1 |
< |
#include <cstdlib> |
2 |
< |
#include <cstring> |
3 |
< |
#include <cmath> |
1 |
> |
#include <stdlib.h> |
2 |
> |
#include <string.h> |
3 |
> |
#include <math.h> |
4 |
|
|
5 |
|
#include <iostream> |
6 |
|
using namespace std; |
12 |
|
|
13 |
|
#include "fortranWrappers.hpp" |
14 |
|
|
15 |
+ |
#include "MatVec3.h" |
16 |
+ |
|
17 |
|
#ifdef IS_MPI |
18 |
|
#include "mpiSimulation.hpp" |
19 |
|
#endif |
22 |
|
return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 ); |
23 |
|
} |
24 |
|
|
25 |
+ |
inline double min( double a, double b ){ |
26 |
+ |
return (a < b ) ? a : b; |
27 |
+ |
} |
28 |
|
|
29 |
|
SimInfo* currentInfo; |
30 |
|
|
31 |
|
SimInfo::SimInfo(){ |
32 |
< |
excludes = NULL; |
32 |
> |
|
33 |
|
n_constraints = 0; |
34 |
+ |
nZconstraints = 0; |
35 |
|
n_oriented = 0; |
36 |
|
n_dipoles = 0; |
37 |
|
ndf = 0; |
38 |
|
ndfRaw = 0; |
39 |
+ |
nZconstraints = 0; |
40 |
|
the_integrator = NULL; |
41 |
|
setTemp = 0; |
42 |
|
thermalTime = 0.0; |
43 |
+ |
currentTime = 0.0; |
44 |
|
rCut = 0.0; |
45 |
+ |
ecr = 0.0; |
46 |
+ |
est = 0.0; |
47 |
|
|
48 |
+ |
haveRcut = 0; |
49 |
+ |
haveEcr = 0; |
50 |
+ |
boxIsInit = 0; |
51 |
+ |
|
52 |
+ |
resetTime = 1e99; |
53 |
+ |
|
54 |
+ |
orthoRhombic = 0; |
55 |
+ |
orthoTolerance = 1E-6; |
56 |
+ |
useInitXSstate = true; |
57 |
+ |
|
58 |
|
usePBC = 0; |
59 |
|
useLJ = 0; |
60 |
|
useSticky = 0; |
61 |
< |
useDipole = 0; |
61 |
> |
useCharges = 0; |
62 |
> |
useDipoles = 0; |
63 |
|
useReactionField = 0; |
64 |
|
useGB = 0; |
65 |
|
useEAM = 0; |
66 |
|
|
67 |
< |
wrapMeSimInfo( this ); |
47 |
< |
} |
67 |
> |
excludes = Exclude::Instance(); |
68 |
|
|
69 |
< |
void SimInfo::setBox(double newBox[3]) { |
69 |
> |
myConfiguration = new SimState(); |
70 |
|
|
71 |
< |
double smallestBoxL, maxCutoff; |
72 |
< |
int status; |
53 |
< |
int i; |
71 |
> |
has_minimizer = false; |
72 |
> |
the_minimizer =NULL; |
73 |
|
|
74 |
< |
for(i=0; i<9; i++) Hmat[i] = 0.0;; |
74 |
> |
wrapMeSimInfo( this ); |
75 |
> |
} |
76 |
|
|
57 |
– |
Hmat[0] = newBox[0]; |
58 |
– |
Hmat[4] = newBox[1]; |
59 |
– |
Hmat[8] = newBox[2]; |
77 |
|
|
78 |
< |
calcHmatI(); |
62 |
< |
calcBoxL(); |
78 |
> |
SimInfo::~SimInfo(){ |
79 |
|
|
80 |
< |
setFortranBoxSize(Hmat, HmatI, &orthoRhombic); |
80 |
> |
delete myConfiguration; |
81 |
|
|
82 |
< |
smallestBoxL = boxLx; |
83 |
< |
if (boxLy < smallestBoxL) smallestBoxL = boxLy; |
84 |
< |
if (boxLz < smallestBoxL) smallestBoxL = boxLz; |
82 |
> |
map<string, GenericData*>::iterator i; |
83 |
> |
|
84 |
> |
for(i = properties.begin(); i != properties.end(); i++) |
85 |
> |
delete (*i).second; |
86 |
> |
|
87 |
> |
} |
88 |
|
|
89 |
< |
maxCutoff = smallestBoxL / 2.0; |
89 |
> |
void SimInfo::setBox(double newBox[3]) { |
90 |
> |
|
91 |
> |
int i, j; |
92 |
> |
double tempMat[3][3]; |
93 |
|
|
94 |
< |
if (rList > maxCutoff) { |
95 |
< |
sprintf( painCave.errMsg, |
74 |
< |
"New Box size is forcing neighborlist radius down to %lf\n", |
75 |
< |
maxCutoff ); |
76 |
< |
painCave.isFatal = 0; |
77 |
< |
simError(); |
94 |
> |
for(i=0; i<3; i++) |
95 |
> |
for (j=0; j<3; j++) tempMat[i][j] = 0.0;; |
96 |
|
|
97 |
< |
rList = maxCutoff; |
97 |
> |
tempMat[0][0] = newBox[0]; |
98 |
> |
tempMat[1][1] = newBox[1]; |
99 |
> |
tempMat[2][2] = newBox[2]; |
100 |
|
|
101 |
< |
sprintf( painCave.errMsg, |
82 |
< |
"New Box size is forcing cutoff radius down to %lf\n", |
83 |
< |
maxCutoff - 1.0 ); |
84 |
< |
painCave.isFatal = 0; |
85 |
< |
simError(); |
101 |
> |
setBoxM( tempMat ); |
102 |
|
|
87 |
– |
rCut = rList - 1.0; |
88 |
– |
|
89 |
– |
// list radius changed so we have to refresh the simulation structure. |
90 |
– |
refreshSim(); |
91 |
– |
} |
92 |
– |
|
93 |
– |
if (rCut > maxCutoff) { |
94 |
– |
sprintf( painCave.errMsg, |
95 |
– |
"New Box size is forcing cutoff radius down to %lf\n", |
96 |
– |
maxCutoff ); |
97 |
– |
painCave.isFatal = 0; |
98 |
– |
simError(); |
99 |
– |
|
100 |
– |
status = 0; |
101 |
– |
LJ_new_rcut(&rCut, &status); |
102 |
– |
if (status != 0) { |
103 |
– |
sprintf( painCave.errMsg, |
104 |
– |
"Error in recomputing LJ shifts based on new rcut\n"); |
105 |
– |
painCave.isFatal = 1; |
106 |
– |
simError(); |
107 |
– |
} |
108 |
– |
} |
103 |
|
} |
104 |
|
|
105 |
< |
void SimInfo::setBoxM( double theBox[9] ){ |
105 |
> |
void SimInfo::setBoxM( double theBox[3][3] ){ |
106 |
|
|
107 |
< |
int i, status; |
108 |
< |
double smallestBoxL, maxCutoff; |
107 |
> |
int i, j; |
108 |
> |
double FortranHmat[9]; // to preserve compatibility with Fortran the |
109 |
> |
// ordering in the array is as follows: |
110 |
> |
// [ 0 3 6 ] |
111 |
> |
// [ 1 4 7 ] |
112 |
> |
// [ 2 5 8 ] |
113 |
> |
double FortranHmatInv[9]; // the inverted Hmat (for Fortran); |
114 |
|
|
115 |
< |
for(i=0; i<9; i++) Hmat[i] = theBox[i]; |
116 |
< |
calcHmatI(); |
115 |
> |
if( !boxIsInit ) boxIsInit = 1; |
116 |
> |
|
117 |
> |
for(i=0; i < 3; i++) |
118 |
> |
for (j=0; j < 3; j++) Hmat[i][j] = theBox[i][j]; |
119 |
> |
|
120 |
|
calcBoxL(); |
121 |
+ |
calcHmatInv(); |
122 |
|
|
123 |
< |
setFortranBoxSize(Hmat, HmatI, &orthoRhombic); |
123 |
> |
for(i=0; i < 3; i++) { |
124 |
> |
for (j=0; j < 3; j++) { |
125 |
> |
FortranHmat[3*j + i] = Hmat[i][j]; |
126 |
> |
FortranHmatInv[3*j + i] = HmatInv[i][j]; |
127 |
> |
} |
128 |
> |
} |
129 |
> |
|
130 |
> |
setFortranBoxSize(FortranHmat, FortranHmatInv, &orthoRhombic); |
131 |
|
|
132 |
< |
smallestBoxL = boxLx; |
133 |
< |
if (boxLy < smallestBoxL) smallestBoxL = boxLy; |
124 |
< |
if (boxLz < smallestBoxL) smallestBoxL = boxLz; |
132 |
> |
} |
133 |
> |
|
134 |
|
|
135 |
< |
maxCutoff = smallestBoxL / 2.0; |
135 |
> |
void SimInfo::getBoxM (double theBox[3][3]) { |
136 |
|
|
137 |
< |
if (rList > maxCutoff) { |
138 |
< |
sprintf( painCave.errMsg, |
139 |
< |
"New Box size is forcing neighborlist radius down to %lf\n", |
140 |
< |
maxCutoff ); |
132 |
< |
painCave.isFatal = 0; |
133 |
< |
simError(); |
137 |
> |
int i, j; |
138 |
> |
for(i=0; i<3; i++) |
139 |
> |
for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]; |
140 |
> |
} |
141 |
|
|
135 |
– |
rList = maxCutoff; |
142 |
|
|
143 |
< |
sprintf( painCave.errMsg, |
144 |
< |
"New Box size is forcing cutoff radius down to %lf\n", |
145 |
< |
maxCutoff - 1.0 ); |
140 |
< |
painCave.isFatal = 0; |
141 |
< |
simError(); |
143 |
> |
void SimInfo::scaleBox(double scale) { |
144 |
> |
double theBox[3][3]; |
145 |
> |
int i, j; |
146 |
|
|
147 |
< |
rCut = rList - 1.0; |
147 |
> |
// cerr << "Scaling box by " << scale << "\n"; |
148 |
|
|
149 |
< |
// list radius changed so we have to refresh the simulation structure. |
150 |
< |
refreshSim(); |
147 |
< |
} |
149 |
> |
for(i=0; i<3; i++) |
150 |
> |
for (j=0; j<3; j++) theBox[i][j] = Hmat[i][j]*scale; |
151 |
|
|
152 |
< |
if (rCut > maxCutoff) { |
150 |
< |
sprintf( painCave.errMsg, |
151 |
< |
"New Box size is forcing cutoff radius down to %lf\n", |
152 |
< |
maxCutoff ); |
153 |
< |
painCave.isFatal = 0; |
154 |
< |
simError(); |
152 |
> |
setBoxM(theBox); |
153 |
|
|
156 |
– |
status = 0; |
157 |
– |
LJ_new_rcut(&rCut, &status); |
158 |
– |
if (status != 0) { |
159 |
– |
sprintf( painCave.errMsg, |
160 |
– |
"Error in recomputing LJ shifts based on new rcut\n"); |
161 |
– |
painCave.isFatal = 1; |
162 |
– |
simError(); |
163 |
– |
} |
164 |
– |
} |
154 |
|
} |
166 |
– |
|
155 |
|
|
156 |
< |
void SimInfo::getBoxM (double theBox[9]) { |
157 |
< |
|
158 |
< |
int i; |
159 |
< |
for(i=0; i<9; i++) theBox[i] = Hmat[i]; |
172 |
< |
} |
173 |
< |
|
174 |
< |
|
175 |
< |
void SimInfo::calcHmatI( void ) { |
176 |
< |
|
177 |
< |
double C[3][3]; |
178 |
< |
double detHmat; |
179 |
< |
int i, j, k; |
156 |
> |
void SimInfo::calcHmatInv( void ) { |
157 |
> |
|
158 |
> |
int oldOrtho; |
159 |
> |
int i,j; |
160 |
|
double smallDiag; |
161 |
|
double tol; |
162 |
|
double sanity[3][3]; |
163 |
|
|
164 |
< |
// calculate the adjunct of Hmat; |
164 |
> |
invertMat3( Hmat, HmatInv ); |
165 |
|
|
166 |
< |
C[0][0] = ( Hmat[4]*Hmat[8]) - (Hmat[7]*Hmat[5]); |
187 |
< |
C[1][0] = -( Hmat[1]*Hmat[8]) + (Hmat[7]*Hmat[2]); |
188 |
< |
C[2][0] = ( Hmat[1]*Hmat[5]) - (Hmat[4]*Hmat[2]); |
189 |
< |
|
190 |
< |
C[0][1] = -( Hmat[3]*Hmat[8]) + (Hmat[6]*Hmat[5]); |
191 |
< |
C[1][1] = ( Hmat[0]*Hmat[8]) - (Hmat[6]*Hmat[2]); |
192 |
< |
C[2][1] = -( Hmat[0]*Hmat[5]) + (Hmat[3]*Hmat[2]); |
193 |
< |
|
194 |
< |
C[0][2] = ( Hmat[3]*Hmat[7]) - (Hmat[6]*Hmat[4]); |
195 |
< |
C[1][2] = -( Hmat[0]*Hmat[7]) + (Hmat[6]*Hmat[1]); |
196 |
< |
C[2][2] = ( Hmat[0]*Hmat[4]) - (Hmat[3]*Hmat[1]); |
197 |
< |
|
198 |
< |
// calcutlate the determinant of Hmat |
166 |
> |
// check to see if Hmat is orthorhombic |
167 |
|
|
168 |
< |
detHmat = 0.0; |
201 |
< |
for(i=0; i<3; i++) detHmat += Hmat[i] * C[i][0]; |
168 |
> |
oldOrtho = orthoRhombic; |
169 |
|
|
170 |
< |
|
171 |
< |
// H^-1 = C^T / det(H) |
172 |
< |
|
173 |
< |
i=0; |
207 |
< |
for(j=0; j<3; j++){ |
208 |
< |
for(k=0; k<3; k++){ |
170 |
> |
smallDiag = fabs(Hmat[0][0]); |
171 |
> |
if(smallDiag > fabs(Hmat[1][1])) smallDiag = fabs(Hmat[1][1]); |
172 |
> |
if(smallDiag > fabs(Hmat[2][2])) smallDiag = fabs(Hmat[2][2]); |
173 |
> |
tol = smallDiag * orthoTolerance; |
174 |
|
|
175 |
< |
HmatI[i] = C[j][k] / detHmat; |
176 |
< |
i++; |
177 |
< |
} |
178 |
< |
} |
179 |
< |
|
180 |
< |
// sanity check |
181 |
< |
|
182 |
< |
for(i=0; i<3; i++){ |
218 |
< |
for(j=0; j<3; j++){ |
219 |
< |
|
220 |
< |
sanity[i][j] = 0.0; |
221 |
< |
for(k=0; k<3; k++){ |
222 |
< |
sanity[i][j] += Hmat[3*k+i] * HmatI[3*j+k]; |
175 |
> |
orthoRhombic = 1; |
176 |
> |
|
177 |
> |
for (i = 0; i < 3; i++ ) { |
178 |
> |
for (j = 0 ; j < 3; j++) { |
179 |
> |
if (i != j) { |
180 |
> |
if (orthoRhombic) { |
181 |
> |
if ( fabs(Hmat[i][j]) >= tol) orthoRhombic = 0; |
182 |
> |
} |
183 |
|
} |
184 |
|
} |
185 |
|
} |
186 |
|
|
187 |
< |
cerr << "sanity => \n" |
228 |
< |
<< sanity[0][0] << "\t" << sanity[0][1] << "\t" << sanity [0][2] << "\n" |
229 |
< |
<< sanity[1][0] << "\t" << sanity[1][1] << "\t" << sanity [1][2] << "\n" |
230 |
< |
<< sanity[2][0] << "\t" << sanity[2][1] << "\t" << sanity [2][2] |
231 |
< |
<< "\n"; |
187 |
> |
if( oldOrtho != orthoRhombic ){ |
188 |
|
|
189 |
< |
|
190 |
< |
// check to see if Hmat is orthorhombic |
191 |
< |
|
192 |
< |
smallDiag = Hmat[0]; |
193 |
< |
if(smallDiag > Hmat[4]) smallDiag = Hmat[4]; |
194 |
< |
if(smallDiag > Hmat[8]) smallDiag = Hmat[8]; |
195 |
< |
tol = smallDiag * 1E-6; |
196 |
< |
|
197 |
< |
orthoRhombic = 1; |
242 |
< |
for(i=0; (i<9) && orthoRhombic; i++){ |
243 |
< |
|
244 |
< |
if( (i%4) ){ // ignore the diagonals (0, 4, and 8) |
245 |
< |
orthoRhombic = (Hmat[i] <= tol); |
189 |
> |
if( orthoRhombic ){ |
190 |
> |
sprintf( painCave.errMsg, |
191 |
> |
"OOPSE is switching from the default Non-Orthorhombic\n" |
192 |
> |
"\tto the faster Orthorhombic periodic boundary computations.\n" |
193 |
> |
"\tThis is usually a good thing, but if you wan't the\n" |
194 |
> |
"\tNon-Orthorhombic computations, make the orthoBoxTolerance\n" |
195 |
> |
"\tvariable ( currently set to %G ) smaller.\n", |
196 |
> |
orthoTolerance); |
197 |
> |
simError(); |
198 |
|
} |
199 |
+ |
else { |
200 |
+ |
sprintf( painCave.errMsg, |
201 |
+ |
"OOPSE is switching from the faster Orthorhombic to the more\n" |
202 |
+ |
"\tflexible Non-Orthorhombic periodic boundary computations.\n" |
203 |
+ |
"\tThis is usually because the box has deformed under\n" |
204 |
+ |
"\tNPTf integration. If you wan't to live on the edge with\n" |
205 |
+ |
"\tthe Orthorhombic computations, make the orthoBoxTolerance\n" |
206 |
+ |
"\tvariable ( currently set to %G ) larger.\n", |
207 |
+ |
orthoTolerance); |
208 |
+ |
simError(); |
209 |
+ |
} |
210 |
|
} |
248 |
– |
|
211 |
|
} |
212 |
|
|
213 |
|
void SimInfo::calcBoxL( void ){ |
214 |
|
|
215 |
|
double dx, dy, dz, dsq; |
254 |
– |
int i; |
216 |
|
|
217 |
< |
// boxVol = h1 (dot) h2 (cross) h3 |
217 |
> |
// boxVol = Determinant of Hmat |
218 |
|
|
219 |
< |
boxVol = Hmat[0] * ( (Hmat[4]*Hmat[8]) - (Hmat[7]*Hmat[5]) ) |
259 |
< |
+ Hmat[1] * ( (Hmat[5]*Hmat[6]) - (Hmat[8]*Hmat[3]) ) |
260 |
< |
+ Hmat[2] * ( (Hmat[3]*Hmat[7]) - (Hmat[6]*Hmat[4]) ); |
219 |
> |
boxVol = matDet3( Hmat ); |
220 |
|
|
262 |
– |
|
221 |
|
// boxLx |
222 |
|
|
223 |
< |
dx = Hmat[0]; dy = Hmat[1]; dz = Hmat[2]; |
223 |
> |
dx = Hmat[0][0]; dy = Hmat[1][0]; dz = Hmat[2][0]; |
224 |
|
dsq = dx*dx + dy*dy + dz*dz; |
225 |
< |
boxLx = sqrt( dsq ); |
225 |
> |
boxL[0] = sqrt( dsq ); |
226 |
> |
//maxCutoff = 0.5 * boxL[0]; |
227 |
|
|
228 |
|
// boxLy |
229 |
|
|
230 |
< |
dx = Hmat[3]; dy = Hmat[4]; dz = Hmat[5]; |
230 |
> |
dx = Hmat[0][1]; dy = Hmat[1][1]; dz = Hmat[2][1]; |
231 |
|
dsq = dx*dx + dy*dy + dz*dz; |
232 |
< |
boxLy = sqrt( dsq ); |
232 |
> |
boxL[1] = sqrt( dsq ); |
233 |
> |
//if( (0.5 * boxL[1]) < maxCutoff ) maxCutoff = 0.5 * boxL[1]; |
234 |
|
|
235 |
+ |
|
236 |
|
// boxLz |
237 |
|
|
238 |
< |
dx = Hmat[6]; dy = Hmat[7]; dz = Hmat[8]; |
238 |
> |
dx = Hmat[0][2]; dy = Hmat[1][2]; dz = Hmat[2][2]; |
239 |
|
dsq = dx*dx + dy*dy + dz*dz; |
240 |
< |
boxLz = sqrt( dsq ); |
240 |
> |
boxL[2] = sqrt( dsq ); |
241 |
> |
//if( (0.5 * boxL[2]) < maxCutoff ) maxCutoff = 0.5 * boxL[2]; |
242 |
> |
|
243 |
> |
//calculate the max cutoff |
244 |
> |
maxCutoff = calcMaxCutOff(); |
245 |
|
|
246 |
+ |
checkCutOffs(); |
247 |
+ |
|
248 |
|
} |
249 |
|
|
250 |
|
|
251 |
+ |
double SimInfo::calcMaxCutOff(){ |
252 |
+ |
|
253 |
+ |
double ri[3], rj[3], rk[3]; |
254 |
+ |
double rij[3], rjk[3], rki[3]; |
255 |
+ |
double minDist; |
256 |
+ |
|
257 |
+ |
ri[0] = Hmat[0][0]; |
258 |
+ |
ri[1] = Hmat[1][0]; |
259 |
+ |
ri[2] = Hmat[2][0]; |
260 |
+ |
|
261 |
+ |
rj[0] = Hmat[0][1]; |
262 |
+ |
rj[1] = Hmat[1][1]; |
263 |
+ |
rj[2] = Hmat[2][1]; |
264 |
+ |
|
265 |
+ |
rk[0] = Hmat[0][2]; |
266 |
+ |
rk[1] = Hmat[1][2]; |
267 |
+ |
rk[2] = Hmat[2][2]; |
268 |
+ |
|
269 |
+ |
crossProduct3(ri, rj, rij); |
270 |
+ |
distXY = dotProduct3(rk,rij) / norm3(rij); |
271 |
+ |
|
272 |
+ |
crossProduct3(rj,rk, rjk); |
273 |
+ |
distYZ = dotProduct3(ri,rjk) / norm3(rjk); |
274 |
+ |
|
275 |
+ |
crossProduct3(rk,ri, rki); |
276 |
+ |
distZX = dotProduct3(rj,rki) / norm3(rki); |
277 |
+ |
|
278 |
+ |
minDist = min(min(distXY, distYZ), distZX); |
279 |
+ |
return minDist/2; |
280 |
+ |
|
281 |
+ |
} |
282 |
+ |
|
283 |
|
void SimInfo::wrapVector( double thePos[3] ){ |
284 |
|
|
285 |
< |
int i, j, k; |
285 |
> |
int i; |
286 |
|
double scaled[3]; |
287 |
|
|
288 |
|
if( !orthoRhombic ){ |
289 |
|
// calc the scaled coordinates. |
290 |
+ |
|
291 |
+ |
|
292 |
+ |
matVecMul3(HmatInv, thePos, scaled); |
293 |
|
|
294 |
|
for(i=0; i<3; i++) |
293 |
– |
scaled[i] = |
294 |
– |
thePos[0]*HmatI[i] + thePos[1]*HmatI[i+3] + thePos[3]*HmatI[i+6]; |
295 |
– |
|
296 |
– |
// wrap the scaled coordinates |
297 |
– |
|
298 |
– |
for(i=0; i<3; i++) |
295 |
|
scaled[i] -= roundMe(scaled[i]); |
296 |
|
|
297 |
|
// calc the wrapped real coordinates from the wrapped scaled coordinates |
298 |
|
|
299 |
< |
for(i=0; i<3; i++) |
300 |
< |
thePos[i] = |
305 |
< |
scaled[0]*Hmat[i] + scaled[1]*Hmat[i+3] + scaled[2]*Hmat[i+6]; |
299 |
> |
matVecMul3(Hmat, scaled, thePos); |
300 |
> |
|
301 |
|
} |
302 |
|
else{ |
303 |
|
// calc the scaled coordinates. |
304 |
|
|
305 |
|
for(i=0; i<3; i++) |
306 |
< |
scaled[i] = thePos[i]*HmatI[i*4]; |
306 |
> |
scaled[i] = thePos[i]*HmatInv[i][i]; |
307 |
|
|
308 |
|
// wrap the scaled coordinates |
309 |
|
|
313 |
|
// calc the wrapped real coordinates from the wrapped scaled coordinates |
314 |
|
|
315 |
|
for(i=0; i<3; i++) |
316 |
< |
thePos[i] = scaled[i]*Hmat[i*4]; |
316 |
> |
thePos[i] = scaled[i]*Hmat[i][i]; |
317 |
|
} |
318 |
|
|
324 |
– |
|
319 |
|
} |
320 |
|
|
321 |
|
|
322 |
|
int SimInfo::getNDF(){ |
323 |
< |
int ndf_local, ndf; |
323 |
> |
int ndf_local; |
324 |
> |
|
325 |
> |
ndf_local = 0; |
326 |
|
|
327 |
< |
ndf_local = 3 * n_atoms + 3 * n_oriented - n_constraints; |
327 |
> |
for(int i = 0; i < integrableObjects.size(); i++){ |
328 |
> |
ndf_local += 3; |
329 |
> |
if (integrableObjects[i]->isDirectional()) { |
330 |
> |
if (integrableObjects[i]->isLinear()) |
331 |
> |
ndf_local += 2; |
332 |
> |
else |
333 |
> |
ndf_local += 3; |
334 |
> |
} |
335 |
> |
} |
336 |
|
|
337 |
+ |
// n_constraints is local, so subtract them on each processor: |
338 |
+ |
|
339 |
+ |
ndf_local -= n_constraints; |
340 |
+ |
|
341 |
|
#ifdef IS_MPI |
342 |
|
MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
343 |
|
#else |
344 |
|
ndf = ndf_local; |
345 |
|
#endif |
346 |
|
|
347 |
< |
ndf = ndf - 3; |
347 |
> |
// nZconstraints is global, as are the 3 COM translations for the |
348 |
> |
// entire system: |
349 |
|
|
350 |
+ |
ndf = ndf - 3 - nZconstraints; |
351 |
+ |
|
352 |
+ |
std::cerr << "ndf = " << ndf; |
353 |
+ |
|
354 |
|
return ndf; |
355 |
|
} |
356 |
|
|
357 |
|
int SimInfo::getNDFraw() { |
358 |
< |
int ndfRaw_local, ndfRaw; |
358 |
> |
int ndfRaw_local; |
359 |
|
|
360 |
|
// Raw degrees of freedom that we have to set |
361 |
< |
ndfRaw_local = 3 * n_atoms + 3 * n_oriented; |
362 |
< |
|
361 |
> |
ndfRaw_local = 0; |
362 |
> |
|
363 |
> |
for(int i = 0; i < integrableObjects.size(); i++){ |
364 |
> |
ndfRaw_local += 3; |
365 |
> |
if (integrableObjects[i]->isDirectional()) { |
366 |
> |
if (integrableObjects[i]->isLinear()) |
367 |
> |
ndfRaw_local += 2; |
368 |
> |
else |
369 |
> |
ndfRaw_local += 3; |
370 |
> |
} |
371 |
> |
} |
372 |
> |
|
373 |
|
#ifdef IS_MPI |
374 |
|
MPI_Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
375 |
|
#else |
378 |
|
|
379 |
|
return ndfRaw; |
380 |
|
} |
381 |
< |
|
381 |
> |
|
382 |
> |
int SimInfo::getNDFtranslational() { |
383 |
> |
int ndfTrans_local; |
384 |
> |
|
385 |
> |
ndfTrans_local = 3 * integrableObjects.size() - n_constraints; |
386 |
> |
|
387 |
> |
|
388 |
> |
#ifdef IS_MPI |
389 |
> |
MPI_Allreduce(&ndfTrans_local,&ndfTrans,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
390 |
> |
#else |
391 |
> |
ndfTrans = ndfTrans_local; |
392 |
> |
#endif |
393 |
> |
|
394 |
> |
ndfTrans = ndfTrans - 3 - nZconstraints; |
395 |
> |
|
396 |
> |
return ndfTrans; |
397 |
> |
} |
398 |
> |
|
399 |
> |
int SimInfo::getTotIntegrableObjects() { |
400 |
> |
int nObjs_local; |
401 |
> |
int nObjs; |
402 |
> |
|
403 |
> |
nObjs_local = integrableObjects.size(); |
404 |
> |
|
405 |
> |
|
406 |
> |
#ifdef IS_MPI |
407 |
> |
MPI_Allreduce(&nObjs_local,&nObjs,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
408 |
> |
#else |
409 |
> |
nObjs = nObjs_local; |
410 |
> |
#endif |
411 |
> |
|
412 |
> |
|
413 |
> |
return nObjs; |
414 |
> |
} |
415 |
> |
|
416 |
|
void SimInfo::refreshSim(){ |
417 |
|
|
418 |
|
simtype fInfo; |
419 |
|
int isError; |
420 |
|
int n_global; |
421 |
|
int* excl; |
422 |
< |
|
366 |
< |
fInfo.rrf = 0.0; |
367 |
< |
fInfo.rt = 0.0; |
422 |
> |
|
423 |
|
fInfo.dielect = 0.0; |
424 |
|
|
425 |
< |
fInfo.rlist = rList; |
371 |
< |
fInfo.rcut = rCut; |
372 |
< |
|
373 |
< |
if( useDipole ){ |
374 |
< |
fInfo.rrf = ecr; |
375 |
< |
fInfo.rt = ecr - est; |
425 |
> |
if( useDipoles ){ |
426 |
|
if( useReactionField )fInfo.dielect = dielectric; |
427 |
|
} |
428 |
|
|
431 |
|
fInfo.SIM_uses_LJ = useLJ; |
432 |
|
fInfo.SIM_uses_sticky = useSticky; |
433 |
|
//fInfo.SIM_uses_sticky = 0; |
434 |
< |
fInfo.SIM_uses_dipoles = useDipole; |
434 |
> |
fInfo.SIM_uses_charges = useCharges; |
435 |
> |
fInfo.SIM_uses_dipoles = useDipoles; |
436 |
|
//fInfo.SIM_uses_dipoles = 0; |
437 |
< |
//fInfo.SIM_uses_RF = useReactionField; |
438 |
< |
fInfo.SIM_uses_RF = 0; |
437 |
> |
fInfo.SIM_uses_RF = useReactionField; |
438 |
> |
//fInfo.SIM_uses_RF = 0; |
439 |
|
fInfo.SIM_uses_GB = useGB; |
440 |
|
fInfo.SIM_uses_EAM = useEAM; |
441 |
|
|
442 |
< |
excl = Exclude::getArray(); |
442 |
> |
n_exclude = excludes->getSize(); |
443 |
> |
excl = excludes->getFortranArray(); |
444 |
|
|
445 |
|
#ifdef IS_MPI |
446 |
|
n_global = mpiSim->getTotAtoms(); |
470 |
|
|
471 |
|
this->ndf = this->getNDF(); |
472 |
|
this->ndfRaw = this->getNDFraw(); |
473 |
+ |
this->ndfTrans = this->getNDFtranslational(); |
474 |
+ |
} |
475 |
|
|
476 |
+ |
void SimInfo::setDefaultRcut( double theRcut ){ |
477 |
+ |
|
478 |
+ |
haveRcut = 1; |
479 |
+ |
rCut = theRcut; |
480 |
+ |
|
481 |
+ |
( rCut > ecr )? rList = rCut + 1.0: rList = ecr + 1.0; |
482 |
+ |
|
483 |
+ |
notifyFortranCutOffs( &rCut, &rList, &ecr, &est ); |
484 |
|
} |
485 |
|
|
486 |
+ |
void SimInfo::setDefaultEcr( double theEcr ){ |
487 |
+ |
|
488 |
+ |
haveEcr = 1; |
489 |
+ |
ecr = theEcr; |
490 |
+ |
|
491 |
+ |
( rCut > ecr )? rList = rCut + 1.0: rList = ecr + 1.0; |
492 |
+ |
|
493 |
+ |
notifyFortranCutOffs( &rCut, &rList, &ecr, &est ); |
494 |
+ |
} |
495 |
+ |
|
496 |
+ |
void SimInfo::setDefaultEcr( double theEcr, double theEst ){ |
497 |
+ |
|
498 |
+ |
est = theEst; |
499 |
+ |
setDefaultEcr( theEcr ); |
500 |
+ |
} |
501 |
+ |
|
502 |
+ |
|
503 |
+ |
void SimInfo::checkCutOffs( void ){ |
504 |
+ |
|
505 |
+ |
if( boxIsInit ){ |
506 |
+ |
|
507 |
+ |
//we need to check cutOffs against the box |
508 |
+ |
|
509 |
+ |
if( rCut > maxCutoff ){ |
510 |
+ |
sprintf( painCave.errMsg, |
511 |
+ |
"LJrcut is too large for the current periodic box.\n" |
512 |
+ |
"\tCurrent Value of LJrcut = %G at time %G\n " |
513 |
+ |
"\tThis is larger than half of at least one of the\n" |
514 |
+ |
"\tperiodic box vectors. Right now, the Box matrix is:\n" |
515 |
+ |
"\n, %G" |
516 |
+ |
"\t[ %G %G %G ]\n" |
517 |
+ |
"\t[ %G %G %G ]\n" |
518 |
+ |
"\t[ %G %G %G ]\n", |
519 |
+ |
rCut, currentTime, maxCutoff, |
520 |
+ |
Hmat[0][0], Hmat[0][1], Hmat[0][2], |
521 |
+ |
Hmat[1][0], Hmat[1][1], Hmat[1][2], |
522 |
+ |
Hmat[2][0], Hmat[2][1], Hmat[2][2]); |
523 |
+ |
painCave.isFatal = 1; |
524 |
+ |
simError(); |
525 |
+ |
} |
526 |
+ |
|
527 |
+ |
if( haveEcr ){ |
528 |
+ |
if( ecr > maxCutoff ){ |
529 |
+ |
sprintf( painCave.errMsg, |
530 |
+ |
"electrostaticCutoffRadius is too large for the current\n" |
531 |
+ |
"\tperiodic box.\n\n" |
532 |
+ |
"\tCurrent Value of ECR = %G at time %G\n " |
533 |
+ |
"\tThis is larger than half of at least one of the\n" |
534 |
+ |
"\tperiodic box vectors. Right now, the Box matrix is:\n" |
535 |
+ |
"\n" |
536 |
+ |
"\t[ %G %G %G ]\n" |
537 |
+ |
"\t[ %G %G %G ]\n" |
538 |
+ |
"\t[ %G %G %G ]\n", |
539 |
+ |
ecr, currentTime, |
540 |
+ |
Hmat[0][0], Hmat[0][1], Hmat[0][2], |
541 |
+ |
Hmat[1][0], Hmat[1][1], Hmat[1][2], |
542 |
+ |
Hmat[2][0], Hmat[2][1], Hmat[2][2]); |
543 |
+ |
painCave.isFatal = 1; |
544 |
+ |
simError(); |
545 |
+ |
} |
546 |
+ |
} |
547 |
+ |
} else { |
548 |
+ |
// initialize this stuff before using it, OK? |
549 |
+ |
sprintf( painCave.errMsg, |
550 |
+ |
"Trying to check cutoffs without a box.\n" |
551 |
+ |
"\tOOPSE should have better programmers than that.\n" ); |
552 |
+ |
painCave.isFatal = 1; |
553 |
+ |
simError(); |
554 |
+ |
} |
555 |
+ |
|
556 |
+ |
} |
557 |
+ |
|
558 |
+ |
void SimInfo::addProperty(GenericData* prop){ |
559 |
+ |
|
560 |
+ |
map<string, GenericData*>::iterator result; |
561 |
+ |
result = properties.find(prop->getID()); |
562 |
+ |
|
563 |
+ |
//we can't simply use properties[prop->getID()] = prop, |
564 |
+ |
//it will cause memory leak if we already contain a propery which has the same name of prop |
565 |
+ |
|
566 |
+ |
if(result != properties.end()){ |
567 |
+ |
|
568 |
+ |
delete (*result).second; |
569 |
+ |
(*result).second = prop; |
570 |
+ |
|
571 |
+ |
} |
572 |
+ |
else{ |
573 |
+ |
|
574 |
+ |
properties[prop->getID()] = prop; |
575 |
+ |
|
576 |
+ |
} |
577 |
+ |
|
578 |
+ |
} |
579 |
+ |
|
580 |
+ |
GenericData* SimInfo::getProperty(const string& propName){ |
581 |
+ |
|
582 |
+ |
map<string, GenericData*>::iterator result; |
583 |
+ |
|
584 |
+ |
//string lowerCaseName = (); |
585 |
+ |
|
586 |
+ |
result = properties.find(propName); |
587 |
+ |
|
588 |
+ |
if(result != properties.end()) |
589 |
+ |
return (*result).second; |
590 |
+ |
else |
591 |
+ |
return NULL; |
592 |
+ |
} |
593 |
+ |
|