ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/group/trunk/OOPSE/libmdtools/SimInfo.cpp
(Generate patch)

Comparing trunk/OOPSE/libmdtools/SimInfo.cpp (file contents):
Revision 855 by mmeineke, Thu Nov 6 22:01:37 2003 UTC vs.
Revision 1144 by tim, Sat May 1 18:52:38 2004 UTC

# Line 12 | Line 12 | using namespace std;
12  
13   #include "fortranWrappers.hpp"
14  
15 + #include "MatVec3.h"
16 +
17   #ifdef IS_MPI
18   #include "mpiSimulation.hpp"
19   #endif
# Line 20 | Line 22 | inline double roundMe( double x ){
22    return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 );
23   }
24            
25 + inline double min( double a, double b ){
26 +  return (a < b ) ? a : b;
27 + }
28  
29   SimInfo* currentInfo;
30  
31   SimInfo::SimInfo(){
32 <  excludes = NULL;
32 >
33    n_constraints = 0;
34    nZconstraints = 0;
35    n_oriented = 0;
# Line 37 | Line 42 | SimInfo::SimInfo(){
42    thermalTime = 0.0;
43    currentTime = 0.0;
44    rCut = 0.0;
40  origRcut = -1.0;
45    ecr = 0.0;
42  origEcr = -1.0;
46    est = 0.0;
44  oldEcr = 0.0;
45  oldRcut = 0.0;
47  
48 <  haveOrigRcut = 0;
49 <  haveOrigEcr = 0;
48 >  haveRcut = 0;
49 >  haveEcr = 0;
50    boxIsInit = 0;
51    
52    resetTime = 1e99;
53  
54 +  orthoRhombic = 0;
55    orthoTolerance = 1E-6;
56    useInitXSstate = true;
57  
58    usePBC = 0;
59    useLJ = 0;
60    useSticky = 0;
61 <  useDipole = 0;
61 >  useCharges = 0;
62 >  useDipoles = 0;
63    useReactionField = 0;
64    useGB = 0;
65    useEAM = 0;
66 +  useMolecularCutoffs = 0;
67  
68 +  excludes = Exclude::Instance();
69 +
70    myConfiguration = new SimState();
71  
72 +  has_minimizer = false;
73 +  the_minimizer =NULL;
74 +
75 +  ngroup = 0;
76 +
77    wrapMeSimInfo( this );
78   }
79  
# Line 75 | Line 86 | SimInfo::~SimInfo(){
86    
87    for(i = properties.begin(); i != properties.end(); i++)
88      delete (*i).second;
89 <    
89 >  
90   }
91  
92   void SimInfo::setBox(double newBox[3]) {
# Line 104 | Line 115 | void SimInfo::setBoxM( double theBox[3][3] ){
115                           // [ 2 5 8 ]
116    double FortranHmatInv[9]; // the inverted Hmat (for Fortran);
117  
107  
118    if( !boxIsInit ) boxIsInit = 1;
119  
120    for(i=0; i < 3; i++)
# Line 181 | Line 191 | void SimInfo::calcHmatInv( void ) {
191      
192      if( orthoRhombic ){
193        sprintf( painCave.errMsg,
194 <               "Hmat is switching from Non-Orthorhombic to OrthoRhombic\n"
195 <               "       If this is a bad thing, change the orthoBoxTolerance( currently %G ).\n",
194 >               "OOPSE is switching from the default Non-Orthorhombic\n"
195 >               "\tto the faster Orthorhombic periodic boundary computations.\n"
196 >               "\tThis is usually a good thing, but if you wan't the\n"
197 >               "\tNon-Orthorhombic computations, make the orthoBoxTolerance\n"
198 >               "\tvariable ( currently set to %G ) smaller.\n",
199                 orthoTolerance);
200        simError();
201      }
202      else {
203        sprintf( painCave.errMsg,
204 <               "Hmat is switching from Orthorhombic to Non-OrthoRhombic\n"
205 <               "       If this is a bad thing, change the orthoBoxTolerance( currently %G ).\n",
204 >               "OOPSE is switching from the faster Orthorhombic to the more\n"
205 >               "\tflexible Non-Orthorhombic periodic boundary computations.\n"
206 >               "\tThis is usually because the box has deformed under\n"
207 >               "\tNPTf integration. If you wan't to live on the edge with\n"
208 >               "\tthe Orthorhombic computations, make the orthoBoxTolerance\n"
209 >               "\tvariable ( currently set to %G ) larger.\n",
210                 orthoTolerance);
211        simError();
195    }
196  }
197 }
198
199 double SimInfo::matDet3(double a[3][3]) {
200  int i, j, k;
201  double determinant;
202
203  determinant = 0.0;
204
205  for(i = 0; i < 3; i++) {
206    j = (i+1)%3;
207    k = (i+2)%3;
208
209    determinant += a[0][i] * (a[1][j]*a[2][k] - a[1][k]*a[2][j]);
210  }
211
212  return determinant;
213 }
214
215 void SimInfo::invertMat3(double a[3][3], double b[3][3]) {
216  
217  int  i, j, k, l, m, n;
218  double determinant;
219
220  determinant = matDet3( a );
221
222  if (determinant == 0.0) {
223    sprintf( painCave.errMsg,
224             "Can't invert a matrix with a zero determinant!\n");
225    painCave.isFatal = 1;
226    simError();
227  }
228
229  for (i=0; i < 3; i++) {
230    j = (i+1)%3;
231    k = (i+2)%3;
232    for(l = 0; l < 3; l++) {
233      m = (l+1)%3;
234      n = (l+2)%3;
235      
236      b[l][i] = (a[j][m]*a[k][n] - a[j][n]*a[k][m]) / determinant;
237    }
238  }
239 }
240
241 void SimInfo::matMul3(double a[3][3], double b[3][3], double c[3][3]) {
242  double r00, r01, r02, r10, r11, r12, r20, r21, r22;
243
244  r00 = a[0][0]*b[0][0] + a[0][1]*b[1][0] + a[0][2]*b[2][0];
245  r01 = a[0][0]*b[0][1] + a[0][1]*b[1][1] + a[0][2]*b[2][1];
246  r02 = a[0][0]*b[0][2] + a[0][1]*b[1][2] + a[0][2]*b[2][2];
247  
248  r10 = a[1][0]*b[0][0] + a[1][1]*b[1][0] + a[1][2]*b[2][0];
249  r11 = a[1][0]*b[0][1] + a[1][1]*b[1][1] + a[1][2]*b[2][1];
250  r12 = a[1][0]*b[0][2] + a[1][1]*b[1][2] + a[1][2]*b[2][2];
251  
252  r20 = a[2][0]*b[0][0] + a[2][1]*b[1][0] + a[2][2]*b[2][0];
253  r21 = a[2][0]*b[0][1] + a[2][1]*b[1][1] + a[2][2]*b[2][1];
254  r22 = a[2][0]*b[0][2] + a[2][1]*b[1][2] + a[2][2]*b[2][2];
255  
256  c[0][0] = r00; c[0][1] = r01; c[0][2] = r02;
257  c[1][0] = r10; c[1][1] = r11; c[1][2] = r12;
258  c[2][0] = r20; c[2][1] = r21; c[2][2] = r22;
259 }
260
261 void SimInfo::matVecMul3(double m[3][3], double inVec[3], double outVec[3]) {
262  double a0, a1, a2;
263
264  a0 = inVec[0];  a1 = inVec[1];  a2 = inVec[2];
265
266  outVec[0] = m[0][0]*a0 + m[0][1]*a1 + m[0][2]*a2;
267  outVec[1] = m[1][0]*a0 + m[1][1]*a1 + m[1][2]*a2;
268  outVec[2] = m[2][0]*a0 + m[2][1]*a1 + m[2][2]*a2;
269 }
270
271 void SimInfo::transposeMat3(double in[3][3], double out[3][3]) {
272  double temp[3][3];
273  int i, j;
274
275  for (i = 0; i < 3; i++) {
276    for (j = 0; j < 3; j++) {
277      temp[j][i] = in[i][j];
212      }
213    }
280  for (i = 0; i < 3; i++) {
281    for (j = 0; j < 3; j++) {
282      out[i][j] = temp[i][j];
283    }
284  }
214   }
286  
287 void SimInfo::printMat3(double A[3][3] ){
215  
289  std::cerr
290            << "[ " << A[0][0] << ", " << A[0][1] << ", " << A[0][2] << " ]\n"
291            << "[ " << A[1][0] << ", " << A[1][1] << ", " << A[1][2] << " ]\n"
292            << "[ " << A[2][0] << ", " << A[2][1] << ", " << A[2][2] << " ]\n";
293 }
294
295 void SimInfo::printMat9(double A[9] ){
296
297  std::cerr
298            << "[ " << A[0] << ", " << A[1] << ", " << A[2] << " ]\n"
299            << "[ " << A[3] << ", " << A[4] << ", " << A[5] << " ]\n"
300            << "[ " << A[6] << ", " << A[7] << ", " << A[8] << " ]\n";
301 }
302
303
304 void SimInfo::crossProduct3(double a[3],double b[3], double out[3]){
305
306      out[0] = a[1] * b[2] - a[2] * b[1];
307      out[1] = a[2] * b[0] - a[0] * b[2] ;
308      out[2] = a[0] * b[1] - a[1] * b[0];
309      
310 }
311
312 double SimInfo::dotProduct3(double a[3], double b[3]){
313  return a[0]*b[0] + a[1]*b[1]+ a[2]*b[2];
314 }
315
316 double SimInfo::length3(double a[3]){
317  return sqrt(a[0]*a[0] + a[1]*a[1] + a[2]*a[2]);
318 }
319
216   void SimInfo::calcBoxL( void ){
217  
218    double dx, dy, dz, dsq;
# Line 372 | Line 268 | double SimInfo::calcMaxCutOff(){
268    rk[0] = Hmat[0][2];
269    rk[1] = Hmat[1][2];
270    rk[2] = Hmat[2][2];
271 <  
272 <  crossProduct3(ri,rj, rij);
273 <  distXY = dotProduct3(rk,rij) / length3(rij);
271 >    
272 >  crossProduct3(ri, rj, rij);
273 >  distXY = dotProduct3(rk,rij) / norm3(rij);
274  
275    crossProduct3(rj,rk, rjk);
276 <  distYZ = dotProduct3(ri,rjk) / length3(rjk);
276 >  distYZ = dotProduct3(ri,rjk) / norm3(rjk);
277  
278    crossProduct3(rk,ri, rki);
279 <  distZX = dotProduct3(rj,rki) / length3(rki);
279 >  distZX = dotProduct3(rj,rki) / norm3(rki);
280  
281    minDist = min(min(distXY, distYZ), distZX);
282    return minDist/2;
# Line 428 | Line 324 | int SimInfo::getNDF(){
324  
325   int SimInfo::getNDF(){
326    int ndf_local;
327 +
328 +  ndf_local = 0;
329    
330 <  ndf_local = 3 * n_atoms + 3 * n_oriented - n_constraints;
330 >  for(int i = 0; i < integrableObjects.size(); i++){
331 >    ndf_local += 3;
332 >    if (integrableObjects[i]->isDirectional()) {
333 >      if (integrableObjects[i]->isLinear())
334 >        ndf_local += 2;
335 >      else
336 >        ndf_local += 3;
337 >    }
338 >  }
339  
340 +  // n_constraints is local, so subtract them on each processor:
341 +
342 +  ndf_local -= n_constraints;
343 +
344   #ifdef IS_MPI
345    MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
346   #else
347    ndf = ndf_local;
348   #endif
349  
350 +  // nZconstraints is global, as are the 3 COM translations for the
351 +  // entire system:
352 +
353    ndf = ndf - 3 - nZconstraints;
354  
355    return ndf;
# Line 446 | Line 359 | int SimInfo::getNDFraw() {
359    int ndfRaw_local;
360  
361    // Raw degrees of freedom that we have to set
362 <  ndfRaw_local = 3 * n_atoms + 3 * n_oriented;
363 <  
362 >  ndfRaw_local = 0;
363 >
364 >  for(int i = 0; i < integrableObjects.size(); i++){
365 >    ndfRaw_local += 3;
366 >    if (integrableObjects[i]->isDirectional()) {
367 >       if (integrableObjects[i]->isLinear())
368 >        ndfRaw_local += 2;
369 >      else
370 >        ndfRaw_local += 3;
371 >    }
372 >  }
373 >    
374   #ifdef IS_MPI
375    MPI_Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
376   #else
# Line 460 | Line 383 | int SimInfo::getNDFtranslational() {
383   int SimInfo::getNDFtranslational() {
384    int ndfTrans_local;
385  
386 <  ndfTrans_local = 3 * n_atoms - n_constraints;
386 >  ndfTrans_local = 3 * integrableObjects.size() - n_constraints;
387  
388 +
389   #ifdef IS_MPI
390    MPI_Allreduce(&ndfTrans_local,&ndfTrans,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
391   #else
# Line 473 | Line 397 | int SimInfo::getNDFtranslational() {
397    return ndfTrans;
398   }
399  
400 + int SimInfo::getTotIntegrableObjects() {
401 +  int nObjs_local;
402 +  int nObjs;
403 +
404 +  nObjs_local =  integrableObjects.size();
405 +
406 +
407 + #ifdef IS_MPI
408 +  MPI_Allreduce(&nObjs_local,&nObjs,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD);
409 + #else
410 +  nObjs = nObjs_local;
411 + #endif
412 +
413 +
414 +  return nObjs;
415 + }
416 +
417   void SimInfo::refreshSim(){
418  
419    simtype fInfo;
# Line 482 | Line 423 | void SimInfo::refreshSim(){
423  
424    fInfo.dielect = 0.0;
425  
426 <  if( useDipole ){
426 >  if( useDipoles ){
427      if( useReactionField )fInfo.dielect = dielectric;
428    }
429  
# Line 491 | Line 432 | void SimInfo::refreshSim(){
432    fInfo.SIM_uses_LJ = useLJ;
433    fInfo.SIM_uses_sticky = useSticky;
434    //fInfo.SIM_uses_sticky = 0;
435 <  fInfo.SIM_uses_dipoles = useDipole;
435 >  fInfo.SIM_uses_charges = useCharges;
436 >  fInfo.SIM_uses_dipoles = useDipoles;
437    //fInfo.SIM_uses_dipoles = 0;
438 <  //fInfo.SIM_uses_RF = useReactionField;
439 <  fInfo.SIM_uses_RF = 0;
438 >  fInfo.SIM_uses_RF = useReactionField;
439 >  //fInfo.SIM_uses_RF = 0;
440    fInfo.SIM_uses_GB = useGB;
441    fInfo.SIM_uses_EAM = useEAM;
442  
443 <  excl = Exclude::getArray();
444 <
443 >  n_exclude = excludes->getSize();
444 >  excl = excludes->getFortranArray();
445 >  
446   #ifdef IS_MPI
447    n_global = mpiSim->getTotAtoms();
448   #else
# Line 508 | Line 451 | void SimInfo::refreshSim(){
451  
452    isError = 0;
453  
454 + getFortranGroupArray(this, mfact, ngroup, groupList, groupStart);
455 +
456    setFsimulation( &fInfo, &n_global, &n_atoms, identArray, &n_exclude, excl,
457 <                  &nGlobalExcludes, globalExcludes, molMembershipArray,
458 <                  &isError );
457 >                                    &nGlobalExcludes, globalExcludes, molMembershipArray,
458 >                                    &mfact[0], &ngroup, &groupList[0], &groupStart[0], &isError );
459  
460    if( isError ){
461  
# Line 531 | Line 476 | void SimInfo::refreshSim(){
476    this->ndfTrans = this->getNDFtranslational();
477   }
478  
534
535 void SimInfo::setRcut( double theRcut ){
536
537  rCut = theRcut;
538  checkCutOffs();
539 }
540
479   void SimInfo::setDefaultRcut( double theRcut ){
480  
481 <  haveOrigRcut = 1;
544 <  origRcut = theRcut;
481 >  haveRcut = 1;
482    rCut = theRcut;
483  
484    ( rCut > ecr )? rList = rCut + 1.0: rList = ecr + 1.0;
# Line 549 | Line 486 | void SimInfo::setDefaultRcut( double theRcut ){
486    notifyFortranCutOffs( &rCut, &rList, &ecr, &est );
487   }
488  
552 void SimInfo::setEcr( double theEcr ){
553
554  ecr = theEcr;
555  checkCutOffs();
556 }
557
489   void SimInfo::setDefaultEcr( double theEcr ){
490  
491 <  haveOrigEcr = 1;
492 <  origEcr = theEcr;
491 >  haveEcr = 1;
492 >  ecr = theEcr;
493    
494    ( rCut > ecr )? rList = rCut + 1.0: rList = ecr + 1.0;
495  
565  ecr = theEcr;
566
496    notifyFortranCutOffs( &rCut, &rList, &ecr, &est );
497   }
498  
570 void SimInfo::setEcr( double theEcr, double theEst ){
571
572  est = theEst;
573  setEcr( theEcr );
574 }
575
499   void SimInfo::setDefaultEcr( double theEcr, double theEst ){
500  
501    est = theEst;
# Line 581 | Line 504 | void SimInfo::checkCutOffs( void ){
504  
505  
506   void SimInfo::checkCutOffs( void ){
584
585  int cutChanged = 0;
507    
508    if( boxIsInit ){
509      
510      //we need to check cutOffs against the box
511 <
512 <    //detect the change of rCut
592 <    if(( maxCutoff > rCut )&&(usePBC)){
593 <      if( rCut < origRcut ){
594 <        rCut = origRcut;
595 <        
596 <        if (rCut > maxCutoff)
597 <          rCut = maxCutoff;
598 <  
599 <          sprintf( painCave.errMsg,
600 <                    "New Box size is setting the long range cutoff radius "
601 <                    "to %lf at time %lf\n",
602 <                    rCut, currentTime );
603 <          painCave.isFatal = 0;
604 <          simError();
605 <      }
606 <    }
607 <    else if ((rCut > maxCutoff)&&(usePBC)) {
511 >    
512 >    if( rCut > maxCutoff ){
513        sprintf( painCave.errMsg,
514 <               "New Box size is setting the long range cutoff radius "
515 <               "to %lf at time %lf\n",
516 <               maxCutoff, currentTime );
517 <      painCave.isFatal = 0;
514 >               "LJrcut is too large for the current periodic box.\n"
515 >               "\tCurrent Value of LJrcut = %G at time %G\n "
516 >               "\tThis is larger than half of at least one of the\n"
517 >               "\tperiodic box vectors.  Right now, the Box matrix is:\n"
518 >               "\n"
519 >               "\t[ %G %G %G ]\n"
520 >               "\t[ %G %G %G ]\n"
521 >               "\t[ %G %G %G ]\n",
522 >               rCut, currentTime,
523 >               Hmat[0][0], Hmat[0][1], Hmat[0][2],
524 >               Hmat[1][0], Hmat[1][1], Hmat[1][2],
525 >               Hmat[2][0], Hmat[2][1], Hmat[2][2]);
526 >      painCave.isFatal = 1;
527        simError();
614      rCut = maxCutoff;
528      }
529 <
530 <
531 <    //detect the change of ecr
532 <    if( maxCutoff > ecr ){
533 <      if( ecr < origEcr ){
534 <        ecr = origEcr;
535 <        if (ecr > maxCutoff) ecr = maxCutoff;
536 <  
537 <          sprintf( painCave.errMsg,
538 <                    "New Box size is setting the electrostaticCutoffRadius "
539 <                    "to %lf at time %lf\n",
540 <                    ecr, currentTime );
541 <            painCave.isFatal = 0;
542 <            simError();
529 >    
530 >    if( haveEcr ){
531 >      if( ecr > maxCutoff ){
532 >        sprintf( painCave.errMsg,
533 >                 "electrostaticCutoffRadius is too large for the current\n"
534 >                 "\tperiodic box.\n\n"
535 >                 "\tCurrent Value of ECR = %G at time %G\n "
536 >                 "\tThis is larger than half of at least one of the\n"
537 >                 "\tperiodic box vectors.  Right now, the Box matrix is:\n"
538 >                 "\n"
539 >                 "\t[ %G %G %G ]\n"
540 >                 "\t[ %G %G %G ]\n"
541 >                 "\t[ %G %G %G ]\n",
542 >                 ecr, currentTime,
543 >                 Hmat[0][0], Hmat[0][1], Hmat[0][2],
544 >                 Hmat[1][0], Hmat[1][1], Hmat[1][2],
545 >                 Hmat[2][0], Hmat[2][1], Hmat[2][2]);
546 >        painCave.isFatal = 1;
547 >        simError();
548        }
549      }
632    else if( ecr > maxCutoff){
633      sprintf( painCave.errMsg,
634               "New Box size is setting the electrostaticCutoffRadius "
635               "to %lf at time %lf\n",
636               maxCutoff, currentTime  );
637      painCave.isFatal = 0;
638      simError();      
639      ecr = maxCutoff;
640    }
641
642    if( (oldEcr != ecr) || ( oldRcut != rCut ) ) cutChanged = 1;
643    
644    // rlist is the 1.0 plus max( rcut, ecr )
645    
646    ( rCut > ecr )? rList = rCut + 1.0: rList = ecr + 1.0;
647    
648    if( cutChanged ){
649      notifyFortranCutOffs( &rCut, &rList, &ecr, &est );
650    }
651    
652    oldEcr = ecr;
653    oldRcut = rCut;
654    
550    } else {
551      // initialize this stuff before using it, OK?
552      sprintf( painCave.errMsg,
553 <             "Trying to check cutoffs without a box. Be smarter.\n" );
553 >             "Trying to check cutoffs without a box.\n"
554 >             "\tOOPSE should have better programmers than that.\n" );
555      painCave.isFatal = 1;
556      simError();      
557    }
# Line 698 | Line 594 | GenericData* SimInfo::getProperty(const string& propNa
594      return NULL;  
595   }
596  
701 vector<GenericData*> SimInfo::getProperties(){
597  
598 <  vector<GenericData*> result;
599 <  map<string, GenericData*>::iterator i;
600 <  
601 <  for(i = properties.begin(); i != properties.end(); i++)
602 <    result.push_back((*i).second);
598 > void getFortranGroupArray(SimInfo* info, vector<double>& mfact, int& ngroup,
599 >                                                          vector<int>& groupList, vector<int>& groupStart){
600 >  Molecule* mol;
601 >  int numAtom;
602 >  int curIndex;
603 >
604 >  mfact.clear();
605 >  groupList.clear();
606 >  groupStart.clear();
607 >
608 >  //Be careful, fortran array begin at 1
609 >  curIndex = 1;
610      
611 <  return result;
612 < }
611 >  if(info->useMolecularCutoffs){
612 >    //if using molecular cutoff
613 >    ngroup = info->n_mol;
614  
615 < double SimInfo::matTrace3(double m[3][3]){
616 <  double trace;
617 <  trace = m[0][0] + m[1][1] + m[2][2];
615 >    for(int i = 0; i < ngroup; i ++){
616 >      mol = &(info->molecules[i]);
617 >      numAtom = mol->getNAtoms();
618 >      
619 >      for(int j=0; j < numAtom; j++){
620 > #ifdef IS_MPI
621 >        groupList.push_back((info->atoms[i])->getGlobalIndex() + 1);
622 > #else
623 >        groupList.push_back((info->atoms[i])->getIndex() + 1);
624 > #endif
625 >      }//for(int j=0; j < numAtom; j++)
626 >            
627 >      groupStart.push_back(curIndex);
628 >      curIndex += numAtom;
629 >      
630 >    }//end for(int i =0 ; i < ngroup; i++)    
631 >  }
632 >  else{
633 >    //using atomic cutoff, every single atom is just a group
634 >    ngroup = info->n_atoms;
635 >    for(int i =0 ; i < ngroup; i++){
636 >      groupStart.push_back(curIndex++);
637  
638 <  return trace;
638 > #ifdef IS_MPI
639 >      groupList.push_back((info->atoms[i])->getGlobalIndex() + 1);
640 > #else
641 >      groupList.push_back((info->atoms[i])->getIndex() + 1);
642 > #endif
643 >
644 >    }//end for(int i =0 ; i < ngroup; i++)
645 >
646 >  }//end if (info->useMolecularCutoffs)
647 >
648   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines