++) {
128 +    for (j=0; j < 3; j++) {
129 +      FortranHmat[3*j + i] = Hmat[i][j];
130 +      FortranHmatInv[3*j + i] = HmatInv[i][j];
131 +    }
132 +  }
133 +
134 +  setFortranBoxSize(FortranHmat, FortranHmatInv, &orthoRhombic);
135 +
136 + }
137 +
138 +
139 + void SimInfo::getBoxM (double theBox[3][3]) {
140 +
141 +  int i, j;
142 +  for(i=0; i<3; i++)
143 +    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j];
144 + }
145 +
146 +
147 + void SimInfo::scaleBox(double scale) {
148 +  double theBox[3][3];
149 +  int i, j;
150 +
151 +  // cerr << "Scaling box by " << scale << "\n";
152 +
153 +  for(i=0; i<3; i++)
154 +    for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]*scale;
155 +
156 +  setBoxM(theBox);
157 +
158 + }
159 +
160 + void SimInfo::calcHmatInv( void ) {
161 +  
162 +  int oldOrtho;
163 +  int i,j;
164 +  double smallDiag;
165 +  double tol;
166 +  double sanity[3][3];
167 +
168 +  invertMat3( Hmat, HmatInv );
169 +
170 +  // check to see if Hmat is orthorhombic
171 +  
172 +  oldOrtho = orthoRhombic;
173 +
174 +  smallDiag = fabs(Hmat[0][0]);
175 +  if(smallDiag > fabs(Hmat[1][1])) smallDiag = fabs(Hmat[1][1]);
176 +  if(smallDiag > fabs(Hmat[2][2])) smallDiag = fabs(Hmat[2][2]);
177 +  tol = smallDiag * orthoTolerance;
178 +
179 +  orthoRhombic = 1;
180 +  
181 +  for (i = 0; i < 3; i++ ) {
182 +    for (j = 0 ; j < 3; j++) {
183 +      if (i != j) {
184 +        if (orthoRhombic) {
185 +          if ( fabs(Hmat[i][j]) >= tol) orthoRhombic = 0;
186 +        }        
187 +      }
188 +    }
189 +  }
190 +
191 +  if( oldOrtho != orthoRhombic ){
192 +    
193 +    if( orthoRhombic ){
194 +      sprintf( painCave.errMsg,
195 +               "OOPSE is switching from the default Non-Orthorhombic\n"
196 +               "\tto the faster Orthorhombic periodic boundary computations.\n"
197 +               "\tThis is usually a good thing, but if you wan't the\n"
198 +               "\tNon-Orthorhombic computations, make the orthoBoxTolerance\n"
199 +               "\tvariable ( currently set to %G ) smaller.\n",
200 +               orthoTolerance);
201 +      simError();
202 +    }
203 +    else {
204 +      sprintf( painCave.errMsg,
205 +               "OOPSE is switching from the faster Orthorhombic to the more\n"
206 +               "\tflexible Non-Orthorhombic periodic boundary computations.\n"
207 +               "\tThis is usually because the box has deformed under\n"
208 +               "\tNPTf integration. If you wan't to live on the edge with\n"
209 +               "\tthe Orthorhombic computations, make the orthoBoxTolerance\n"
210 +               "\tvariable ( currently set to %G ) larger.\n",
211 +               orthoTolerance);
212 +      simError();
213 +    }
214 +  }
215 + }
216 +
217 + void SimInfo::calcBoxL( void ){
218 +
219 +  double dx, dy, dz, dsq;
220 +
221 +  // boxVol = Determinant of Hmat
222 +
223 +  boxVol = matDet3( Hmat );
224 +
225 +  // boxLx
226 +  
227 +  dx = Hmat[0][0]; dy = Hmat[1][0]; dz = Hmat[2][0];
228 +  dsq = dx*dx + dy*dy + dz*dz;
229 +  boxL[0] = sqrt( dsq );
230 +  //maxCutoff = 0.5 * boxL[0];
231 +
232 +  // boxLy
233 +  
234 +  dx = Hmat[0][1]; dy = Hmat[1][1]; dz = Hmat[2][1];
235 +  dsq = dx*dx + dy*dy + dz*dz;
236 +  boxL[1] = sqrt( dsq );
237 +  //if( (0.5 * boxL[1]) < maxCutoff ) maxCutoff = 0.5 * boxL[1];
238 +
239 +
240 +  // boxLz
241 +  
242 +  dx = Hmat[0][2]; dy = Hmat[1][2]; dz = Hmat[2][2];
243 +  dsq = dx*dx + dy*dy + dz*dz;
244 +  boxL[2] = sqrt( dsq );
245 +  //if( (0.5 * boxL[2]) < maxCutoff ) maxCutoff = 0.5 * boxL[2];
246 +
247 +  //calculate the max cutoff
248 +  maxCutoff =  calcMaxCutOff();
249 +  
250 +  checkCutOffs();
251 +
252 + }
253 +
254 +
255 + double SimInfo::calcMaxCutOff(){
256 +
257 +  double ri[3], rj[3], rk[3];
258 +  double rij[3], rjk[3], rki[3];
259 +  double minDist;
260 +
261 +  ri[0] = Hmat[0][0];
262 +  ri[1] = Hmat[1][0];
263 +  ri[2] = Hmat[2][0];
264 +
265 +  rj[0] = Hmat[0][1];
266 +  rj[1] = Hmat[1][1];
267 +  rj[2] = Hmat[2][1];
268 +
269 +  rk[0] = Hmat[0][2];
270 +  rk[1] = Hmat[1][2];
271 +  rk[2] = Hmat[2][2];
272 +    
273 +  crossProduct3(ri, rj, rij);
274 +  distXY = dotProduct3(rk,rij) / norm3(rij);
275 +
276 +  crossProduct3(rj,rk, rjk);
277 +  distYZ = dotProduct3(ri,rjk) / norm3(rjk);
278 +
279 +  crossProduct3(rk,ri, rki);
280 +  distZX = dotProduct3(rj,rki) / norm3(rki);
281 +
282 +  minDist = min(min(distXY, distYZ), distZX);
283 +  return minDist/2;
284 +  
285 + }
286 +
287 + void SimInfo::wrapVector( double thePos[3] ){
288 +
289 +  int i;
290 +  double scaled[3];
291 +
292 +  if( !orthoRhombic ){
293 +    // calc the scaled coordinates.
294 +  
295 +
296 +    matVecMul3(HmatInv, thePos, scaled);
297 +    
298 +    for(i=0; i<3; i++)
299 +      scaled[i] -= roundMe(scaled[i]);
300 +    
301 +    // calc the wrapped real coordinates from the wrapped scaled coordinates
302 +    
303 +    matVecMul3(Hmat, scaled, thePos);
304 +
305 +  }
306 +  else{
307 +    // calc the scaled coordinates.
308 +    
309 +    for(i=0; i<3; i++)
310 +      scaled[i] = thePos[i]*HmatInv[i][i];
311 +    
312 +    // wrap the scaled coordinates
313 +    
314 +    for(i=0; i<3; i++)
315 +      scaled[i] -= roundMe(scaled[i]);
316 +    
317 +    // calc the wrapped real coordinates from the wrapped scaled coordinates
318 +    
319 +    for(i=0; i<3; i++)
320 +      thePos[i] = scaled[i]*Hmat[i][i];
321 +  }
322 +    
323 + }
324 +
325 +
326 + int SimInfo::getNDF(){
327 +  int ndf_local;
328 +
329 +  ndf_local = 0;
330 +  
331 +  for(int i = 0; i < integrableObjects.size(); i++){
332 +    ndf_local += 3;
333 +    if (integrableObjects[i]->isDirectional()) {
334 +      if (integrableObjects[i]->isLinear())
335 +        ndf_local += 2;
336 +      else
337 +        ndf_local += 3;
338 +    }
339 +  }
340 +
341 +  // n_constraints is local, so subtract them on each processor:
342 +
343 +  ndf_local -= n_constraints;
344 +
345 + #ifdef IS_MPI
346 +  MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
347 + #else
348 +  ndf = ndf_local;
349 + #endif
350 +
351 +  // nZconstraints is global, as are the 3 COM translations for the
352 +  // entire system:
353 +
354 +  ndf = ndf - 3 - nZconstraints;
355 +
356 +  return ndf;
357 + }
358 +
359 + int SimInfo::getNDFraw() {
360 +  int ndfRaw_local;
361 +
362 +  // Raw degrees of freedom that we have to set
363 +  ndfRaw_local = 0;
364 +
365 +  for(int i = 0; i < integrableObjects.size(); i++){
366 +    ndfRaw_local += 3;
367 +    if (integrableObjects[i]->isDirectional()) {
368 +       if (integrableObjects[i]->isLinear())
369 +        ndfRaw_local += 2;
370 +      else
371 +        ndfRaw_local += 3;
372 +    }
373 +  }
374 +    
375 + #ifdef IS_MPI
376 +  MPI_Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
377 + #else
378 +  ndfRaw = ndfRaw_local;
379 + #endif
380 +
381 +  return ndfRaw;
382 + }
383 +
384 + int SimInfo::getNDFtranslational() {
385 +  int ndfTrans_local;
386 +
387 +  ndfTrans_local = 3 * integrableObjects.size() - n_constraints;
388 +
389 +
390 + #ifdef IS_MPI
391 +  MPI_Allreduce(&ndfTrans_local,&ndfTrans,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
392 + #else
393 +  ndfTrans = ndfTrans_local;
394 + #endif
395 +
396 +  ndfTrans = ndfTrans - 3 - nZconstraints;
397 +
398 +  return ndfTrans;
399 + }
400 +
401 + int SimInfo::getTotIntegrableObjects() {
402 +  int nObjs_local;
403 +  int nObjs;
404 +
405 +  nObjs_local =  integrableObjects.size();
406 +
407 +
408 + #ifdef IS_MPI
409 +  MPI_Allreduce(&nObjs_local,&nObjs,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
410 + #else
411 +  nObjs = nObjs_local;
412 + #endif
413 +
414 +
415 +  return nObjs;
416 + }
417 +
418   void SimInfo::refreshSim(){
419  
420    simtype fInfo;
421    int isError;
422 +  int n_global;
423 +  int* excl;
424  
425 <  fInfo.box[0] = box_x;
42 <  fInfo.box[1] = box_y;
43 <  fInfo.box[2] = box_z;
425 >  fInfo.dielect = 0.0;
426  
427 <  fInfo.rlist = rList;
428 <  fInfo.rcut = rCut;
429 <  fInfo.rrf = ecr;
48 <  fInfo.rt = ecr - est;
49 <  fInfo.dielect = dielectric;
427 >  if( useDipoles ){
428 >    if( useReactionField )fInfo.dielect = dielectric;
429 >  }
430  
431    fInfo.SIM_uses_PBC = usePBC;
432 +  //fInfo.SIM_uses_LJ = 0;
433    fInfo.SIM_uses_LJ = useLJ;
434 <  //fInfo.SIM_uses_sticky = useSticky;
435 <  fInfo.SIM_uses_sticky = 0;
436 <  fInfo.SIM_uses_dipoles = useDipole;
434 >  fInfo.SIM_uses_sticky = useSticky;
435 >  //fInfo.SIM_uses_sticky = 0;
436 >  fInfo.SIM_uses_charges = useCharges;
437 >  fInfo.SIM_uses_dipoles = useDipoles;
438    //fInfo.SIM_uses_dipoles = 0;
439    fInfo.SIM_uses_RF = useReactionField;
440 +  //fInfo.SIM_uses_RF = 0;
441    fInfo.SIM_uses_GB = useGB;
442    fInfo.SIM_uses_EAM = useEAM;
443  
444 <
444 >  n_exclude = excludes->getSize();
445 >  excl = excludes->getFortranArray();
446 >  
447 > #ifdef IS_MPI
448 >  n_global = mpiSim->getTotAtoms();
449 > #else
450 >  n_global = n_atoms;
451 > #endif
452 >  
453    isError = 0;
454 <
455 <  fInfo;
456 <  n_atoms;
457 <  identArray;
458 <  n_exclude;
459 <  excludes;
460 <  nGlobalExcludes;
461 <  globalExcludes;
462 <  isError;
72 <
73 <  setFsimulation( &fInfo, &n_atoms, identArray, &n_exclude, excludes, &nGlobalExcludes, globalExcludes, &isError );
74 <
454 >  
455 >  getFortranGroupArray(this, mfact, ngroup, groupList, groupStart);
456 >  //it may not be a good idea to pass the address of first element in vector
457 >  //since c++ standard does not require vector to be stored continuously in meomory
458 >  //Most of the compilers will organize the memory of vector continuously
459 >  setFsimulation( &fInfo, &n_global, &n_atoms, identArray, &n_exclude, excl,
460 >                  &nGlobalExcludes, globalExcludes, molMembershipArray,
461 >                  &mfact[0], &ngroup, &groupList[0], &groupStart[0], &isError);
462 >  
463    if( isError ){
464 <
464 >    
465      sprintf( painCave.errMsg,
466 <             "There was an error setting the simulation information in fortran.\n" );
466 >             "There was an error setting the simulation information in fortran.\n" );
467      painCave.isFatal = 1;
468      simError();
469    }
470 <
470 >  
471   #ifdef IS_MPI
472    sprintf( checkPointMsg,
473             "succesfully sent the simulation information to fortran.\n");
474    MPIcheckPoint();
475   #endif // is_mpi
476 +  
477 +  this->ndf = this->getNDF();
478 +  this->ndfRaw = this->getNDFraw();
479 +  this->ndfTrans = this->getNDFtranslational();
480   }
481  
482 + void SimInfo::setDefaultRcut( double theRcut ){
483 +  
484 +  haveRcut = 1;
485 +  rCut = theRcut;
486 +  rList = rCut + 1.0;
487 +  
488 +  notifyFortranCutOffs( &rCut, &rSw, &rList );
489 + }
490 +
491 + void SimInfo::setDefaultRcut( double theRcut, double theRsw ){
492 +
493 +  rSw = theRsw;
494 +  setDefaultRcut( theRcut );
495 + }
496 +
497 +
498 + void SimInfo::checkCutOffs( void ){
499 +  
500 +  if( boxIsInit ){
501 +    
502 +    //we need to check cutOffs against the box
503 +    
504 +    if( rCut > maxCutoff ){
505 +      sprintf( painCave.errMsg,
506 +               "cutoffRadius is too large for the current periodic box.\n"
507 +               "\tCurrent Value of cutoffRadius = %G at time %G\n "
508 +               "\tThis is larger than half of at least one of the\n"
509 +               "\tperiodic box vectors.  Right now, the Box matrix is:\n"
510 +               "\n"
511 +               "\t[ %G %G %G ]\n"
512 +               "\t[ %G %G %G ]\n"
513 +               "\t[ %G %G %G ]\n",
514 +               rCut, currentTime,
515 +               Hmat[0][0], Hmat[0][1], Hmat[0][2],
516 +               Hmat[1][0], Hmat[1][1], Hmat[1][2],
517 +               Hmat[2][0], Hmat[2][1], Hmat[2][2]);
518 +      painCave.isFatal = 1;
519 +      simError();
520 +    }    
521 +  } else {
522 +    // initialize this stuff before using it, OK?
523 +    sprintf( painCave.errMsg,
524 +             "Trying to check cutoffs without a box.\n"
525 +             "\tOOPSE should have better programmers than that.\n" );
526 +    painCave.isFatal = 1;
527 +    simError();      
528 +  }
529 +  
530 + }
531 +
532 + void SimInfo::addProperty(GenericData* prop){
533 +
534 +  map<string, GenericData*>::iterator result;
535 +  result = properties.find(prop->getID());
536 +  
537 +  //we can't simply use  properties[prop->getID()] = prop,
538 +  //it will cause memory leak if we already contain a propery which has the same name of prop
539 +  
540 +  if(result != properties.end()){
541 +    
542 +    delete (*result).second;
543 +    (*result).second = prop;
544 +      
545 +  }
546 +  else{
547 +
548 +    properties[prop->getID()] = prop;
549 +
550 +  }
551 +    
552 + }
553 +
554 + GenericData* SimInfo::getProperty(const string& propName){
555 +
556 +  map<string, GenericData*>::iterator result;
557 +  
558 +  //string lowerCaseName = ();
559 +  
560 +  result = properties.find(propName);
561 +  
562 +  if(result != properties.end())
563 +    return (*result).second;  
564 +  else  
565 +    return NULL;  
566 + }
567 +
568 +
569 + void getFortranGroupArray(SimInfo* info, vector<double>& mfact, int& ngroup,
570 +                          vector<int>& groupList, vector<int>& groupStart){
571 +  Molecule* myMols;
572 +  Atom** myAtoms;
573 +  int numAtom;
574 +  int curIndex;
575 +  double mtot;
576 +  int numMol;
577 +  int numCutoffGroups;
578 +  CutoffGroup* myCutoffGroup;
579 +  vector<CutoffGroup*>::iterator iterCutoff;
580 +  Atom* cutoffAtom;
581 +  vector<Atom*>::iterator iterAtom;
582 +  int atomIndex;
583 +  double totalMass;
584 +  
585 +  mfact.clear();
586 +  groupList.clear();
587 +  groupStart.clear();
588 +  
589 +  //Be careful, fortran array begin at 1
590 +  curIndex = 1;
591 +
592 +  myMols = info->molecules;
593 +  numMol = info->n_mol;
594 +  for(int i  = 0; i < numMol; i++){
595 +    numCutoffGroups = myMols[i].getNCutoffGroups();
596 +    for(myCutoffGroup =myMols[i].beginCutoffGroup(iterCutoff); myCutoffGroup != NULL;
597 +                                                  myCutoffGroup =myMols[i].nextCutoffGroup(iterCutoff)){
598 +
599 +      totalMass = myCutoffGroup->getMass();
600 +      
601 +      for(cutoffAtom = myCutoffGroup->beginAtom(iterAtom); cutoffAtom != NULL;
602 +                                           cutoffAtom = myCutoffGroup->nextAtom(iterAtom)){
603 +        mfact.push_back(cutoffAtom->getMass()/totalMass);
604 +        groupList.push_back(cutoffAtom->getIndex() + 1);
605 +      }  
606 +                              
607 +      groupStart.push_back(curIndex);
608 +      curIndex += myCutoffGroup->getNumAtom();
609 +
610 +    }//end for(myCutoffGroup =myMols[i].beginCutoffGroup(iterCutoff))
611 +
612 +  }//end for(int i  = 0; i < numMol; i++)
613 +
614 +
615 +  //The last cutoff group need more element to indicate the end of the cutoff
616 +  groupStart.push_back(curIndex);
617 +  ngroup = groupStart.size() - 1;
618 + }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines