1 |
#include <stdlib.h> |
2 |
#include <string.h> |
3 |
#include <math.h> |
4 |
|
5 |
#include <iostream> |
6 |
using namespace std; |
7 |
|
8 |
#include "SimInfo.hpp" |
9 |
#define __C |
10 |
#include "fSimulation.h" |
11 |
#include "simError.h" |
12 |
|
13 |
#include "fortranWrappers.hpp" |
14 |
|
15 |
#include "MatVec3.h" |
16 |
|
17 |
#ifdef IS_MPI |
18 |
#include "mpiSimulation.hpp" |
19 |
#endif |
20 |
|
21 |
inline double roundMe( double x ){ |
22 |
return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 ); |
23 |
} |
24 |
|
25 |
inline double min( double a, double b ){ |
26 |
return (a < b ) ? a : b; |
27 |
} |
28 |
|
29 |
SimInfo* currentInfo; |
30 |
|
31 |
SimInfo::SimInfo(){ |
32 |
|
33 |
n_constraints = 0; |
34 |
nZconstraints = 0; |
35 |
n_oriented = 0; |
36 |
n_dipoles = 0; |
37 |
ndf = 0; |
38 |
ndfRaw = 0; |
39 |
nZconstraints = 0; |
40 |
the_integrator = NULL; |
41 |
setTemp = 0; |
42 |
thermalTime = 0.0; |
43 |
currentTime = 0.0; |
44 |
rCut = 0.0; |
45 |
rSw = 0.0; |
46 |
|
47 |
haveRcut = 0; |
48 |
haveRsw = 0; |
49 |
boxIsInit = 0; |
50 |
|
51 |
resetTime = 1e99; |
52 |
|
53 |
orthoRhombic = 0; |
54 |
orthoTolerance = 1E-6; |
55 |
useInitXSstate = true; |
56 |
|
57 |
usePBC = 0; |
58 |
useLJ = 0; |
59 |
useSticky = 0; |
60 |
useCharges = 0; |
61 |
useDipoles = 0; |
62 |
useReactionField = 0; |
63 |
useGB = 0; |
64 |
useEAM = 0; |
65 |
|
66 |
excludes = Exclude::Instance(); |
67 |
|
68 |
myConfiguration = new SimState(); |
69 |
|
70 |
has_minimizer = false; |
71 |
the_minimizer =NULL; |
72 |
|
73 |
ngroup = 0; |
74 |
|
75 |
wrapMeSimInfo( this ); |
76 |
} |
77 |
|
78 |
|
79 |
SimInfo::~SimInfo(){ |
80 |
|
81 |
delete myConfiguration; |
82 |
|
83 |
map<string, GenericData*>::iterator i; |
84 |
|
85 |
for(i = properties.begin(); i != properties.end(); i++) |
86 |
delete (*i).second; |
87 |
|
88 |
} |
89 |
|
90 |
void SimInfo::setBox(double newBox[3]) { |
91 |
|
92 |
int i, j; |
93 |
double tempMat[3][3]; |
94 |
|
95 |
for(i=0; i<3; i++) |
96 |
for (j=0; j<3; j++) tempMat[i][j] = 0.0;; |
97 |
|
98 |
tempMat[0][0] = newBox[0]; |
99 |
tempMat[1][1] = newBox[1]; |
100 |
tempMat[2][2] = newBox[2]; |
101 |
|
102 |
setBoxM( tempMat ); |
103 |
|
104 |
} |
105 |
|
106 |
void SimInfo::setBoxM( double theBox[3][3] ){ |
107 |
|
108 |
int i, j; |
109 |
double FortranHmat[9]; // to preserve compatibility with Fortran the |
110 |
// ordering in the array is as follows: |
111 |
// [ 0 3 6 ] |
112 |
// [ 1 4 7 ] |
113 |
// [ 2 5 8 ] |
114 |
double FortranHmatInv[9]; // the inverted Hmat (for Fortran); |
115 |
|
116 |
if( !boxIsInit ) boxIsInit = 1; |
117 |
|
118 |
for(i=0; i < 3; i++) |
119 |
for (j=0; j < 3; j++) Hmat[i][j] = theBox[i][j]; |
120 |
|
121 |
calcBoxL(); |
122 |
calcHmatInv(); |
123 |
|
124 |
for(i=0; i < 3; i++) { |
125 |
for (j=0; j < 3; j++) { |
126 |
FortranHmat[3*j + i] = Hmat[i][j]; |
127 |
FortranHmatInv[3*j + i] = HmatInv[i][j]; |
128 |
} |
129 |
} |
130 |
|
131 |
setFortranBoxSize(FortranHmat, FortranHmatInv, &orthoRhombic); |
132 |
|
133 |
} |
134 |
|
135 |
|
136 |
void SimInfo::getBoxM (double theBox[3][3]) { |
137 |
|
138 |
int i, j; |
139 |
for(i=0; i<3; i++) |
140 |
for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]; |
141 |
} |
142 |
|
143 |
|
144 |
void SimInfo::scaleBox(double scale) { |
145 |
double theBox[3][3]; |
146 |
int i, j; |
147 |
|
148 |
// cerr << "Scaling box by " << scale << "\n"; |
149 |
|
150 |
for(i=0; i<3; i++) |
151 |
for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]*scale; |
152 |
|
153 |
setBoxM(theBox); |
154 |
|
155 |
} |
156 |
|
157 |
void SimInfo::calcHmatInv( void ) { |
158 |
|
159 |
int oldOrtho; |
160 |
int i,j; |
161 |
double smallDiag; |
162 |
double tol; |
163 |
double sanity[3][3]; |
164 |
|
165 |
invertMat3( Hmat, HmatInv ); |
166 |
|
167 |
// check to see if Hmat is orthorhombic |
168 |
|
169 |
oldOrtho = orthoRhombic; |
170 |
|
171 |
smallDiag = fabs(Hmat[0][0]); |
172 |
if(smallDiag > fabs(Hmat[1][1])) smallDiag = fabs(Hmat[1][1]); |
173 |
if(smallDiag > fabs(Hmat[2][2])) smallDiag = fabs(Hmat[2][2]); |
174 |
tol = smallDiag * orthoTolerance; |
175 |
|
176 |
orthoRhombic = 1; |
177 |
|
178 |
for (i = 0; i < 3; i++ ) { |
179 |
for (j = 0 ; j < 3; j++) { |
180 |
if (i != j) { |
181 |
if (orthoRhombic) { |
182 |
if ( fabs(Hmat[i][j]) >= tol) orthoRhombic = 0; |
183 |
} |
184 |
} |
185 |
} |
186 |
} |
187 |
|
188 |
if( oldOrtho != orthoRhombic ){ |
189 |
|
190 |
if( orthoRhombic ){ |
191 |
sprintf( painCave.errMsg, |
192 |
"OOPSE is switching from the default Non-Orthorhombic\n" |
193 |
"\tto the faster Orthorhombic periodic boundary computations.\n" |
194 |
"\tThis is usually a good thing, but if you wan't the\n" |
195 |
"\tNon-Orthorhombic computations, make the orthoBoxTolerance\n" |
196 |
"\tvariable ( currently set to %G ) smaller.\n", |
197 |
orthoTolerance); |
198 |
simError(); |
199 |
} |
200 |
else { |
201 |
sprintf( painCave.errMsg, |
202 |
"OOPSE is switching from the faster Orthorhombic to the more\n" |
203 |
"\tflexible Non-Orthorhombic periodic boundary computations.\n" |
204 |
"\tThis is usually because the box has deformed under\n" |
205 |
"\tNPTf integration. If you wan't to live on the edge with\n" |
206 |
"\tthe Orthorhombic computations, make the orthoBoxTolerance\n" |
207 |
"\tvariable ( currently set to %G ) larger.\n", |
208 |
orthoTolerance); |
209 |
simError(); |
210 |
} |
211 |
} |
212 |
} |
213 |
|
214 |
void SimInfo::calcBoxL( void ){ |
215 |
|
216 |
double dx, dy, dz, dsq; |
217 |
|
218 |
// boxVol = Determinant of Hmat |
219 |
|
220 |
boxVol = matDet3( Hmat ); |
221 |
|
222 |
// boxLx |
223 |
|
224 |
dx = Hmat[0][0]; dy = Hmat[1][0]; dz = Hmat[2][0]; |
225 |
dsq = dx*dx + dy*dy + dz*dz; |
226 |
boxL[0] = sqrt( dsq ); |
227 |
//maxCutoff = 0.5 * boxL[0]; |
228 |
|
229 |
// boxLy |
230 |
|
231 |
dx = Hmat[0][1]; dy = Hmat[1][1]; dz = Hmat[2][1]; |
232 |
dsq = dx*dx + dy*dy + dz*dz; |
233 |
boxL[1] = sqrt( dsq ); |
234 |
//if( (0.5 * boxL[1]) < maxCutoff ) maxCutoff = 0.5 * boxL[1]; |
235 |
|
236 |
|
237 |
// boxLz |
238 |
|
239 |
dx = Hmat[0][2]; dy = Hmat[1][2]; dz = Hmat[2][2]; |
240 |
dsq = dx*dx + dy*dy + dz*dz; |
241 |
boxL[2] = sqrt( dsq ); |
242 |
//if( (0.5 * boxL[2]) < maxCutoff ) maxCutoff = 0.5 * boxL[2]; |
243 |
|
244 |
//calculate the max cutoff |
245 |
maxCutoff = calcMaxCutOff(); |
246 |
|
247 |
checkCutOffs(); |
248 |
|
249 |
} |
250 |
|
251 |
|
252 |
double SimInfo::calcMaxCutOff(){ |
253 |
|
254 |
double ri[3], rj[3], rk[3]; |
255 |
double rij[3], rjk[3], rki[3]; |
256 |
double minDist; |
257 |
|
258 |
ri[0] = Hmat[0][0]; |
259 |
ri[1] = Hmat[1][0]; |
260 |
ri[2] = Hmat[2][0]; |
261 |
|
262 |
rj[0] = Hmat[0][1]; |
263 |
rj[1] = Hmat[1][1]; |
264 |
rj[2] = Hmat[2][1]; |
265 |
|
266 |
rk[0] = Hmat[0][2]; |
267 |
rk[1] = Hmat[1][2]; |
268 |
rk[2] = Hmat[2][2]; |
269 |
|
270 |
crossProduct3(ri, rj, rij); |
271 |
distXY = dotProduct3(rk,rij) / norm3(rij); |
272 |
|
273 |
crossProduct3(rj,rk, rjk); |
274 |
distYZ = dotProduct3(ri,rjk) / norm3(rjk); |
275 |
|
276 |
crossProduct3(rk,ri, rki); |
277 |
distZX = dotProduct3(rj,rki) / norm3(rki); |
278 |
|
279 |
minDist = min(min(distXY, distYZ), distZX); |
280 |
return minDist/2; |
281 |
|
282 |
} |
283 |
|
284 |
void SimInfo::wrapVector( double thePos[3] ){ |
285 |
|
286 |
int i; |
287 |
double scaled[3]; |
288 |
|
289 |
if( !orthoRhombic ){ |
290 |
// calc the scaled coordinates. |
291 |
|
292 |
|
293 |
matVecMul3(HmatInv, thePos, scaled); |
294 |
|
295 |
for(i=0; i<3; i++) |
296 |
scaled[i] -= roundMe(scaled[i]); |
297 |
|
298 |
// calc the wrapped real coordinates from the wrapped scaled coordinates |
299 |
|
300 |
matVecMul3(Hmat, scaled, thePos); |
301 |
|
302 |
} |
303 |
else{ |
304 |
// calc the scaled coordinates. |
305 |
|
306 |
for(i=0; i<3; i++) |
307 |
scaled[i] = thePos[i]*HmatInv[i][i]; |
308 |
|
309 |
// wrap the scaled coordinates |
310 |
|
311 |
for(i=0; i<3; i++) |
312 |
scaled[i] -= roundMe(scaled[i]); |
313 |
|
314 |
// calc the wrapped real coordinates from the wrapped scaled coordinates |
315 |
|
316 |
for(i=0; i<3; i++) |
317 |
thePos[i] = scaled[i]*Hmat[i][i]; |
318 |
} |
319 |
|
320 |
} |
321 |
|
322 |
|
323 |
int SimInfo::getNDF(){ |
324 |
int ndf_local; |
325 |
|
326 |
ndf_local = 0; |
327 |
|
328 |
for(int i = 0; i < integrableObjects.size(); i++){ |
329 |
ndf_local += 3; |
330 |
if (integrableObjects[i]->isDirectional()) { |
331 |
if (integrableObjects[i]->isLinear()) |
332 |
ndf_local += 2; |
333 |
else |
334 |
ndf_local += 3; |
335 |
} |
336 |
} |
337 |
|
338 |
// n_constraints is local, so subtract them on each processor: |
339 |
|
340 |
ndf_local -= n_constraints; |
341 |
|
342 |
#ifdef IS_MPI |
343 |
MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
344 |
#else |
345 |
ndf = ndf_local; |
346 |
#endif |
347 |
|
348 |
// nZconstraints is global, as are the 3 COM translations for the |
349 |
// entire system: |
350 |
|
351 |
ndf = ndf - 3 - nZconstraints; |
352 |
|
353 |
return ndf; |
354 |
} |
355 |
|
356 |
int SimInfo::getNDFraw() { |
357 |
int ndfRaw_local; |
358 |
|
359 |
// Raw degrees of freedom that we have to set |
360 |
ndfRaw_local = 0; |
361 |
|
362 |
for(int i = 0; i < integrableObjects.size(); i++){ |
363 |
ndfRaw_local += 3; |
364 |
if (integrableObjects[i]->isDirectional()) { |
365 |
if (integrableObjects[i]->isLinear()) |
366 |
ndfRaw_local += 2; |
367 |
else |
368 |
ndfRaw_local += 3; |
369 |
} |
370 |
} |
371 |
|
372 |
#ifdef IS_MPI |
373 |
MPI_Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
374 |
#else |
375 |
ndfRaw = ndfRaw_local; |
376 |
#endif |
377 |
|
378 |
return ndfRaw; |
379 |
} |
380 |
|
381 |
int SimInfo::getNDFtranslational() { |
382 |
int ndfTrans_local; |
383 |
|
384 |
ndfTrans_local = 3 * integrableObjects.size() - n_constraints; |
385 |
|
386 |
|
387 |
#ifdef IS_MPI |
388 |
MPI_Allreduce(&ndfTrans_local,&ndfTrans,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
389 |
#else |
390 |
ndfTrans = ndfTrans_local; |
391 |
#endif |
392 |
|
393 |
ndfTrans = ndfTrans - 3 - nZconstraints; |
394 |
|
395 |
return ndfTrans; |
396 |
} |
397 |
|
398 |
int SimInfo::getTotIntegrableObjects() { |
399 |
int nObjs_local; |
400 |
int nObjs; |
401 |
|
402 |
nObjs_local = integrableObjects.size(); |
403 |
|
404 |
|
405 |
#ifdef IS_MPI |
406 |
MPI_Allreduce(&nObjs_local,&nObjs,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
407 |
#else |
408 |
nObjs = nObjs_local; |
409 |
#endif |
410 |
|
411 |
|
412 |
return nObjs; |
413 |
} |
414 |
|
415 |
void SimInfo::refreshSim(){ |
416 |
|
417 |
simtype fInfo; |
418 |
int isError; |
419 |
int n_global; |
420 |
int* excl; |
421 |
|
422 |
fInfo.dielect = 0.0; |
423 |
|
424 |
if( useDipoles ){ |
425 |
if( useReactionField )fInfo.dielect = dielectric; |
426 |
} |
427 |
|
428 |
fInfo.SIM_uses_PBC = usePBC; |
429 |
//fInfo.SIM_uses_LJ = 0; |
430 |
fInfo.SIM_uses_LJ = useLJ; |
431 |
fInfo.SIM_uses_sticky = useSticky; |
432 |
//fInfo.SIM_uses_sticky = 0; |
433 |
fInfo.SIM_uses_charges = useCharges; |
434 |
fInfo.SIM_uses_dipoles = useDipoles; |
435 |
//fInfo.SIM_uses_dipoles = 0; |
436 |
fInfo.SIM_uses_RF = useReactionField; |
437 |
//fInfo.SIM_uses_RF = 0; |
438 |
fInfo.SIM_uses_GB = useGB; |
439 |
fInfo.SIM_uses_EAM = useEAM; |
440 |
|
441 |
n_exclude = excludes->getSize(); |
442 |
excl = excludes->getFortranArray(); |
443 |
|
444 |
#ifdef IS_MPI |
445 |
n_global = mpiSim->getTotAtoms(); |
446 |
#else |
447 |
n_global = n_atoms; |
448 |
#endif |
449 |
|
450 |
isError = 0; |
451 |
|
452 |
getFortranGroupArray(this, mfact, ngroup, groupList, groupStart); |
453 |
|
454 |
setFsimulation( &fInfo, &n_global, &n_atoms, identArray, &n_exclude, excl, |
455 |
&nGlobalExcludes, globalExcludes, molMembershipArray, |
456 |
&mfact[0], &ngroup, &groupList[0], &groupStart[0], &isError); |
457 |
|
458 |
if( isError ){ |
459 |
|
460 |
sprintf( painCave.errMsg, |
461 |
"There was an error setting the simulation information in fortran.\n" ); |
462 |
painCave.isFatal = 1; |
463 |
simError(); |
464 |
} |
465 |
|
466 |
#ifdef IS_MPI |
467 |
sprintf( checkPointMsg, |
468 |
"succesfully sent the simulation information to fortran.\n"); |
469 |
MPIcheckPoint(); |
470 |
#endif // is_mpi |
471 |
|
472 |
this->ndf = this->getNDF(); |
473 |
this->ndfRaw = this->getNDFraw(); |
474 |
this->ndfTrans = this->getNDFtranslational(); |
475 |
} |
476 |
|
477 |
void SimInfo::setDefaultRcut( double theRcut ){ |
478 |
|
479 |
haveRcut = 1; |
480 |
rCut = theRcut; |
481 |
rList = rCut + 1.0; |
482 |
|
483 |
notifyFortranCutOffs( &rCut, &rSw, &rList ); |
484 |
} |
485 |
|
486 |
void SimInfo::setDefaultRcut( double theRcut, double theRsw ){ |
487 |
|
488 |
rSw = theRsw; |
489 |
setDefaultRcut( theRcut ); |
490 |
} |
491 |
|
492 |
|
493 |
void SimInfo::checkCutOffs( void ){ |
494 |
|
495 |
if( boxIsInit ){ |
496 |
|
497 |
//we need to check cutOffs against the box |
498 |
|
499 |
if( rCut > maxCutoff ){ |
500 |
sprintf( painCave.errMsg, |
501 |
"cutoffRadius is too large for the current periodic box.\n" |
502 |
"\tCurrent Value of cutoffRadius = %G at time %G\n " |
503 |
"\tThis is larger than half of at least one of the\n" |
504 |
"\tperiodic box vectors. Right now, the Box matrix is:\n" |
505 |
"\n" |
506 |
"\t[ %G %G %G ]\n" |
507 |
"\t[ %G %G %G ]\n" |
508 |
"\t[ %G %G %G ]\n", |
509 |
rCut, currentTime, |
510 |
Hmat[0][0], Hmat[0][1], Hmat[0][2], |
511 |
Hmat[1][0], Hmat[1][1], Hmat[1][2], |
512 |
Hmat[2][0], Hmat[2][1], Hmat[2][2]); |
513 |
painCave.isFatal = 1; |
514 |
simError(); |
515 |
} |
516 |
} else { |
517 |
// initialize this stuff before using it, OK? |
518 |
sprintf( painCave.errMsg, |
519 |
"Trying to check cutoffs without a box.\n" |
520 |
"\tOOPSE should have better programmers than that.\n" ); |
521 |
painCave.isFatal = 1; |
522 |
simError(); |
523 |
} |
524 |
|
525 |
} |
526 |
|
527 |
void SimInfo::addProperty(GenericData* prop){ |
528 |
|
529 |
map<string, GenericData*>::iterator result; |
530 |
result = properties.find(prop->getID()); |
531 |
|
532 |
//we can't simply use properties[prop->getID()] = prop, |
533 |
//it will cause memory leak if we already contain a propery which has the same name of prop |
534 |
|
535 |
if(result != properties.end()){ |
536 |
|
537 |
delete (*result).second; |
538 |
(*result).second = prop; |
539 |
|
540 |
} |
541 |
else{ |
542 |
|
543 |
properties[prop->getID()] = prop; |
544 |
|
545 |
} |
546 |
|
547 |
} |
548 |
|
549 |
GenericData* SimInfo::getProperty(const string& propName){ |
550 |
|
551 |
map<string, GenericData*>::iterator result; |
552 |
|
553 |
//string lowerCaseName = (); |
554 |
|
555 |
result = properties.find(propName); |
556 |
|
557 |
if(result != properties.end()) |
558 |
return (*result).second; |
559 |
else |
560 |
return NULL; |
561 |
} |
562 |
|
563 |
|
564 |
void getFortranGroupArray(SimInfo* info, vector<double>& mfact, int& ngroup, |
565 |
vector<int>& groupList, vector<int>& groupStart){ |
566 |
Molecule* mol; |
567 |
Atom** myAtoms; |
568 |
int numAtom; |
569 |
int curIndex; |
570 |
double mtot; |
571 |
|
572 |
mfact.clear(); |
573 |
groupList.clear(); |
574 |
groupStart.clear(); |
575 |
|
576 |
//Be careful, fortran array begin at 1 |
577 |
curIndex = 1; |
578 |
|
579 |
if(info->useMolecularCutoffs){ |
580 |
|
581 |
#ifdef IS_MPI |
582 |
ngroup = mpiSim->getMyNMol(); |
583 |
#else |
584 |
ngroup = info->n_mol; |
585 |
#endif |
586 |
|
587 |
for(int i = 0; i < ngroup; i ++){ |
588 |
mol = &(info->molecules[i]); |
589 |
numAtom = mol->getNAtoms(); |
590 |
myAtoms = mol->getMyAtoms(); |
591 |
mtot = 0.0; |
592 |
|
593 |
for(int j=0; j < numAtom; j++) |
594 |
mtot += myAtoms[j]->getMass(); |
595 |
|
596 |
for(int j=0; j < numAtom; j++){ |
597 |
|
598 |
// We want the local Index: |
599 |
groupList.push_back(myAtoms[j]->getIndex() + 1); |
600 |
mfact.push_back(myAtoms[j]->getMass() / mtot); |
601 |
|
602 |
} |
603 |
|
604 |
groupStart.push_back(curIndex); |
605 |
curIndex += numAtom; |
606 |
|
607 |
} //end for(int i =0 ; i < ngroup; i++) |
608 |
} |
609 |
else{ |
610 |
//using atomic cutoff, every single atom is just a group |
611 |
|
612 |
#ifdef IS_MPI |
613 |
ngroup = mpiSim->getMyNlocal(); |
614 |
#else |
615 |
ngroup = info->n_atoms; |
616 |
#endif |
617 |
|
618 |
for(int i =0 ; i < ngroup; i++){ |
619 |
groupStart.push_back(curIndex++); |
620 |
groupList.push_back((info->atoms[i])->getIndex() + 1); |
621 |
mfact.push_back(1.0); |
622 |
|
623 |
}//end for(int i =0 ; i < ngroup; i++) |
624 |
|
625 |
}//end if (info->useMolecularCutoffs) |
626 |
|
627 |
} |