| 1 |
mmeineke |
377 |
#include <cstdlib> |
| 2 |
|
|
#include <cstring> |
| 3 |
mmeineke |
568 |
#include <cmath> |
| 4 |
mmeineke |
377 |
|
| 5 |
|
|
|
| 6 |
|
|
#include "SimInfo.hpp" |
| 7 |
|
|
#define __C |
| 8 |
|
|
#include "fSimulation.h" |
| 9 |
|
|
#include "simError.h" |
| 10 |
|
|
|
| 11 |
|
|
#include "fortranWrappers.hpp" |
| 12 |
|
|
|
| 13 |
gezelter |
490 |
#ifdef IS_MPI |
| 14 |
|
|
#include "mpiSimulation.hpp" |
| 15 |
|
|
#endif |
| 16 |
|
|
|
| 17 |
mmeineke |
377 |
SimInfo* currentInfo; |
| 18 |
|
|
|
| 19 |
|
|
SimInfo::SimInfo(){ |
| 20 |
|
|
excludes = NULL; |
| 21 |
|
|
n_constraints = 0; |
| 22 |
|
|
n_oriented = 0; |
| 23 |
|
|
n_dipoles = 0; |
| 24 |
gezelter |
458 |
ndf = 0; |
| 25 |
|
|
ndfRaw = 0; |
| 26 |
mmeineke |
377 |
the_integrator = NULL; |
| 27 |
|
|
setTemp = 0; |
| 28 |
|
|
thermalTime = 0.0; |
| 29 |
mmeineke |
420 |
rCut = 0.0; |
| 30 |
mmeineke |
377 |
|
| 31 |
|
|
usePBC = 0; |
| 32 |
|
|
useLJ = 0; |
| 33 |
|
|
useSticky = 0; |
| 34 |
|
|
useDipole = 0; |
| 35 |
|
|
useReactionField = 0; |
| 36 |
|
|
useGB = 0; |
| 37 |
|
|
useEAM = 0; |
| 38 |
|
|
|
| 39 |
gezelter |
457 |
wrapMeSimInfo( this ); |
| 40 |
|
|
} |
| 41 |
mmeineke |
377 |
|
| 42 |
gezelter |
457 |
void SimInfo::setBox(double newBox[3]) { |
| 43 |
mmeineke |
568 |
|
| 44 |
|
|
double smallestBoxL, maxCutoff; |
| 45 |
gezelter |
463 |
int status; |
| 46 |
mmeineke |
568 |
int i; |
| 47 |
gezelter |
463 |
|
| 48 |
mmeineke |
568 |
for(i=0; i<9; i++) Hmat[i] = 0.0;; |
| 49 |
gezelter |
463 |
|
| 50 |
mmeineke |
568 |
Hmat[0] = newBox[0]; |
| 51 |
|
|
Hmat[4] = newBox[1]; |
| 52 |
|
|
Hmat[8] = newBox[2]; |
| 53 |
gezelter |
463 |
|
| 54 |
mmeineke |
568 |
calcHmatI(); |
| 55 |
|
|
calcBoxL(); |
| 56 |
|
|
|
| 57 |
mmeineke |
569 |
setFortranBoxSize(Hmat, HmatI, &orthoRhombic); |
| 58 |
mmeineke |
568 |
|
| 59 |
|
|
smallestBoxL = boxLx; |
| 60 |
|
|
if (boxLy < smallestBoxL) smallestBoxL = boxLy; |
| 61 |
|
|
if (boxLz < smallestBoxL) smallestBoxL = boxLz; |
| 62 |
|
|
|
| 63 |
|
|
maxCutoff = smallestBoxL / 2.0; |
| 64 |
|
|
|
| 65 |
gezelter |
463 |
if (rList > maxCutoff) { |
| 66 |
|
|
sprintf( painCave.errMsg, |
| 67 |
|
|
"New Box size is forcing neighborlist radius down to %lf\n", |
| 68 |
|
|
maxCutoff ); |
| 69 |
|
|
painCave.isFatal = 0; |
| 70 |
|
|
simError(); |
| 71 |
|
|
|
| 72 |
|
|
rList = maxCutoff; |
| 73 |
|
|
|
| 74 |
|
|
sprintf( painCave.errMsg, |
| 75 |
|
|
"New Box size is forcing cutoff radius down to %lf\n", |
| 76 |
|
|
maxCutoff - 1.0 ); |
| 77 |
|
|
painCave.isFatal = 0; |
| 78 |
|
|
simError(); |
| 79 |
|
|
|
| 80 |
|
|
rCut = rList - 1.0; |
| 81 |
|
|
|
| 82 |
|
|
// list radius changed so we have to refresh the simulation structure. |
| 83 |
|
|
refreshSim(); |
| 84 |
|
|
} |
| 85 |
|
|
|
| 86 |
|
|
if (rCut > maxCutoff) { |
| 87 |
|
|
sprintf( painCave.errMsg, |
| 88 |
|
|
"New Box size is forcing cutoff radius down to %lf\n", |
| 89 |
|
|
maxCutoff ); |
| 90 |
|
|
painCave.isFatal = 0; |
| 91 |
|
|
simError(); |
| 92 |
|
|
|
| 93 |
|
|
status = 0; |
| 94 |
|
|
LJ_new_rcut(&rCut, &status); |
| 95 |
|
|
if (status != 0) { |
| 96 |
|
|
sprintf( painCave.errMsg, |
| 97 |
|
|
"Error in recomputing LJ shifts based on new rcut\n"); |
| 98 |
|
|
painCave.isFatal = 1; |
| 99 |
|
|
simError(); |
| 100 |
|
|
} |
| 101 |
|
|
} |
| 102 |
gezelter |
457 |
} |
| 103 |
mmeineke |
377 |
|
| 104 |
mmeineke |
568 |
void SimInfo::setBoxM( double theBox[9] ){ |
| 105 |
|
|
|
| 106 |
|
|
int i, status; |
| 107 |
|
|
double smallestBoxL, maxCutoff; |
| 108 |
|
|
|
| 109 |
|
|
for(i=0; i<9; i++) Hmat[i] = theBox[i]; |
| 110 |
|
|
calcHmatI(); |
| 111 |
|
|
calcBoxL(); |
| 112 |
|
|
|
| 113 |
mmeineke |
569 |
setFortranBoxSize(Hmat, HmatI, &orthoRhombic); |
| 114 |
mmeineke |
568 |
|
| 115 |
|
|
smallestBoxL = boxLx; |
| 116 |
|
|
if (boxLy < smallestBoxL) smallestBoxL = boxLy; |
| 117 |
|
|
if (boxLz < smallestBoxL) smallestBoxL = boxLz; |
| 118 |
|
|
|
| 119 |
|
|
maxCutoff = smallestBoxL / 2.0; |
| 120 |
|
|
|
| 121 |
|
|
if (rList > maxCutoff) { |
| 122 |
|
|
sprintf( painCave.errMsg, |
| 123 |
|
|
"New Box size is forcing neighborlist radius down to %lf\n", |
| 124 |
|
|
maxCutoff ); |
| 125 |
|
|
painCave.isFatal = 0; |
| 126 |
|
|
simError(); |
| 127 |
|
|
|
| 128 |
|
|
rList = maxCutoff; |
| 129 |
|
|
|
| 130 |
|
|
sprintf( painCave.errMsg, |
| 131 |
|
|
"New Box size is forcing cutoff radius down to %lf\n", |
| 132 |
|
|
maxCutoff - 1.0 ); |
| 133 |
|
|
painCave.isFatal = 0; |
| 134 |
|
|
simError(); |
| 135 |
|
|
|
| 136 |
|
|
rCut = rList - 1.0; |
| 137 |
|
|
|
| 138 |
|
|
// list radius changed so we have to refresh the simulation structure. |
| 139 |
|
|
refreshSim(); |
| 140 |
|
|
} |
| 141 |
|
|
|
| 142 |
|
|
if (rCut > maxCutoff) { |
| 143 |
|
|
sprintf( painCave.errMsg, |
| 144 |
|
|
"New Box size is forcing cutoff radius down to %lf\n", |
| 145 |
|
|
maxCutoff ); |
| 146 |
|
|
painCave.isFatal = 0; |
| 147 |
|
|
simError(); |
| 148 |
|
|
|
| 149 |
|
|
status = 0; |
| 150 |
|
|
LJ_new_rcut(&rCut, &status); |
| 151 |
|
|
if (status != 0) { |
| 152 |
|
|
sprintf( painCave.errMsg, |
| 153 |
|
|
"Error in recomputing LJ shifts based on new rcut\n"); |
| 154 |
|
|
painCave.isFatal = 1; |
| 155 |
|
|
simError(); |
| 156 |
|
|
} |
| 157 |
|
|
} |
| 158 |
mmeineke |
377 |
} |
| 159 |
gezelter |
458 |
|
| 160 |
mmeineke |
568 |
|
| 161 |
|
|
void SimInfo::getBox(double theBox[9]) { |
| 162 |
|
|
|
| 163 |
|
|
int i; |
| 164 |
|
|
for(i=0; i<9; i++) theBox[i] = Hmat[i]; |
| 165 |
|
|
} |
| 166 |
|
|
|
| 167 |
|
|
|
| 168 |
|
|
void SimInfo::calcHmatI( void ) { |
| 169 |
|
|
|
| 170 |
|
|
double C[3][3]; |
| 171 |
|
|
double detHmat; |
| 172 |
|
|
int i, j, k; |
| 173 |
mmeineke |
569 |
double smallDiag; |
| 174 |
|
|
double tol; |
| 175 |
|
|
double sanity[3][3]; |
| 176 |
mmeineke |
568 |
|
| 177 |
|
|
// calculate the adjunct of Hmat; |
| 178 |
|
|
|
| 179 |
|
|
C[0][0] = ( Hmat[4]*Hmat[8]) - (Hmat[7]*Hmat[5]); |
| 180 |
|
|
C[1][0] = -( Hmat[1]*Hmat[8]) + (Hmat[7]*Hmat[2]); |
| 181 |
|
|
C[2][0] = ( Hmat[1]*Hmat[5]) - (Hmat[4]*Hmat[2]); |
| 182 |
|
|
|
| 183 |
|
|
C[0][1] = -( Hmat[3]*Hmat[8]) + (Hmat[6]*Hmat[5]); |
| 184 |
|
|
C[1][1] = ( Hmat[0]*Hmat[8]) - (Hmat[6]*Hmat[2]); |
| 185 |
|
|
C[2][1] = -( Hmat[0]*Hmat[5]) + (Hmat[3]*Hmat[2]); |
| 186 |
|
|
|
| 187 |
|
|
C[0][2] = ( Hmat[3]*Hmat[7]) - (Hmat[6]*Hmat[4]); |
| 188 |
|
|
C[1][2] = -( Hmat[0]*Hmat[7]) + (Hmat[6]*Hmat[1]); |
| 189 |
|
|
C[2][2] = ( Hmat[0]*Hmat[4]) - (Hmat[3]*Hmat[1]); |
| 190 |
|
|
|
| 191 |
|
|
// calcutlate the determinant of Hmat |
| 192 |
|
|
|
| 193 |
|
|
detHmat = 0.0; |
| 194 |
|
|
for(i=0; i<3; i++) detHmat += Hmat[i] * C[i][0]; |
| 195 |
|
|
|
| 196 |
|
|
|
| 197 |
|
|
// H^-1 = C^T / det(H) |
| 198 |
|
|
|
| 199 |
|
|
i=0; |
| 200 |
|
|
for(j=0; j<3; j++){ |
| 201 |
|
|
for(k=0; k<3; k++){ |
| 202 |
|
|
|
| 203 |
|
|
HmatI[i] = C[j][k] / detHmat; |
| 204 |
|
|
i++; |
| 205 |
|
|
} |
| 206 |
|
|
} |
| 207 |
mmeineke |
569 |
|
| 208 |
|
|
// sanity check |
| 209 |
|
|
|
| 210 |
|
|
for(i=0; i<3; i++){ |
| 211 |
|
|
for(j=0; j<3; j++){ |
| 212 |
|
|
|
| 213 |
|
|
sanity[i][j] = 0.0; |
| 214 |
|
|
for(k=0; k<3; k++){ |
| 215 |
|
|
sanity[i][j] += Hmat[3*k+i] * HmatI[3*j+k]; |
| 216 |
|
|
} |
| 217 |
|
|
} |
| 218 |
|
|
} |
| 219 |
|
|
|
| 220 |
|
|
cerr << "sanity => \n" |
| 221 |
|
|
<< sanity[0][0] << "\t" << sanity[0][1] << "\t" << sanity [0][2] << "\n" |
| 222 |
|
|
<< sanity[1][0] << "\t" << sanity[1][1] << "\t" << sanity [1][2] << "\n" |
| 223 |
|
|
<< sanity[2][0] << "\t" << sanity[2][1] << "\t" << sanity [2][2] |
| 224 |
|
|
<< "\n"; |
| 225 |
|
|
|
| 226 |
|
|
|
| 227 |
|
|
// check to see if Hmat is orthorhombic |
| 228 |
|
|
|
| 229 |
|
|
smallDiag = Hmat[0]; |
| 230 |
|
|
if(smallDiag > Hmat[4]) smallDiag = Hmat[4]; |
| 231 |
|
|
if(smallDiag > Hmat[8]) smallDiag = Hmat[8]; |
| 232 |
|
|
tol = smallDiag * 1E-6; |
| 233 |
|
|
|
| 234 |
|
|
orthoRhombic = 1; |
| 235 |
|
|
for(i=0; (i<9) && orthoRhombic; i++){ |
| 236 |
|
|
|
| 237 |
|
|
if( (i%4) ){ // ignore the diagonals (0, 4, and 8) |
| 238 |
|
|
orthoRhombic = (Hmat[i] <= tol); |
| 239 |
|
|
} |
| 240 |
|
|
} |
| 241 |
|
|
|
| 242 |
mmeineke |
568 |
} |
| 243 |
|
|
|
| 244 |
|
|
void SimInfo::calcBoxL( void ){ |
| 245 |
|
|
|
| 246 |
|
|
double dx, dy, dz, dsq; |
| 247 |
|
|
int i; |
| 248 |
|
|
|
| 249 |
|
|
// boxVol = h1 (dot) h2 (cross) h3 |
| 250 |
|
|
|
| 251 |
|
|
boxVol = Hmat[0] * ( (Hmat[4]*Hmat[8]) - (Hmat[7]*Hmat[5]) ) |
| 252 |
|
|
+ Hmat[1] * ( (Hmat[5]*Hmat[6]) - (Hmat[8]*Hmat[3]) ) |
| 253 |
|
|
+ Hmat[2] * ( (Hmat[3]*Hmat[7]) - (Hmat[6]*Hmat[4]) ); |
| 254 |
|
|
|
| 255 |
|
|
|
| 256 |
|
|
// boxLx |
| 257 |
|
|
|
| 258 |
|
|
dx = Hmat[0]; dy = Hmat[1]; dz = Hmat[2]; |
| 259 |
|
|
dsq = dx*dx + dy*dy + dz*dz; |
| 260 |
|
|
boxLx = sqrt( dsq ); |
| 261 |
|
|
|
| 262 |
|
|
// boxLy |
| 263 |
|
|
|
| 264 |
|
|
dx = Hmat[3]; dy = Hmat[4]; dz = Hmat[5]; |
| 265 |
|
|
dsq = dx*dx + dy*dy + dz*dz; |
| 266 |
|
|
boxLy = sqrt( dsq ); |
| 267 |
|
|
|
| 268 |
|
|
// boxLz |
| 269 |
|
|
|
| 270 |
|
|
dx = Hmat[6]; dy = Hmat[7]; dz = Hmat[8]; |
| 271 |
|
|
dsq = dx*dx + dy*dy + dz*dz; |
| 272 |
|
|
boxLz = sqrt( dsq ); |
| 273 |
|
|
|
| 274 |
|
|
} |
| 275 |
|
|
|
| 276 |
|
|
|
| 277 |
|
|
void SimInfo::wrapVector( double thePos[3] ){ |
| 278 |
|
|
|
| 279 |
|
|
int i, j, k; |
| 280 |
|
|
double scaled[3]; |
| 281 |
|
|
|
| 282 |
mmeineke |
569 |
if( !orthoRhombic ){ |
| 283 |
|
|
// calc the scaled coordinates. |
| 284 |
|
|
|
| 285 |
|
|
for(i=0; i<3; i++) |
| 286 |
|
|
scaled[i] = |
| 287 |
|
|
thePos[0]*HmatI[i] + thePos[1]*HmatI[i+3] + thePos[3]*HmatI[i+6]; |
| 288 |
|
|
|
| 289 |
|
|
// wrap the scaled coordinates |
| 290 |
|
|
|
| 291 |
|
|
for(i=0; i<3; i++) |
| 292 |
|
|
scaled[i] -= round(scaled[i]); |
| 293 |
|
|
|
| 294 |
|
|
// calc the wrapped real coordinates from the wrapped scaled coordinates |
| 295 |
|
|
|
| 296 |
|
|
for(i=0; i<3; i++) |
| 297 |
|
|
thePos[i] = |
| 298 |
|
|
scaled[0]*Hmat[i] + scaled[1]*Hmat[i+3] + scaled[3]*Hmat[i+6]; |
| 299 |
|
|
} |
| 300 |
|
|
else{ |
| 301 |
|
|
// calc the scaled coordinates. |
| 302 |
|
|
|
| 303 |
|
|
for(i=0; i<3; i++) |
| 304 |
|
|
scaled[i] = thePos[i]*HmatI[i*4]; |
| 305 |
|
|
|
| 306 |
|
|
// wrap the scaled coordinates |
| 307 |
|
|
|
| 308 |
|
|
for(i=0; i<3; i++) |
| 309 |
|
|
scaled[i] -= round(scaled[i]); |
| 310 |
|
|
|
| 311 |
|
|
// calc the wrapped real coordinates from the wrapped scaled coordinates |
| 312 |
|
|
|
| 313 |
|
|
for(i=0; i<3; i++) |
| 314 |
|
|
thePos[i] = scaled[i]*Hmat[i*4]; |
| 315 |
|
|
} |
| 316 |
|
|
|
| 317 |
|
|
|
| 318 |
mmeineke |
568 |
} |
| 319 |
|
|
|
| 320 |
|
|
|
| 321 |
gezelter |
458 |
int SimInfo::getNDF(){ |
| 322 |
|
|
int ndf_local, ndf; |
| 323 |
gezelter |
457 |
|
| 324 |
gezelter |
458 |
ndf_local = 3 * n_atoms + 3 * n_oriented - n_constraints; |
| 325 |
|
|
|
| 326 |
|
|
#ifdef IS_MPI |
| 327 |
|
|
MPI_Allreduce(&ndf_local,&ndf,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
| 328 |
|
|
#else |
| 329 |
|
|
ndf = ndf_local; |
| 330 |
|
|
#endif |
| 331 |
|
|
|
| 332 |
|
|
ndf = ndf - 3; |
| 333 |
|
|
|
| 334 |
|
|
return ndf; |
| 335 |
|
|
} |
| 336 |
|
|
|
| 337 |
|
|
int SimInfo::getNDFraw() { |
| 338 |
|
|
int ndfRaw_local, ndfRaw; |
| 339 |
|
|
|
| 340 |
|
|
// Raw degrees of freedom that we have to set |
| 341 |
|
|
ndfRaw_local = 3 * n_atoms + 3 * n_oriented; |
| 342 |
|
|
|
| 343 |
|
|
#ifdef IS_MPI |
| 344 |
|
|
MPI_Allreduce(&ndfRaw_local,&ndfRaw,1,MPI_INT,MPI_SUM, MPI_COMM_WORLD); |
| 345 |
|
|
#else |
| 346 |
|
|
ndfRaw = ndfRaw_local; |
| 347 |
|
|
#endif |
| 348 |
|
|
|
| 349 |
|
|
return ndfRaw; |
| 350 |
|
|
} |
| 351 |
|
|
|
| 352 |
mmeineke |
377 |
void SimInfo::refreshSim(){ |
| 353 |
|
|
|
| 354 |
|
|
simtype fInfo; |
| 355 |
|
|
int isError; |
| 356 |
gezelter |
490 |
int n_global; |
| 357 |
mmeineke |
424 |
int* excl; |
| 358 |
mmeineke |
469 |
|
| 359 |
|
|
fInfo.rrf = 0.0; |
| 360 |
|
|
fInfo.rt = 0.0; |
| 361 |
|
|
fInfo.dielect = 0.0; |
| 362 |
mmeineke |
377 |
|
| 363 |
|
|
fInfo.box[0] = box_x; |
| 364 |
|
|
fInfo.box[1] = box_y; |
| 365 |
|
|
fInfo.box[2] = box_z; |
| 366 |
|
|
|
| 367 |
|
|
fInfo.rlist = rList; |
| 368 |
|
|
fInfo.rcut = rCut; |
| 369 |
|
|
|
| 370 |
mmeineke |
469 |
if( useDipole ){ |
| 371 |
|
|
fInfo.rrf = ecr; |
| 372 |
|
|
fInfo.rt = ecr - est; |
| 373 |
|
|
if( useReactionField )fInfo.dielect = dielectric; |
| 374 |
|
|
} |
| 375 |
|
|
|
| 376 |
mmeineke |
377 |
fInfo.SIM_uses_PBC = usePBC; |
| 377 |
mmeineke |
443 |
//fInfo.SIM_uses_LJ = 0; |
| 378 |
chuckv |
439 |
fInfo.SIM_uses_LJ = useLJ; |
| 379 |
mmeineke |
443 |
fInfo.SIM_uses_sticky = useSticky; |
| 380 |
|
|
//fInfo.SIM_uses_sticky = 0; |
| 381 |
chuckv |
482 |
fInfo.SIM_uses_dipoles = useDipole; |
| 382 |
|
|
//fInfo.SIM_uses_dipoles = 0; |
| 383 |
mmeineke |
443 |
//fInfo.SIM_uses_RF = useReactionField; |
| 384 |
|
|
fInfo.SIM_uses_RF = 0; |
| 385 |
mmeineke |
377 |
fInfo.SIM_uses_GB = useGB; |
| 386 |
|
|
fInfo.SIM_uses_EAM = useEAM; |
| 387 |
|
|
|
| 388 |
mmeineke |
424 |
excl = Exclude::getArray(); |
| 389 |
mmeineke |
377 |
|
| 390 |
gezelter |
490 |
#ifdef IS_MPI |
| 391 |
|
|
n_global = mpiSim->getTotAtoms(); |
| 392 |
|
|
#else |
| 393 |
|
|
n_global = n_atoms; |
| 394 |
|
|
#endif |
| 395 |
|
|
|
| 396 |
mmeineke |
377 |
isError = 0; |
| 397 |
|
|
|
| 398 |
gezelter |
490 |
setFsimulation( &fInfo, &n_global, &n_atoms, identArray, &n_exclude, excl, |
| 399 |
gezelter |
483 |
&nGlobalExcludes, globalExcludes, molMembershipArray, |
| 400 |
|
|
&isError ); |
| 401 |
mmeineke |
377 |
|
| 402 |
|
|
if( isError ){ |
| 403 |
|
|
|
| 404 |
|
|
sprintf( painCave.errMsg, |
| 405 |
|
|
"There was an error setting the simulation information in fortran.\n" ); |
| 406 |
|
|
painCave.isFatal = 1; |
| 407 |
|
|
simError(); |
| 408 |
|
|
} |
| 409 |
|
|
|
| 410 |
|
|
#ifdef IS_MPI |
| 411 |
|
|
sprintf( checkPointMsg, |
| 412 |
|
|
"succesfully sent the simulation information to fortran.\n"); |
| 413 |
|
|
MPIcheckPoint(); |
| 414 |
|
|
#endif // is_mpi |
| 415 |
gezelter |
458 |
|
| 416 |
gezelter |
474 |
this->ndf = this->getNDF(); |
| 417 |
|
|
this->ndfRaw = this->getNDFraw(); |
| 418 |
gezelter |
458 |
|
| 419 |
mmeineke |
377 |
} |
| 420 |
|
|
|