ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/SimInfo.cpp
(Generate patch)

Comparing trunk/OOPSE/libmdtools/SimInfo.cpp (file contents):
Revision 642 by mmeineke, Mon Jul 21 16:23:57 2003 UTC vs.
Revision 1198 by tim, Thu May 27 00:48:12 2004 UTC

# Line 1 | Line 1
1 < #include <cstdlib>
2 < #include <cstring>
3 < #include <cmath>
1 > #include <stdlib.h>
2 > #include <string.h>
3 > #include <math.h>
4  
5   #include <iostream>
6   using namespace std;
# Line 12 | Line 12 | using namespace std;
12  
13   #include "fortranWrappers.hpp"
14  
15 + #include "MatVec3.h"
16 +
17   #ifdef IS_MPI
18   #include "mpiSimulation.hpp"
19   #endif
# Line 20 | Line 22 | inline double roundMe( double x ){
22    return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 );
23   }
24            
25 + inline double min( double a, double b ){
26 +  return (a < b ) ? a : b;
27 + }
28  
29   SimInfo* currentInfo;
30  
31   SimInfo::SimInfo(){
32 <  excludes = NULL;
32 >
33    n_constraints = 0;
34 +  nZconstraints = 0;
35    n_oriented = 0;
36    n_dipoles = 0;
37    ndf = 0;
38    ndfRaw = 0;
39 +  nZconstraints = 0;
40    the_integrator = NULL;
41    setTemp = 0;
42    thermalTime = 0.0;
43    currentTime = 0.0;
44    rCut = 0.0;
45 <  ecr = 0.0;
39 <  est = 0.0;
40 <  oldEcr = 0.0;
41 <  oldRcut = 0.0;
45 >  rSw = 0.0;
46  
47 <  haveOrigRcut = 0;
48 <  haveOrigEcr = 0;
47 >  haveRcut = 0;
48 >  haveRsw = 0;
49    boxIsInit = 0;
50    
51 <  
51 >  resetTime = 1e99;
52  
53 +  orthoRhombic = 0;
54 +  orthoTolerance = 1E-6;
55 +  useInitXSstate = true;
56 +
57    usePBC = 0;
58    useLJ = 0;
59    useSticky = 0;
60 <  useDipole = 0;
60 >  useCharges = 0;
61 >  useDipoles = 0;
62    useReactionField = 0;
63    useGB = 0;
64    useEAM = 0;
65 +  useThermInt = 0;
66  
67 +  haveCutoffGroups = false;
68 +
69 +  excludes = Exclude::Instance();
70 +
71 +  myConfiguration = new SimState();
72 +
73 +  has_minimizer = false;
74 +  the_minimizer =NULL;
75 +
76 +  ngroup = 0;
77 +
78    wrapMeSimInfo( this );
79   }
80  
81 +
82 + SimInfo::~SimInfo(){
83 +
84 +  delete myConfiguration;
85 +
86 +  map<string, GenericData*>::iterator i;
87 +  
88 +  for(i = properties.begin(); i != properties.end(); i++)
89 +    delete (*i).second;
90 +  
91 + }
92 +
93   void SimInfo::setBox(double newBox[3]) {
94    
95    int i, j;
# Line 75 | Line 108 | void SimInfo::setBoxM( double theBox[3][3] ){
108  
109   void SimInfo::setBoxM( double theBox[3][3] ){
110    
111 <  int i, j, status;
79 <  double smallestBoxL, maxCutoff;
111 >  int i, j;
112    double FortranHmat[9]; // to preserve compatibility with Fortran the
113                           // ordering in the array is as follows:
114                           // [ 0 3 6 ]
# Line 84 | Line 116 | void SimInfo::setBoxM( double theBox[3][3] ){
116                           // [ 2 5 8 ]
117    double FortranHmatInv[9]; // the inverted Hmat (for Fortran);
118  
87  
119    if( !boxIsInit ) boxIsInit = 1;
120  
121    for(i=0; i < 3; i++)
# Line 128 | Line 159 | void SimInfo::calcHmatInv( void ) {
159  
160   void SimInfo::calcHmatInv( void ) {
161    
162 +  int oldOrtho;
163    int i,j;
164    double smallDiag;
165    double tol;
# Line 135 | Line 167 | void SimInfo::calcHmatInv( void ) {
167  
168    invertMat3( Hmat, HmatInv );
169  
138  // Check the inverse to make sure it is sane:
139
140  matMul3( Hmat, HmatInv, sanity );
141    
170    // check to see if Hmat is orthorhombic
171    
172 <  smallDiag = Hmat[0][0];
145 <  if(smallDiag > Hmat[1][1]) smallDiag = Hmat[1][1];
146 <  if(smallDiag > Hmat[2][2]) smallDiag = Hmat[2][2];
147 <  tol = smallDiag * 1E-6;
172 >  oldOrtho = orthoRhombic;
173  
174 +  smallDiag = fabs(Hmat[0][0]);
175 +  if(smallDiag > fabs(Hmat[1][1])) smallDiag = fabs(Hmat[1][1]);
176 +  if(smallDiag > fabs(Hmat[2][2])) smallDiag = fabs(Hmat[2][2]);
177 +  tol = smallDiag * orthoTolerance;
178 +
179    orthoRhombic = 1;
180    
181    for (i = 0; i < 3; i++ ) {
182      for (j = 0 ; j < 3; j++) {
183        if (i != j) {
184          if (orthoRhombic) {
185 <          if (Hmat[i][j] >= tol) orthoRhombic = 0;
185 >          if ( fabs(Hmat[i][j]) >= tol) orthoRhombic = 0;
186          }        
187        }
188      }
189    }
160 }
190  
191 < double SimInfo::matDet3(double a[3][3]) {
192 <  int i, j, k;
193 <  double determinant;
194 <
195 <  determinant = 0.0;
196 <
197 <  for(i = 0; i < 3; i++) {
198 <    j = (i+1)%3;
199 <    k = (i+2)%3;
200 <
201 <    determinant += a[0][i] * (a[1][j]*a[2][k] - a[1][k]*a[2][j]);
173 <  }
174 <
175 <  return determinant;
176 < }
177 <
178 < void SimInfo::invertMat3(double a[3][3], double b[3][3]) {
179 <  
180 <  int  i, j, k, l, m, n;
181 <  double determinant;
182 <
183 <  determinant = matDet3( a );
184 <
185 <  if (determinant == 0.0) {
186 <    sprintf( painCave.errMsg,
187 <             "Can't invert a matrix with a zero determinant!\n");
188 <    painCave.isFatal = 1;
189 <    simError();
190 <  }
191 <
192 <  for (i=0; i < 3; i++) {
193 <    j = (i+1)%3;
194 <    k = (i+2)%3;
195 <    for(l = 0; l < 3; l++) {
196 <      m = (l+1)%3;
197 <      n = (l+2)%3;
198 <      
199 <      b[l][i] = (a[j][m]*a[k][n] - a[j][n]*a[k][m]) / determinant;
191 >  if( oldOrtho != orthoRhombic ){
192 >    
193 >    if( orthoRhombic ){
194 >      sprintf( painCave.errMsg,
195 >               "OOPSE is switching from the default Non-Orthorhombic\n"
196 >               "\tto the faster Orthorhombic periodic boundary computations.\n"
197 >               "\tThis is usually a good thing, but if you wan't the\n"
198 >               "\tNon-Orthorhombic computations, make the orthoBoxTolerance\n"
199 >               "\tvariable ( currently set to %G ) smaller.\n",
200 >               orthoTolerance);
201 >      simError();
202      }
203 <  }
204 < }
205 <
206 < void SimInfo::matMul3(double a[3][3], double b[3][3], double c[3][3]) {
207 <  double r00, r01, r02, r10, r11, r12, r20, r21, r22;
208 <
209 <  r00 = a[0][0]*b[0][0] + a[0][1]*b[1][0] + a[0][2]*b[2][0];
210 <  r01 = a[0][0]*b[0][1] + a[0][1]*b[1][1] + a[0][2]*b[2][1];
211 <  r02 = a[0][0]*b[0][2] + a[0][1]*b[1][2] + a[0][2]*b[2][2];
212 <  
211 <  r10 = a[1][0]*b[0][0] + a[1][1]*b[1][0] + a[1][2]*b[2][0];
212 <  r11 = a[1][0]*b[0][1] + a[1][1]*b[1][1] + a[1][2]*b[2][1];
213 <  r12 = a[1][0]*b[0][2] + a[1][1]*b[1][2] + a[1][2]*b[2][2];
214 <  
215 <  r20 = a[2][0]*b[0][0] + a[2][1]*b[1][0] + a[2][2]*b[2][0];
216 <  r21 = a[2][0]*b[0][1] + a[2][1]*b[1][1] + a[2][2]*b[2][1];
217 <  r22 = a[2][0]*b[0][2] + a[2][1]*b[1][2] + a[2][2]*b[2][2];
218 <  
219 <  c[0][0] = r00; c[0][1] = r01; c[0][2] = r02;
220 <  c[1][0] = r10; c[1][1] = r11; c[1][2] = r12;
221 <  c[2][0] = r20; c[2][1] = r21; c[2][2] = r22;
222 < }
223 <
224 < void SimInfo::matVecMul3(double m[3][3], double inVec[3], double outVec[3]) {
225 <  double a0, a1, a2;
226 <
227 <  a0 = inVec[0];  a1 = inVec[1];  a2 = inVec[2];
228 <
229 <  outVec[0] = m[0][0]*a0 + m[0][1]*a1 + m[0][2]*a2;
230 <  outVec[1] = m[1][0]*a0 + m[1][1]*a1 + m[1][2]*a2;
231 <  outVec[2] = m[2][0]*a0 + m[2][1]*a1 + m[2][2]*a2;
232 < }
233 <
234 < void SimInfo::transposeMat3(double in[3][3], double out[3][3]) {
235 <  double temp[3][3];
236 <  int i, j;
237 <
238 <  for (i = 0; i < 3; i++) {
239 <    for (j = 0; j < 3; j++) {
240 <      temp[j][i] = in[i][j];
203 >    else {
204 >      sprintf( painCave.errMsg,
205 >               "OOPSE is switching from the faster Orthorhombic to the more\n"
206 >               "\tflexible Non-Orthorhombic periodic boundary computations.\n"
207 >               "\tThis is usually because the box has deformed under\n"
208 >               "\tNPTf integration. If you wan't to live on the edge with\n"
209 >               "\tthe Orthorhombic computations, make the orthoBoxTolerance\n"
210 >               "\tvariable ( currently set to %G ) larger.\n",
211 >               orthoTolerance);
212 >      simError();
213      }
214    }
243  for (i = 0; i < 3; i++) {
244    for (j = 0; j < 3; j++) {
245      out[i][j] = temp[i][j];
246    }
247  }
215   }
249  
250 void SimInfo::printMat3(double A[3][3] ){
216  
252  std::cerr
253            << "[ " << A[0][0] << ", " << A[0][1] << ", " << A[0][2] << " ]\n"
254            << "[ " << A[1][0] << ", " << A[1][1] << ", " << A[1][2] << " ]\n"
255            << "[ " << A[2][0] << ", " << A[2][1] << ", " << A[2][2] << " ]\n";
256 }
257
258 void SimInfo::printMat9(double A[9] ){
259
260  std::cerr
261            << "[ " << A[0] << ", " << A[1] << ", " << A[2] << " ]\n"
262            << "[ " << A[3] << ", " << A[4] << ", " << A[5] << " ]\n"
263            << "[ " << A[6] << ", " << A[7] << ", " << A[8] << " ]\n";
264 }
265
217   void SimInfo::calcBoxL( void ){
218  
219    double dx, dy, dz, dsq;
269  int i;
220  
221    // boxVol = Determinant of Hmat
222  
# Line 277 | Line 227 | void SimInfo::calcBoxL( void ){
227    dx = Hmat[0][0]; dy = Hmat[1][0]; dz = Hmat[2][0];
228    dsq = dx*dx + dy*dy + dz*dz;
229    boxL[0] = sqrt( dsq );
230 <  maxCutoff = 0.5 * boxL[0];
230 >  //maxCutoff = 0.5 * boxL[0];
231  
232    // boxLy
233    
234    dx = Hmat[0][1]; dy = Hmat[1][1]; dz = Hmat[2][1];
235    dsq = dx*dx + dy*dy + dz*dz;
236    boxL[1] = sqrt( dsq );
237 <  if( (0.5 * boxL[1]) < maxCutoff ) maxCutoff = 0.5 * boxL[1];
237 >  //if( (0.5 * boxL[1]) < maxCutoff ) maxCutoff = 0.5 * boxL[1];
238  
239 +
240    // boxLz
241    
242    dx = Hmat[0][2]; dy = Hmat[1][2]; dz = Hmat[2][2];
243    dsq = dx*dx + dy*dy + dz*dz;
244    boxL[2] = sqrt( dsq );
245 <  if( (0.5 * boxL[2]) < maxCutoff ) maxCutoff = 0.5 * boxL[2];
245 >  //if( (0.5 * boxL[2]) < maxCutoff ) maxCutoff = 0.5 * boxL[2];
246  
247 +  //calculate the max cutoff
248 +  maxCutoff =  calcMaxCutOff();
249 +  
250 +  checkCutOffs();
251 +
252   }
253  
254  
255 + double SimInfo::calcMaxCutOff(){
256 +
257 +  double ri[3], rj[3], rk[3];
258 +  double rij[3], rjk[3], rki[3];
259 +  double minDist;
260 +
261 +  ri[0] = Hmat[0][0];
262 +  ri[1] = Hmat[1][0];
263 +  ri[2] = Hmat[2][0];
264 +
265 +  rj[0] = Hmat[0][1];
266 +  rj[1] = Hmat[1][1];
267 +  rj[2] = Hmat[2][1];
268 +
269 +  rk[0] = Hmat[0][2];
270 +  rk[1] = Hmat[1][2];
271 +  rk[2] = Hmat[2][2];
272 +    
273 +  crossProduct3(ri, rj, rij);
274 +  distXY = dotProduct3(rk,rij) / norm3(rij);
275 +
276 +  crossProduct3(rj,rk, rjk);
277 +  distYZ = dotProduct3(ri,rjk) / norm3(rjk);
278 +
279 +  crossProduct3(rk,ri, rki);
280 +  distZX = dotProduct3(rj,rki) / norm3(rki);
281 +
282 +  minDist = min(min(distXY, distYZ), distZX);
283 +  return minDist/2;
284 +  
285 + }
286 +
287   void SimInfo::wrapVector( double thePos[3] ){
288  
289 <  int i, j, k;
289 >  int i;
290    double scaled[3];
291  
292    if( !orthoRhombic ){
# Line 336 | Line 324 | int SimInfo::getNDF(){
324  
325  
326   int SimInfo::getNDF(){
327 <  int ndf_local, ndf;
327 >  int ndf_local;
328 >
329 >  ndf_local = 0;
330    
331 <  ndf_local = 3 * n_atoms + 3 * n_oriented - n_constraints;
331 >  for(int i = 0; i < integrableObjects.size(); i++){
332 >    ndf_local += 3;
333 >    if (integrableObjects[i]->isDirectional()) {
334 >      if (integrableObjects[i]->isLinear())
335 >        ndf_local += 2;
336 >      else
337 >        ndf_local += 3;
338 >    }
339 >  }
340  
341 +  // n_constraints is local, so subtract them on each processor:
342 +
343 +  ndf_local -= n_constraints;
344 +
345   #ifdef IS_MPI
346    MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
347   #else
348    ndf = ndf_local;
349   #endif
350  
351 <  ndf = ndf - 3;
351 >  // nZconstraints is global, as are the 3 COM translations for the
352 >  // entire system:
353  
354 +  ndf = ndf - 3 - nZconstraints;
355 +
356    return ndf;
357   }
358  
359   int SimInfo::getNDFraw() {
360 <  int ndfRaw_local, ndfRaw;
360 >  int ndfRaw_local;
361  
362    // Raw degrees of freedom that we have to set
363 <  ndfRaw_local = 3 * n_atoms + 3 * n_oriented;
364 <  
363 >  ndfRaw_local = 0;
364 >
365 >  for(int i = 0; i < integrableObjects.size(); i++){
366 >    ndfRaw_local += 3;
367 >    if (integrableObjects[i]->isDirectional()) {
368 >       if (integrableObjects[i]->isLinear())
369 >        ndfRaw_local += 2;
370 >      else
371 >        ndfRaw_local += 3;
372 >    }
373 >  }
374 >    
375   #ifdef IS_MPI
376    MPI_Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
377   #else
# Line 365 | Line 380 | int SimInfo::getNDFraw() {
380  
381    return ndfRaw;
382   }
383 <
383 >
384 > int SimInfo::getNDFtranslational() {
385 >  int ndfTrans_local;
386 >
387 >  ndfTrans_local = 3 * integrableObjects.size() - n_constraints;
388 >
389 >
390 > #ifdef IS_MPI
391 >  MPI_Allreduce(&ndfTrans_local,&ndfTrans,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
392 > #else
393 >  ndfTrans = ndfTrans_local;
394 > #endif
395 >
396 >  ndfTrans = ndfTrans - 3 - nZconstraints;
397 >
398 >  return ndfTrans;
399 > }
400 >
401 > int SimInfo::getTotIntegrableObjects() {
402 >  int nObjs_local;
403 >  int nObjs;
404 >
405 >  nObjs_local =  integrableObjects.size();
406 >
407 >
408 > #ifdef IS_MPI
409 >  MPI_Allreduce(&nObjs_local,&nObjs,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
410 > #else
411 >  nObjs = nObjs_local;
412 > #endif
413 >
414 >
415 >  return nObjs;
416 > }
417 >
418   void SimInfo::refreshSim(){
419  
420    simtype fInfo;
# Line 375 | Line 424 | void SimInfo::refreshSim(){
424  
425    fInfo.dielect = 0.0;
426  
427 <  if( useDipole ){
427 >  if( useDipoles ){
428      if( useReactionField )fInfo.dielect = dielectric;
429    }
430  
# Line 384 | Line 433 | void SimInfo::refreshSim(){
433    fInfo.SIM_uses_LJ = useLJ;
434    fInfo.SIM_uses_sticky = useSticky;
435    //fInfo.SIM_uses_sticky = 0;
436 <  fInfo.SIM_uses_dipoles = useDipole;
436 >  fInfo.SIM_uses_charges = useCharges;
437 >  fInfo.SIM_uses_dipoles = useDipoles;
438    //fInfo.SIM_uses_dipoles = 0;
439 <  //fInfo.SIM_uses_RF = useReactionField;
440 <  fInfo.SIM_uses_RF = 0;
439 >  fInfo.SIM_uses_RF = useReactionField;
440 >  //fInfo.SIM_uses_RF = 0;
441    fInfo.SIM_uses_GB = useGB;
442    fInfo.SIM_uses_EAM = useEAM;
443  
444 <  excl = Exclude::getArray();
445 <
444 >  n_exclude = excludes->getSize();
445 >  excl = excludes->getFortranArray();
446 >  
447   #ifdef IS_MPI
448    n_global = mpiSim->getTotAtoms();
449   #else
450    n_global = n_atoms;
451   #endif
452 <
452 >  
453    isError = 0;
454 <
454 >  
455 >  getFortranGroupArray(this, mfact, ngroup, groupList, groupStart);
456 >  //it may not be a good idea to pass the address of first element in vector
457 >  //since c++ standard does not require vector to be stored continuously in meomory
458 >  //Most of the compilers will organize the memory of vector continuously
459    setFsimulation( &fInfo, &n_global, &n_atoms, identArray, &n_exclude, excl,
460 <                  &nGlobalExcludes, globalExcludes, molMembershipArray,
461 <                  &isError );
462 <
460 >                  &nGlobalExcludes, globalExcludes, molMembershipArray,
461 >                  &mfact[0], &ngroup, &groupList[0], &groupStart[0], &isError);
462 >  
463    if( isError ){
464 <
464 >    
465      sprintf( painCave.errMsg,
466 <             "There was an error setting the simulation information in fortran.\n" );
466 >             "There was an error setting the simulation information in fortran.\n" );
467      painCave.isFatal = 1;
468      simError();
469    }
470 <
470 >  
471   #ifdef IS_MPI
472    sprintf( checkPointMsg,
473             "succesfully sent the simulation information to fortran.\n");
474    MPIcheckPoint();
475   #endif // is_mpi
476 <
476 >  
477    this->ndf = this->getNDF();
478    this->ndfRaw = this->getNDFraw();
479 <
479 >  this->ndfTrans = this->getNDFtranslational();
480   }
481  
482 <
483 < void SimInfo::setRcut( double theRcut ){
484 <
430 <  if( !haveOrigRcut ){
431 <    haveOrigRcut = 1;
432 <    origRcut = theRcut;
433 <  }
434 <
482 > void SimInfo::setDefaultRcut( double theRcut ){
483 >  
484 >  haveRcut = 1;
485    rCut = theRcut;
486 <  checkCutOffs();
486 >  rList = rCut + 1.0;
487 >  
488 >  notifyFortranCutOffs( &rCut, &rSw, &rList );
489   }
490  
491 < void SimInfo::setEcr( double theEcr ){
491 > void SimInfo::setDefaultRcut( double theRcut, double theRsw ){
492  
493 <  if( !haveOrigEcr ){
494 <    haveOrigEcr = 1;
443 <    origEcr = theEcr;
444 <  }
445 <
446 <  ecr = theEcr;
447 <  checkCutOffs();
493 >  rSw = theRsw;
494 >  setDefaultRcut( theRcut );
495   }
496  
450 void SimInfo::setEcr( double theEcr, double theEst ){
497  
452  est = theEst;
453  setEcr( theEcr );
454 }
455
456
498   void SimInfo::checkCutOffs( void ){
499 <
459 <  int cutChanged = 0;
460 <
499 >  
500    if( boxIsInit ){
501      
502      //we need to check cutOffs against the box
503      
504 <    if( maxCutoff > rCut ){
466 <      if( rCut < origRcut ){
467 <        rCut = origRcut;
468 <        if (rCut > maxCutoff) rCut = maxCutoff;
469 <        
470 <        sprintf( painCave.errMsg,
471 <                 "New Box size is setting the long range cutoff radius "
472 <                 "to %lf\n",
473 <                 rCut );
474 <        painCave.isFatal = 0;
475 <        simError();
476 <      }
477 <    }
478 <
479 <    if( maxCutoff > ecr ){
480 <      if( ecr < origEcr ){
481 <        rCut = origEcr;
482 <        if (ecr > maxCutoff) ecr = maxCutoff;
483 <        
484 <        sprintf( painCave.errMsg,
485 <                 "New Box size is setting the electrostaticCutoffRadius "
486 <                 "to %lf\n",
487 <                 ecr );
488 <        painCave.isFatal = 0;
489 <        simError();
490 <      }
491 <    }
492 <
493 <
494 <    if (rCut > maxCutoff) {
504 >    if( rCut > maxCutoff ){
505        sprintf( painCave.errMsg,
506 <               "New Box size is setting the long range cutoff radius "
507 <               "to %lf\n",
508 <               maxCutoff );
509 <      painCave.isFatal = 0;
506 >               "cutoffRadius is too large for the current periodic box.\n"
507 >               "\tCurrent Value of cutoffRadius = %G at time %G\n "
508 >               "\tThis is larger than half of at least one of the\n"
509 >               "\tperiodic box vectors.  Right now, the Box matrix is:\n"
510 >               "\n"
511 >               "\t[ %G %G %G ]\n"
512 >               "\t[ %G %G %G ]\n"
513 >               "\t[ %G %G %G ]\n",
514 >               rCut, currentTime,
515 >               Hmat[0][0], Hmat[0][1], Hmat[0][2],
516 >               Hmat[1][0], Hmat[1][1], Hmat[1][2],
517 >               Hmat[2][0], Hmat[2][1], Hmat[2][2]);
518 >      painCave.isFatal = 1;
519        simError();
520 <      rCut = maxCutoff;
521 <    }
520 >    }    
521 >  } else {
522 >    // initialize this stuff before using it, OK?
523 >    sprintf( painCave.errMsg,
524 >             "Trying to check cutoffs without a box.\n"
525 >             "\tOOPSE should have better programmers than that.\n" );
526 >    painCave.isFatal = 1;
527 >    simError();      
528 >  }
529 >  
530 > }
531  
532 <    if( ecr > maxCutoff){
505 <      sprintf( painCave.errMsg,
506 <               "New Box size is setting the electrostaticCutoffRadius "
507 <               "to %lf\n",
508 <               maxCutoff  );
509 <      painCave.isFatal = 0;
510 <      simError();      
511 <      ecr = maxCutoff;
512 <    }
532 > void SimInfo::addProperty(GenericData* prop){
533  
534 +  map<string, GenericData*>::iterator result;
535 +  result = properties.find(prop->getID());
536 +  
537 +  //we can't simply use  properties[prop->getID()] = prop,
538 +  //it will cause memory leak if we already contain a propery which has the same name of prop
539 +  
540 +  if(result != properties.end()){
541      
542 +    delete (*result).second;
543 +    (*result).second = prop;
544 +      
545    }
546 <  
546 >  else{
547  
548 <  if( (oldEcr != ecr) || ( oldRcut != rCut ) ) cutChanged = 1;
548 >    properties[prop->getID()] = prop;
549  
550 <  // rlist is the 1.0 plus max( rcut, ecr )
550 >  }
551 >    
552 > }
553 >
554 > GenericData* SimInfo::getProperty(const string& propName){
555 >
556 >  map<string, GenericData*>::iterator result;
557    
558 <  ( rCut > ecr )? rList = rCut + 1.0: rList = ecr + 1.0;
558 >  //string lowerCaseName = ();
559 >  
560 >  result = properties.find(propName);
561 >  
562 >  if(result != properties.end())
563 >    return (*result).second;  
564 >  else  
565 >    return NULL;  
566 > }
567  
524  if( cutChanged ){
525    
526    notifyFortranCutOffs( &rCut, &rList, &ecr, &est );
527  }
568  
569 <  oldEcr = ecr;
570 <  oldRcut = rCut;
569 > void getFortranGroupArray(SimInfo* info, vector<double>& mfact, int& ngroup,
570 >                          vector<int>& groupList, vector<int>& groupStart){
571 >  Molecule* myMols;
572 >  Atom** myAtoms;
573 >  int numAtom;
574 >  int curIndex;
575 >  double mtot;
576 >  int numMol;
577 >  int numCutoffGroups;
578 >  CutoffGroup* myCutoffGroup;
579 >  vector<CutoffGroup*>::iterator iterCutoff;
580 >  Atom* cutoffAtom;
581 >  vector<Atom*>::iterator iterAtom;
582 >  int atomIndex;
583 >  double totalMass;
584 >  
585 >  mfact.clear();
586 >  groupList.clear();
587 >  groupStart.clear();
588 >  
589 >  //Be careful, fortran array begin at 1
590 >  curIndex = 1;
591 >
592 >  myMols = info->molecules;
593 >  numMol = info->n_mol;
594 >  for(int i  = 0; i < numMol; i++){
595 >    numCutoffGroups = myMols[i].getNCutoffGroups();
596 >    for(myCutoffGroup =myMols[i].beginCutoffGroup(iterCutoff); myCutoffGroup != NULL;
597 >                                                  myCutoffGroup =myMols[i].nextCutoffGroup(iterCutoff)){
598 >
599 >      totalMass = myCutoffGroup->getMass();
600 >      
601 >      for(cutoffAtom = myCutoffGroup->beginAtom(iterAtom); cutoffAtom != NULL;
602 >                                           cutoffAtom = myCutoffGroup->nextAtom(iterAtom)){
603 >        mfact.push_back(cutoffAtom->getMass()/totalMass);
604 >        groupList.push_back(cutoffAtom->getIndex() + 1);
605 >      }  
606 >                              
607 >      groupStart.push_back(curIndex);
608 >      curIndex += myCutoffGroup->getNumAtom();
609 >
610 >    }//end for(myCutoffGroup =myMols[i].beginCutoffGroup(iterCutoff))
611 >
612 >  }//end for(int i  = 0; i < numMol; i++)
613 >
614 >
615 >  //The last cutoff group need more element to indicate the end of the cutoff
616 >  groupStart.push_back(curIndex);
617 >  ngroup = groupStart.size() - 1;
618   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines