1 |
#include <stdlib.h> |
2 |
#include <string.h> |
3 |
#include <math.h> |
4 |
|
5 |
#include <iostream> |
6 |
using namespace std; |
7 |
|
8 |
#include "SimInfo.hpp" |
9 |
#define __C |
10 |
#include "fSimulation.h" |
11 |
#include "simError.h" |
12 |
|
13 |
#include "fortranWrappers.hpp" |
14 |
|
15 |
#include "MatVec3.h" |
16 |
|
17 |
#ifdef IS_MPI |
18 |
#include "mpiSimulation.hpp" |
19 |
#endif |
20 |
|
21 |
inline double roundMe( double x ){ |
22 |
return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 ); |
23 |
} |
24 |
|
25 |
inline double min( double a, double b ){ |
26 |
return (a < b ) ? a : b; |
27 |
} |
28 |
|
29 |
SimInfo* currentInfo; |
30 |
|
31 |
SimInfo::SimInfo(){ |
32 |
|
33 |
n_constraints = 0; |
34 |
nZconstraints = 0; |
35 |
n_oriented = 0; |
36 |
n_dipoles = 0; |
37 |
ndf = 0; |
38 |
ndfRaw = 0; |
39 |
nZconstraints = 0; |
40 |
the_integrator = NULL; |
41 |
setTemp = 0; |
42 |
thermalTime = 0.0; |
43 |
currentTime = 0.0; |
44 |
rCut = 0.0; |
45 |
rSw = 0.0; |
46 |
|
47 |
haveRcut = 0; |
48 |
haveRsw = 0; |
49 |
boxIsInit = 0; |
50 |
|
51 |
resetTime = 1e99; |
52 |
|
53 |
orthoRhombic = 0; |
54 |
orthoTolerance = 1E-6; |
55 |
useInitXSstate = true; |
56 |
|
57 |
usePBC = 0; |
58 |
useLJ = 0; |
59 |
useSticky = 0; |
60 |
useCharges = 0; |
61 |
useDipoles = 0; |
62 |
useReactionField = 0; |
63 |
useGB = 0; |
64 |
useEAM = 0; |
65 |
|
66 |
haveCutoffGroups = false; |
67 |
|
68 |
excludes = Exclude::Instance(); |
69 |
|
70 |
myConfiguration = new SimState(); |
71 |
|
72 |
has_minimizer = false; |
73 |
the_minimizer =NULL; |
74 |
|
75 |
ngroup = 0; |
76 |
|
77 |
wrapMeSimInfo( this ); |
78 |
} |
79 |
|
80 |
|
81 |
SimInfo::~SimInfo(){ |
82 |
|
83 |
delete myConfiguration; |
84 |
|
85 |
map<string, GenericData*>::iterator i; |
86 |
|
87 |
for(i = properties.begin(); i != properties.end(); i++) |
88 |
delete (*i).second; |
89 |
|
90 |
} |
91 |
|
92 |
void SimInfo::setBox(double newBox[3]) { |
93 |
|
94 |
int i, j; |
95 |
double tempMat[3][3]; |
96 |
|
97 |
for(i=0; i<3; i++) |
98 |
for (j=0; j<3; j++) tempMat[i][j] = 0.0;; |
99 |
|
100 |
tempMat[0][0] = newBox[0]; |
101 |
tempMat[1][1] = newBox[1]; |
102 |
tempMat[2][2] = newBox[2]; |
103 |
|
104 |
setBoxM( tempMat ); |
105 |
|
106 |
} |
107 |
|
108 |
void SimInfo::setBoxM( double theBox[3][3] ){ |
109 |
|
110 |
int i, j; |
111 |
double FortranHmat[9]; // to preserve compatibility with Fortran the |
112 |
// ordering in the array is as follows: |
113 |
// [ 0 3 6 ] |
114 |
// [ 1 4 7 ] |
115 |
// [ 2 5 8 ] |
116 |
double FortranHmatInv[9]; // the inverted Hmat (for Fortran); |
117 |
|
118 |
if( !boxIsInit ) boxIsInit = 1; |
119 |
|
120 |
for(i=0; i < 3; i++) |
121 |
for (j=0; j < 3; j++) Hmat[i][j] = theBox[i][j]; |
122 |
|
123 |
calcBoxL(); |
124 |
calcHmatInv(); |
125 |
|
126 |
for(i=0; i < 3; i++) { |
127 |
for (j=0; j < 3; j++) { |
128 |
FortranHmat[3*j + i] = Hmat[i][j]; |
129 |
FortranHmatInv[3*j + i] = HmatInv[i][j]; |
130 |
} |
131 |
} |
132 |
|
133 |
setFortranBoxSize(FortranHmat, FortranHmatInv, &orthoRhombic); |
134 |
|
135 |
} |
136 |
|
137 |
|
138 |
void SimInfo::getBoxM (double theBox[3][3]) { |
139 |
|
140 |
int i, j; |
141 |
for(i=0; i<3; i++) |
142 |
for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]; |
143 |
} |
144 |
|
145 |
|
146 |
void SimInfo::scaleBox(double scale) { |
147 |
double theBox[3][3]; |
148 |
int i, j; |
149 |
|
150 |
// cerr << "Scaling box by " << scale << "\n"; |
151 |
|
152 |
for(i=0; i<3; i++) |
153 |
for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]*scale; |
154 |
|
155 |
setBoxM(theBox); |
156 |
|
157 |
} |
158 |
|
159 |
void SimInfo::calcHmatInv( void ) { |
160 |
|
161 |
int oldOrtho; |
162 |
int i,j; |
163 |
double smallDiag; |
164 |
double tol; |
165 |
double sanity[3][3]; |
166 |
|
167 |
invertMat3( Hmat, HmatInv ); |
168 |
|
169 |
// check to see if Hmat is orthorhombic |
170 |
|
171 |
oldOrtho = orthoRhombic; |
172 |
|
173 |
smallDiag = fabs(Hmat[0][0]); |
174 |
if(smallDiag > fabs(Hmat[1][1])) smallDiag = fabs(Hmat[1][1]); |
175 |
if(smallDiag > fabs(Hmat[2][2])) smallDiag = fabs(Hmat[2][2]); |
176 |
tol = smallDiag * orthoTolerance; |
177 |
|
178 |
orthoRhombic = 1; |
179 |
|
180 |
for (i = 0; i < 3; i++ ) { |
181 |
for (j = 0 ; j < 3; j++) { |
182 |
if (i != j) { |
183 |
if (orthoRhombic) { |
184 |
if ( fabs(Hmat[i][j]) >= tol) orthoRhombic = 0; |
185 |
} |
186 |
} |
187 |
} |
188 |
} |
189 |
|
190 |
if( oldOrtho != orthoRhombic ){ |
191 |
|
192 |
if( orthoRhombic ){ |
193 |
sprintf( painCave.errMsg, |
194 |
"OOPSE is switching from the default Non-Orthorhombic\n" |
195 |
"\tto the faster Orthorhombic periodic boundary computations.\n" |
196 |
"\tThis is usually a good thing, but if you wan't the\n" |
197 |
"\tNon-Orthorhombic computations, make the orthoBoxTolerance\n" |
198 |
"\tvariable ( currently set to %G ) smaller.\n", |
199 |
orthoTolerance); |
200 |
simError(); |
201 |
} |
202 |
else { |
203 |
sprintf( painCave.errMsg, |
204 |
"OOPSE is switching from the faster Orthorhombic to the more\n" |
205 |
"\tflexible Non-Orthorhombic periodic boundary computations.\n" |
206 |
"\tThis is usually because the box has deformed under\n" |
207 |
"\tNPTf integration. If you wan't to live on the edge with\n" |
208 |
"\tthe Orthorhombic computations, make the orthoBoxTolerance\n" |
209 |
"\tvariable ( currently set to %G ) larger.\n", |
210 |
orthoTolerance); |
211 |
simError(); |
212 |
} |
213 |
} |
214 |
} |
215 |
|
216 |
void SimInfo::calcBoxL( void ){ |
217 |
|
218 |
double dx, dy, dz, dsq; |
219 |
|
220 |
// boxVol = Determinant of Hmat |
221 |
|
222 |
boxVol = matDet3( Hmat ); |
223 |
|
224 |
// boxLx |
225 |
|
226 |
dx = Hmat[0][0]; dy = Hmat[1][0]; dz = Hmat[2][0]; |
227 |
dsq = dx*dx + dy*dy + dz*dz; |
228 |
boxL[0] = sqrt( dsq ); |
229 |
//maxCutoff = 0.5 * boxL[0]; |
230 |
|
231 |
// boxLy |
232 |
|
233 |
dx = Hmat[0][1]; dy = Hmat[1][1]; dz = Hmat[2][1]; |
234 |
dsq = dx*dx + dy*dy + dz*dz; |
235 |
boxL[1] = sqrt( dsq ); |
236 |
//if( (0.5 * boxL[1]) < maxCutoff ) maxCutoff = 0.5 * boxL[1]; |
237 |
|
238 |
|
239 |
// boxLz |
240 |
|
241 |
dx = Hmat[0][2]; dy = Hmat[1][2]; dz = Hmat[2][2]; |
242 |
dsq = dx*dx + dy*dy + dz*dz; |
243 |
boxL[2] = sqrt( dsq ); |
244 |
//if( (0.5 * boxL[2]) < maxCutoff ) maxCutoff = 0.5 * boxL[2]; |
245 |
|
246 |
//calculate the max cutoff |
247 |
maxCutoff = calcMaxCutOff(); |
248 |
|
249 |
checkCutOffs(); |
250 |
|
251 |
} |
252 |
|
253 |
|
254 |
double SimInfo::calcMaxCutOff(){ |
255 |
|
256 |
double ri[3], rj[3], rk[3]; |
257 |
double rij[3], rjk[3], rki[3]; |
258 |
double minDist; |
259 |
|
260 |
ri[0] = Hmat[0][0]; |
261 |
ri[1] = Hmat[1][0]; |
262 |
ri[2] = Hmat[2][0]; |
263 |
|
264 |
rj[0] = Hmat[0][1]; |
265 |
rj[1] = Hmat[1][1]; |
266 |
rj[2] = Hmat[2][1]; |
267 |
|
268 |
rk[0] = Hmat[0][2]; |
269 |
rk[1] = Hmat[1][2]; |
270 |
rk[2] = Hmat[2][2]; |
271 |
|
272 |
crossProduct3(ri, rj, rij); |
273 |
distXY = dotProduct3(rk,rij) / norm3(rij); |
274 |
|
275 |
crossProduct3(rj,rk, rjk); |
276 |
distYZ = dotProduct3(ri,rjk) / norm3(rjk); |
277 |
|
278 |
crossProduct3(rk,ri, rki); |
279 |
distZX = dotProduct3(rj,rki) / norm3(rki); |
280 |
|
281 |
minDist = min(min(distXY, distYZ), distZX); |
282 |
return minDist/2; |
283 |
|
284 |
} |
285 |
|
286 |
void SimInfo::wrapVector( double thePos[3] ){ |
287 |
|
288 |
int i; |
289 |
double scaled[3]; |
290 |
|
291 |
if( !orthoRhombic ){ |
292 |
// calc the scaled coordinates. |
293 |
|
294 |
|
295 |
matVecMul3(HmatInv, thePos, scaled); |
296 |
|
297 |
for(i=0; i<3; i++) |
298 |
scaled[i] -= roundMe(scaled[i]); |
299 |
|
300 |
// calc the wrapped real coordinates from the wrapped scaled coordinates |
301 |
|
302 |
matVecMul3(Hmat, scaled, thePos); |
303 |
|
304 |
} |
305 |
else{ |
306 |
// calc the scaled coordinates. |
307 |
|
308 |
for(i=0; i<3; i++) |
309 |
scaled[i] = thePos[i]*HmatInv[i][i]; |
310 |
|
311 |
// wrap the scaled coordinates |
312 |
|
313 |
for(i=0; i<3; i++) |
314 |
scaled[i] -= roundMe(scaled[i]); |
315 |
|
316 |
// calc the wrapped real coordinates from the wrapped scaled coordinates |
317 |
|
318 |
for(i=0; i<3; i++) |
319 |
thePos[i] = scaled[i]*Hmat[i][i]; |
320 |
} |
321 |
|
322 |
} |
323 |
|
324 |
|
325 |
int SimInfo::getNDF(){ |
326 |
int ndf_local; |
327 |
|
328 |
ndf_local = 0; |
329 |
|
330 |
for(int i = 0; i < integrableObjects.size(); i++){ |
331 |
ndf_local += 3; |
332 |
if (integrableObjects[i]->isDirectional()) { |
333 |
if (integrableObjects[i]->isLinear()) |
334 |
ndf_local += 2; |
335 |
else |
336 |
ndf_local += 3; |
337 |
} |
338 |
} |
339 |
|
340 |
// n_constraints is local, so subtract them on each processor: |
341 |
|
342 |
ndf_local -= n_constraints; |
343 |
|
344 |
#ifdef IS_MPI |
345 |
MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
346 |
#else |
347 |
ndf = ndf_local; |
348 |
#endif |
349 |
|
350 |
// nZconstraints is global, as are the 3 COM translations for the |
351 |
// entire system: |
352 |
|
353 |
ndf = ndf - 3 - nZconstraints; |
354 |
|
355 |
return ndf; |
356 |
} |
357 |
|
358 |
int SimInfo::getNDFraw() { |
359 |
int ndfRaw_local; |
360 |
|
361 |
// Raw degrees of freedom that we have to set |
362 |
ndfRaw_local = 0; |
363 |
|
364 |
for(int i = 0; i < integrableObjects.size(); i++){ |
365 |
ndfRaw_local += 3; |
366 |
if (integrableObjects[i]->isDirectional()) { |
367 |
if (integrableObjects[i]->isLinear()) |
368 |
ndfRaw_local += 2; |
369 |
else |
370 |
ndfRaw_local += 3; |
371 |
} |
372 |
} |
373 |
|
374 |
#ifdef IS_MPI |
375 |
MPI_Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
376 |
#else |
377 |
ndfRaw = ndfRaw_local; |
378 |
#endif |
379 |
|
380 |
return ndfRaw; |
381 |
} |
382 |
|
383 |
int SimInfo::getNDFtranslational() { |
384 |
int ndfTrans_local; |
385 |
|
386 |
ndfTrans_local = 3 * integrableObjects.size() - n_constraints; |
387 |
|
388 |
|
389 |
#ifdef IS_MPI |
390 |
MPI_Allreduce(&ndfTrans_local,&ndfTrans,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
391 |
#else |
392 |
ndfTrans = ndfTrans_local; |
393 |
#endif |
394 |
|
395 |
ndfTrans = ndfTrans - 3 - nZconstraints; |
396 |
|
397 |
return ndfTrans; |
398 |
} |
399 |
|
400 |
int SimInfo::getTotIntegrableObjects() { |
401 |
int nObjs_local; |
402 |
int nObjs; |
403 |
|
404 |
nObjs_local = integrableObjects.size(); |
405 |
|
406 |
|
407 |
#ifdef IS_MPI |
408 |
MPI_Allreduce(&nObjs_local,&nObjs,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
409 |
#else |
410 |
nObjs = nObjs_local; |
411 |
#endif |
412 |
|
413 |
|
414 |
return nObjs; |
415 |
} |
416 |
|
417 |
void SimInfo::refreshSim(){ |
418 |
|
419 |
simtype fInfo; |
420 |
int isError; |
421 |
int n_global; |
422 |
int* excl; |
423 |
|
424 |
fInfo.dielect = 0.0; |
425 |
|
426 |
if( useDipoles ){ |
427 |
if( useReactionField )fInfo.dielect = dielectric; |
428 |
} |
429 |
|
430 |
fInfo.SIM_uses_PBC = usePBC; |
431 |
//fInfo.SIM_uses_LJ = 0; |
432 |
fInfo.SIM_uses_LJ = useLJ; |
433 |
fInfo.SIM_uses_sticky = useSticky; |
434 |
//fInfo.SIM_uses_sticky = 0; |
435 |
fInfo.SIM_uses_charges = useCharges; |
436 |
fInfo.SIM_uses_dipoles = useDipoles; |
437 |
//fInfo.SIM_uses_dipoles = 0; |
438 |
fInfo.SIM_uses_RF = useReactionField; |
439 |
//fInfo.SIM_uses_RF = 0; |
440 |
fInfo.SIM_uses_GB = useGB; |
441 |
fInfo.SIM_uses_EAM = useEAM; |
442 |
|
443 |
n_exclude = excludes->getSize(); |
444 |
excl = excludes->getFortranArray(); |
445 |
|
446 |
#ifdef IS_MPI |
447 |
n_global = mpiSim->getTotAtoms(); |
448 |
#else |
449 |
n_global = n_atoms; |
450 |
#endif |
451 |
|
452 |
isError = 0; |
453 |
|
454 |
getFortranGroupArray(this, mfact, ngroup, groupList, groupStart); |
455 |
//it may not be a good idea to pass the address of first element in vector |
456 |
//since c++ standard does not require vector to be stored continuously in meomory |
457 |
//Most of the compilers will organize the memory of vector continuously |
458 |
setFsimulation( &fInfo, &n_global, &n_atoms, identArray, &n_exclude, excl, |
459 |
&nGlobalExcludes, globalExcludes, molMembershipArray, |
460 |
&mfact[0], &ngroup, &groupList[0], &groupStart[0], &isError); |
461 |
|
462 |
if( isError ){ |
463 |
|
464 |
sprintf( painCave.errMsg, |
465 |
"There was an error setting the simulation information in fortran.\n" ); |
466 |
painCave.isFatal = 1; |
467 |
simError(); |
468 |
} |
469 |
|
470 |
#ifdef IS_MPI |
471 |
sprintf( checkPointMsg, |
472 |
"succesfully sent the simulation information to fortran.\n"); |
473 |
MPIcheckPoint(); |
474 |
#endif // is_mpi |
475 |
|
476 |
this->ndf = this->getNDF(); |
477 |
this->ndfRaw = this->getNDFraw(); |
478 |
this->ndfTrans = this->getNDFtranslational(); |
479 |
} |
480 |
|
481 |
void SimInfo::setDefaultRcut( double theRcut ){ |
482 |
|
483 |
haveRcut = 1; |
484 |
rCut = theRcut; |
485 |
rList = rCut + 1.0; |
486 |
|
487 |
notifyFortranCutOffs( &rCut, &rSw, &rList ); |
488 |
} |
489 |
|
490 |
void SimInfo::setDefaultRcut( double theRcut, double theRsw ){ |
491 |
|
492 |
rSw = theRsw; |
493 |
setDefaultRcut( theRcut ); |
494 |
} |
495 |
|
496 |
|
497 |
void SimInfo::checkCutOffs( void ){ |
498 |
|
499 |
if( boxIsInit ){ |
500 |
|
501 |
//we need to check cutOffs against the box |
502 |
|
503 |
if( rCut > maxCutoff ){ |
504 |
sprintf( painCave.errMsg, |
505 |
"cutoffRadius is too large for the current periodic box.\n" |
506 |
"\tCurrent Value of cutoffRadius = %G at time %G\n " |
507 |
"\tThis is larger than half of at least one of the\n" |
508 |
"\tperiodic box vectors. Right now, the Box matrix is:\n" |
509 |
"\n" |
510 |
"\t[ %G %G %G ]\n" |
511 |
"\t[ %G %G %G ]\n" |
512 |
"\t[ %G %G %G ]\n", |
513 |
rCut, currentTime, |
514 |
Hmat[0][0], Hmat[0][1], Hmat[0][2], |
515 |
Hmat[1][0], Hmat[1][1], Hmat[1][2], |
516 |
Hmat[2][0], Hmat[2][1], Hmat[2][2]); |
517 |
painCave.isFatal = 1; |
518 |
simError(); |
519 |
} |
520 |
} else { |
521 |
// initialize this stuff before using it, OK? |
522 |
sprintf( painCave.errMsg, |
523 |
"Trying to check cutoffs without a box.\n" |
524 |
"\tOOPSE should have better programmers than that.\n" ); |
525 |
painCave.isFatal = 1; |
526 |
simError(); |
527 |
} |
528 |
|
529 |
} |
530 |
|
531 |
void SimInfo::addProperty(GenericData* prop){ |
532 |
|
533 |
map<string, GenericData*>::iterator result; |
534 |
result = properties.find(prop->getID()); |
535 |
|
536 |
//we can't simply use properties[prop->getID()] = prop, |
537 |
//it will cause memory leak if we already contain a propery which has the same name of prop |
538 |
|
539 |
if(result != properties.end()){ |
540 |
|
541 |
delete (*result).second; |
542 |
(*result).second = prop; |
543 |
|
544 |
} |
545 |
else{ |
546 |
|
547 |
properties[prop->getID()] = prop; |
548 |
|
549 |
} |
550 |
|
551 |
} |
552 |
|
553 |
GenericData* SimInfo::getProperty(const string& propName){ |
554 |
|
555 |
map<string, GenericData*>::iterator result; |
556 |
|
557 |
//string lowerCaseName = (); |
558 |
|
559 |
result = properties.find(propName); |
560 |
|
561 |
if(result != properties.end()) |
562 |
return (*result).second; |
563 |
else |
564 |
return NULL; |
565 |
} |
566 |
|
567 |
|
568 |
void getFortranGroupArray(SimInfo* info, vector<double>& mfact, int& ngroup, |
569 |
vector<int>& groupList, vector<int>& groupStart){ |
570 |
Molecule* myMols; |
571 |
Atom** myAtoms; |
572 |
int numAtom; |
573 |
int curIndex; |
574 |
double mtot; |
575 |
int numMol; |
576 |
int numCutoffGroups; |
577 |
CutoffGroup* myCutoffGroup; |
578 |
vector<CutoffGroup*>::iterator iterCutoff; |
579 |
Atom* cutoffAtom; |
580 |
vector<Atom*>::iterator iterAtom; |
581 |
int atomIndex; |
582 |
double totalMass; |
583 |
|
584 |
mfact.clear(); |
585 |
groupList.clear(); |
586 |
groupStart.clear(); |
587 |
|
588 |
//Be careful, fortran array begin at 1 |
589 |
curIndex = 1; |
590 |
|
591 |
myMols = info->molecules; |
592 |
numMol = info->n_mol; |
593 |
for(int i = 0; i < numMol; i++){ |
594 |
numCutoffGroups = myMols[i].getNCutoffGroups(); |
595 |
for(myCutoffGroup =myMols[i].beginCutoffGroup(iterCutoff); myCutoffGroup != NULL; |
596 |
myCutoffGroup =myMols[i].nextCutoffGroup(iterCutoff)){ |
597 |
|
598 |
totalMass = myCutoffGroup->getMass(); |
599 |
|
600 |
for(cutoffAtom = myCutoffGroup->beginAtom(iterAtom); cutoffAtom != NULL; |
601 |
cutoffAtom = myCutoffGroup->nextAtom(iterAtom)){ |
602 |
mfact.push_back(cutoffAtom->getMass()/totalMass); |
603 |
groupList.push_back(cutoffAtom->getIndex() + 1); |
604 |
} |
605 |
|
606 |
groupStart.push_back(curIndex); |
607 |
curIndex += myCutoffGroup->getNumAtom(); |
608 |
|
609 |
}//end for(myCutoffGroup =myMols[i].beginCutoffGroup(iterCutoff)) |
610 |
|
611 |
}//end for(int i = 0; i < numMol; i++) |
612 |
|
613 |
ngroup = groupStart.size(); |
614 |
} |