| 1 |
#include <cmath> |
| 2 |
#include "Mat3x3d.hpp" |
| 3 |
#include "Roll.hpp" |
| 4 |
#include "SimInfo.hpp" |
| 5 |
|
| 6 |
|
| 7 |
//////////////////////////////////////////////////////////////////////////////// |
| 8 |
//Implementation of DCRollAFunctor |
| 9 |
//////////////////////////////////////////////////////////////////////////////// |
| 10 |
int DCRollAFunctor::operator()(ConstraintRigidBody* consRB1, ConstraintRigidBody* consRB2){ |
| 11 |
Vector3d posA; |
| 12 |
Vector3d posB; |
| 13 |
Vector3d oldPosA; |
| 14 |
Vector3d oldPosB; |
| 15 |
Vector3d velA; |
| 16 |
Vector3d velB; |
| 17 |
Vector3d pab; |
| 18 |
Vector3d tempPab; |
| 19 |
Vector3d rab; |
| 20 |
Vector3d rma; |
| 21 |
Vector3d rmb; |
| 22 |
Vector3d consForce; |
| 23 |
Vector3d bondDirUnitVec; |
| 24 |
double dx, dy, dz; |
| 25 |
double rpab; |
| 26 |
double rabsq, pabsq, rpabsq; |
| 27 |
double diffsq; |
| 28 |
double gab; |
| 29 |
double dt; |
| 30 |
double dt2; |
| 31 |
double rijcDotInvMassVec; |
| 32 |
|
| 33 |
|
| 34 |
const int conRBMaxIter = 10; |
| 35 |
|
| 36 |
dt = info->dt; |
| 37 |
dt2 = dt * dt; |
| 38 |
|
| 39 |
consRB1->getOldAtomPos(oldPosA.vec); |
| 40 |
consRB2->getOldAtomPos(oldPosB.vec); |
| 41 |
|
| 42 |
|
| 43 |
for(int i=0 ; i < conRBMaxIter; i++){ |
| 44 |
consRB1->getCurAtomPos(posA.vec); |
| 45 |
consRB2->getCurAtomPos(posB.vec); |
| 46 |
|
| 47 |
pab = posA - posB; |
| 48 |
|
| 49 |
//periodic boundary condition |
| 50 |
|
| 51 |
info->wrapVector(pab.vec); |
| 52 |
|
| 53 |
pabsq = dotProduct(pab, pab); |
| 54 |
|
| 55 |
rabsq = curPair->getBondLength2(); |
| 56 |
diffsq = rabsq - pabsq; |
| 57 |
|
| 58 |
if (fabs(diffsq) > (consTolerance * rabsq * 2)){ |
| 59 |
rab = oldPosA - oldPosB; |
| 60 |
info->wrapVector(rab.vec); |
| 61 |
|
| 62 |
rpab = dotProduct(rab, pab); |
| 63 |
|
| 64 |
rpabsq = rpab * rpab; |
| 65 |
|
| 66 |
|
| 67 |
//if (rpabsq < (rabsq * -diffsq)){ |
| 68 |
// return consFail; |
| 69 |
//} |
| 70 |
|
| 71 |
bondDirUnitVec = pab; |
| 72 |
bondDirUnitVec.normalize(); |
| 73 |
|
| 74 |
getEffInvMassVec(consRB1, bondDirUnitVec, rma); |
| 75 |
|
| 76 |
getEffInvMassVec(consRB2, -bondDirUnitVec, rmb); |
| 77 |
|
| 78 |
rijcDotInvMassVec = dotProduct(pab, rma + rmb); |
| 79 |
|
| 80 |
consForce = diffsq /(2 * dt * dt * rijcDotInvMassVec) * bondDirUnitVec; |
| 81 |
//integrate consRB1 using constraint force; |
| 82 |
integrate(consRB1,consForce); |
| 83 |
|
| 84 |
//integrate consRB2 using constraint force; |
| 85 |
integrate(consRB2, -consForce); |
| 86 |
|
| 87 |
} |
| 88 |
else{ |
| 89 |
if (i ==0) |
| 90 |
return consAlready; |
| 91 |
else |
| 92 |
return consSuccess; |
| 93 |
} |
| 94 |
} |
| 95 |
|
| 96 |
return consExceedMaxIter; |
| 97 |
|
| 98 |
} |
| 99 |
|
| 100 |
void DCRollAFunctor::getEffInvMassVec(ConstraintRigidBody* consRB, const Vector3d& bondDir, Vector3d& invMassVec){ |
| 101 |
double invMass; |
| 102 |
Vector3d tempVec1; |
| 103 |
Vector3d tempVec2; |
| 104 |
Vector3d refCoor; |
| 105 |
Vector3d refCrossBond; |
| 106 |
Mat3x3d IBody; |
| 107 |
Mat3x3d IFrame; |
| 108 |
Mat3x3d invIBody; |
| 109 |
Mat3x3d invIFrame; |
| 110 |
Mat3x3d a; |
| 111 |
Mat3x3d aTrans; |
| 112 |
|
| 113 |
invMass = 1.0 / consRB ->getMass(); |
| 114 |
|
| 115 |
invMassVec = invMass * bondDir; |
| 116 |
|
| 117 |
consRB->getRefCoor(refCoor.vec); |
| 118 |
consRB->getA(a.element); |
| 119 |
consRB->getI(IBody.element); |
| 120 |
|
| 121 |
aTrans = a.transpose(); |
| 122 |
invIBody = IBody.inverse(); |
| 123 |
|
| 124 |
IFrame = aTrans * invIBody * a; |
| 125 |
|
| 126 |
refCrossBond = crossProduct(refCoor, bondDir); |
| 127 |
|
| 128 |
tempVec1 = invIFrame * refCrossBond; |
| 129 |
tempVec2 = crossProduct(tempVec1, refCoor); |
| 130 |
|
| 131 |
invMassVec += tempVec2; |
| 132 |
|
| 133 |
} |
| 134 |
|
| 135 |
void DCRollAFunctor::integrate(ConstraintRigidBody* consRB, const Vector3d& force){ |
| 136 |
StuntDouble* sd; |
| 137 |
Vector3d vel; |
| 138 |
Vector3d pos; |
| 139 |
Vector3d Tb; |
| 140 |
Vector3d ji; |
| 141 |
double mass; |
| 142 |
double dtOver2; |
| 143 |
double dt; |
| 144 |
const double eConvert = 4.184e-4; |
| 145 |
|
| 146 |
dt = info->dt; |
| 147 |
dtOver2 = dt /2; |
| 148 |
sd = consRB->getStuntDouble(); |
| 149 |
|
| 150 |
sd->getVel(vel.vec); |
| 151 |
sd->getPos(pos.vec); |
| 152 |
|
| 153 |
mass = sd->getMass(); |
| 154 |
|
| 155 |
vel += eConvert * dtOver2/mass * force; |
| 156 |
pos += dt * vel; |
| 157 |
|
| 158 |
sd->setVel(vel.vec); |
| 159 |
sd->setPos(pos.vec); |
| 160 |
|
| 161 |
if (sd->isDirectional()){ |
| 162 |
|
| 163 |
// get and convert the torque to body frame |
| 164 |
|
| 165 |
sd->getTrq(Tb.vec); |
| 166 |
sd->lab2Body(Tb.vec); |
| 167 |
|
| 168 |
// get the angular momentum, and propagate a half step |
| 169 |
|
| 170 |
sd->getJ(ji.vec); |
| 171 |
|
| 172 |
ji += eConvert * dtOver2 * Tb; |
| 173 |
|
| 174 |
rotationPropagation( sd, ji.vec); |
| 175 |
|
| 176 |
sd->setJ(ji.vec); |
| 177 |
} |
| 178 |
|
| 179 |
} |
| 180 |
|
| 181 |
void DCRollAFunctor::rotationPropagation(StuntDouble* sd, double ji[3]){ |
| 182 |
double angle; |
| 183 |
double A[3][3], I[3][3]; |
| 184 |
int i, j, k; |
| 185 |
double dtOver2; |
| 186 |
|
| 187 |
dtOver2 = info->dt /2; |
| 188 |
// use the angular velocities to propagate the rotation matrix a |
| 189 |
// full time step |
| 190 |
|
| 191 |
sd->getA(A); |
| 192 |
sd->getI(I); |
| 193 |
|
| 194 |
if (sd->isLinear()) { |
| 195 |
i = sd->linearAxis(); |
| 196 |
j = (i+1)%3; |
| 197 |
k = (i+2)%3; |
| 198 |
|
| 199 |
angle = dtOver2 * ji[j] / I[j][j]; |
| 200 |
this->rotate( k, i, angle, ji, A ); |
| 201 |
|
| 202 |
angle = dtOver2 * ji[k] / I[k][k]; |
| 203 |
this->rotate( i, j, angle, ji, A); |
| 204 |
|
| 205 |
angle = dtOver2 * ji[j] / I[j][j]; |
| 206 |
this->rotate( k, i, angle, ji, A ); |
| 207 |
|
| 208 |
} else { |
| 209 |
// rotate about the x-axis |
| 210 |
angle = dtOver2 * ji[0] / I[0][0]; |
| 211 |
this->rotate( 1, 2, angle, ji, A ); |
| 212 |
|
| 213 |
// rotate about the y-axis |
| 214 |
angle = dtOver2 * ji[1] / I[1][1]; |
| 215 |
this->rotate( 2, 0, angle, ji, A ); |
| 216 |
|
| 217 |
// rotate about the z-axis |
| 218 |
angle = dtOver2 * ji[2] / I[2][2]; |
| 219 |
sd->addZangle(angle); |
| 220 |
this->rotate( 0, 1, angle, ji, A); |
| 221 |
|
| 222 |
// rotate about the y-axis |
| 223 |
angle = dtOver2 * ji[1] / I[1][1]; |
| 224 |
this->rotate( 2, 0, angle, ji, A ); |
| 225 |
|
| 226 |
// rotate about the x-axis |
| 227 |
angle = dtOver2 * ji[0] / I[0][0]; |
| 228 |
this->rotate( 1, 2, angle, ji, A ); |
| 229 |
|
| 230 |
} |
| 231 |
sd->setA( A ); |
| 232 |
} |
| 233 |
|
| 234 |
void DCRollAFunctor::rotate(int axes1, int axes2, double angle, double ji[3], double A[3][3]){ |
| 235 |
int i, j, k; |
| 236 |
double sinAngle; |
| 237 |
double cosAngle; |
| 238 |
double angleSqr; |
| 239 |
double angleSqrOver4; |
| 240 |
double top, bottom; |
| 241 |
double rot[3][3]; |
| 242 |
double tempA[3][3]; |
| 243 |
double tempJ[3]; |
| 244 |
|
| 245 |
// initialize the tempA |
| 246 |
|
| 247 |
for (i = 0; i < 3; i++){ |
| 248 |
for (j = 0; j < 3; j++){ |
| 249 |
tempA[j][i] = A[i][j]; |
| 250 |
} |
| 251 |
} |
| 252 |
|
| 253 |
// initialize the tempJ |
| 254 |
|
| 255 |
for (i = 0; i < 3; i++) |
| 256 |
tempJ[i] = ji[i]; |
| 257 |
|
| 258 |
// initalize rot as a unit matrix |
| 259 |
|
| 260 |
rot[0][0] = 1.0; |
| 261 |
rot[0][1] = 0.0; |
| 262 |
rot[0][2] = 0.0; |
| 263 |
|
| 264 |
rot[1][0] = 0.0; |
| 265 |
rot[1][1] = 1.0; |
| 266 |
rot[1][2] = 0.0; |
| 267 |
|
| 268 |
rot[2][0] = 0.0; |
| 269 |
rot[2][1] = 0.0; |
| 270 |
rot[2][2] = 1.0; |
| 271 |
|
| 272 |
// use a small angle aproximation for sin and cosine |
| 273 |
|
| 274 |
angleSqr = angle * angle; |
| 275 |
angleSqrOver4 = angleSqr / 4.0; |
| 276 |
top = 1.0 - angleSqrOver4; |
| 277 |
bottom = 1.0 + angleSqrOver4; |
| 278 |
|
| 279 |
cosAngle = top / bottom; |
| 280 |
sinAngle = angle / bottom; |
| 281 |
|
| 282 |
rot[axes1][axes1] = cosAngle; |
| 283 |
rot[axes2][axes2] = cosAngle; |
| 284 |
|
| 285 |
rot[axes1][axes2] = sinAngle; |
| 286 |
rot[axes2][axes1] = -sinAngle; |
| 287 |
|
| 288 |
// rotate the momentum acoording to: ji[] = rot[][] * ji[] |
| 289 |
|
| 290 |
for (i = 0; i < 3; i++){ |
| 291 |
ji[i] = 0.0; |
| 292 |
for (k = 0; k < 3; k++){ |
| 293 |
ji[i] += rot[i][k] * tempJ[k]; |
| 294 |
} |
| 295 |
} |
| 296 |
|
| 297 |
// rotate the Rotation matrix acording to: |
| 298 |
// A[][] = A[][] * transpose(rot[][]) |
| 299 |
|
| 300 |
|
| 301 |
// NOte for as yet unknown reason, we are performing the |
| 302 |
// calculation as: |
| 303 |
// transpose(A[][]) = transpose(A[][]) * transpose(rot[][]) |
| 304 |
|
| 305 |
for (i = 0; i < 3; i++){ |
| 306 |
for (j = 0; j < 3; j++){ |
| 307 |
A[j][i] = 0.0; |
| 308 |
for (k = 0; k < 3; k++){ |
| 309 |
A[j][i] += tempA[i][k] * rot[j][k]; |
| 310 |
} |
| 311 |
} |
| 312 |
} |
| 313 |
} |
| 314 |
//////////////////////////////////////////////////////////////////////////////// |
| 315 |
//Implementation of DCRollBFunctor |
| 316 |
//////////////////////////////////////////////////////////////////////////////// |
| 317 |
int DCRollBFunctor::operator()(ConstraintRigidBody* consRB1, ConstraintRigidBody* consRB2){ |
| 318 |
return consElemHandlerFail; |
| 319 |
} |
| 320 |
|
| 321 |
void DCRollBFunctor::getEffInvMassVec(ConstraintRigidBody* consRB, const Vector3d& bondDir, Vector3d& invMassVec){ |
| 322 |
|
| 323 |
} |
| 324 |
|
| 325 |
void DCRollBFunctor::integrate(ConstraintRigidBody* consRB, const Vector3d& force){ |
| 326 |
|
| 327 |
} |