| 7 |
|
//////////////////////////////////////////////////////////////////////////////// |
| 8 |
|
//Implementation of DCRollAFunctor |
| 9 |
|
//////////////////////////////////////////////////////////////////////////////// |
| 10 |
< |
int DCRollAFunctor::operator()(ConstraintRigidBody* consRB1, ConstraintRigidBody* consRB2){ |
| 10 |
> |
int DCRollAFunctor::operator()(ConstraintAtom* consAtom1, ConstraintAtom* consAtom2){ |
| 11 |
|
Vector3d posA; |
| 12 |
|
Vector3d posB; |
| 13 |
|
Vector3d oldPosA; |
| 17 |
|
Vector3d pab; |
| 18 |
|
Vector3d tempPab; |
| 19 |
|
Vector3d rab; |
| 20 |
< |
Vector3d rma; |
| 21 |
< |
Vector3d rmb; |
| 20 |
> |
Vector3d zetaA; |
| 21 |
> |
Vector3d zetaB; |
| 22 |
> |
Vector3d zeta; |
| 23 |
|
Vector3d consForce; |
| 24 |
|
Vector3d bondDirUnitVec; |
| 25 |
|
double dx, dy, dz; |
| 28 |
|
double diffsq; |
| 29 |
|
double gab; |
| 30 |
|
double dt; |
| 31 |
< |
double pabDotInvMassVec; |
| 31 |
> |
double pabDotZeta; |
| 32 |
> |
double pabDotZeta2; |
| 33 |
> |
double zeta2; |
| 34 |
> |
double forceScalar; |
| 35 |
|
|
| 32 |
– |
|
| 33 |
– |
const int conRBMaxIter = 10; |
| 36 |
|
|
| 37 |
|
dt = info->dt; |
| 38 |
|
|
| 39 |
< |
consRB1->getOldAtomPos(oldPosA.vec); |
| 40 |
< |
consRB2->getOldAtomPos(oldPosB.vec); |
| 39 |
> |
consAtom1->getOldPos(oldPosA.vec); |
| 40 |
> |
consAtom2->getOldPos(oldPosB.vec); |
| 41 |
|
|
| 42 |
|
|
| 43 |
< |
for(int i=0 ; i < conRBMaxIter; i++){ |
| 44 |
< |
consRB1->getCurAtomPos(posA.vec); |
| 43 |
< |
consRB2->getCurAtomPos(posB.vec); |
| 43 |
> |
consAtom1->getPos(posA.vec); |
| 44 |
> |
consAtom2->getPos(posB.vec); |
| 45 |
|
|
| 46 |
< |
pab = posA - posB; |
| 46 |
> |
//discard the vector convention in alan tidesley's code |
| 47 |
> |
//rij = rj - ri; |
| 48 |
> |
pab = posB - posA; |
| 49 |
|
|
| 50 |
|
//periodic boundary condition |
| 51 |
|
|
| 54 |
|
pabsq = dotProduct(pab, pab); |
| 55 |
|
|
| 56 |
|
rabsq = curPair->getBondLength2(); |
| 57 |
< |
diffsq = rabsq - pabsq; |
| 57 |
> |
diffsq = pabsq -rabsq; |
| 58 |
|
|
| 59 |
|
if (fabs(diffsq) > (consTolerance * rabsq * 2)){ |
| 60 |
< |
rab = oldPosA - oldPosB; |
| 60 |
> |
rab = oldPosB - oldPosA; |
| 61 |
|
info->wrapVector(rab.vec); |
| 62 |
|
|
| 63 |
< |
rpab = dotProduct(rab, pab); |
| 63 |
> |
//rpab = dotProduct(rab, pab); |
| 64 |
|
|
| 65 |
< |
rpabsq = rpab * rpab; |
| 65 |
> |
//rpabsq = rpab * rpab; |
| 66 |
|
|
| 67 |
|
|
| 68 |
|
//if (rpabsq < (rabsq * -diffsq)){ |
| 72 |
|
bondDirUnitVec = pab; |
| 73 |
|
bondDirUnitVec.normalize(); |
| 74 |
|
|
| 75 |
< |
getEffInvMassVec(consRB1, bondDirUnitVec, rma); |
| 75 |
> |
calcZeta(consAtom1, bondDirUnitVec, zetaA); |
| 76 |
|
|
| 77 |
< |
getEffInvMassVec(consRB2, -bondDirUnitVec, rmb); |
| 77 |
> |
calcZeta(consAtom2, bondDirUnitVec, zetaB); |
| 78 |
|
|
| 79 |
< |
pabDotInvMassVec = dotProduct(pab, rma + rmb); |
| 79 |
> |
zeta = zetaA + zetaB; |
| 80 |
> |
zeta2 = dotProduct(zeta, zeta); |
| 81 |
|
|
| 82 |
< |
consForce = diffsq /(2 * dt * dt * pabDotInvMassVec) * bondDirUnitVec; |
| 82 |
> |
pabDotZeta = dotProduct(pab, zeta); |
| 83 |
> |
pabDotZeta2 = pabDotZeta * pabDotZeta; |
| 84 |
> |
|
| 85 |
> |
//solve quadratic equation |
| 86 |
> |
//dt^4 * zeta^2 * G^2 + 2* h^2 * pab * zeta * G + pab^2 - d^2 |
| 87 |
> |
//dt : time step |
| 88 |
> |
// pab : |
| 89 |
> |
//G : constraint force scalar |
| 90 |
> |
//d: equilibrium bond length |
| 91 |
> |
|
| 92 |
> |
if (pabDotZeta2 - zeta2 * diffsq < 0) |
| 93 |
> |
return consFail; |
| 94 |
> |
|
| 95 |
> |
//forceScalar = (pabDotZeta + sqrt(pabDotZeta2 - zeta2 * diffsq)) / dt * dt * zeta2; |
| 96 |
> |
forceScalar = diffsq / (2 * dt * dt * pabDotZeta); |
| 97 |
> |
//forceScalar = 1 / forceScalar; |
| 98 |
> |
consForce = forceScalar * bondDirUnitVec; |
| 99 |
|
//integrate consRB1 using constraint force; |
| 100 |
< |
integrate(consRB1,consForce); |
| 100 |
> |
integrate(consAtom1, consForce); |
| 101 |
|
|
| 102 |
|
//integrate consRB2 using constraint force; |
| 103 |
+ |
integrate(consAtom2, -consForce); |
| 104 |
+ |
|
| 105 |
+ |
return consSuccess; |
| 106 |
+ |
} |
| 107 |
+ |
else |
| 108 |
+ |
return consAlready; |
| 109 |
+ |
|
| 110 |
+ |
|
| 111 |
+ |
|
| 112 |
+ |
|
| 113 |
+ |
} |
| 114 |
+ |
void DCRollAFunctor::calcZeta(ConstraintAtom* consAtom, const Vector3d& bondDir, Vector3d&zeta){ |
| 115 |
+ |
double invMass; |
| 116 |
+ |
invMass = 1.0 / consAtom ->getMass(); |
| 117 |
+ |
|
| 118 |
+ |
zeta = invMass * bondDir; |
| 119 |
+ |
} |
| 120 |
+ |
|
| 121 |
+ |
void DCRollAFunctor::integrate(ConstraintAtom* consAtom, const Vector3d& force){ |
| 122 |
+ |
StuntDouble* sd; |
| 123 |
+ |
Vector3d vel; |
| 124 |
+ |
Vector3d pos; |
| 125 |
+ |
Vector3d tempPos; |
| 126 |
+ |
Vector3d tempVel; |
| 127 |
+ |
double mass; |
| 128 |
+ |
double dt; |
| 129 |
+ |
|
| 130 |
+ |
dt = info->dt; |
| 131 |
+ |
sd = consAtom->getStuntDouble(); |
| 132 |
+ |
|
| 133 |
+ |
sd->getVel(vel.vec); |
| 134 |
+ |
sd->getPos(pos.vec); |
| 135 |
+ |
|
| 136 |
+ |
mass = sd->getMass(); |
| 137 |
+ |
|
| 138 |
+ |
tempVel = dt/mass * force; |
| 139 |
+ |
tempPos = dt * tempVel; |
| 140 |
+ |
|
| 141 |
+ |
vel += tempVel; |
| 142 |
+ |
pos += tempPos; |
| 143 |
+ |
|
| 144 |
+ |
sd->setVel(vel.vec); |
| 145 |
+ |
sd->setPos(pos.vec); |
| 146 |
+ |
} |
| 147 |
+ |
|
| 148 |
+ |
int DCRollAFunctor::operator()(ConstraintRigidBody* consRB1, ConstraintRigidBody* consRB2){ |
| 149 |
+ |
Vector3d posA; |
| 150 |
+ |
Vector3d posB; |
| 151 |
+ |
Vector3d oldPosA; |
| 152 |
+ |
Vector3d oldPosB; |
| 153 |
+ |
Vector3d velA; |
| 154 |
+ |
Vector3d velB; |
| 155 |
+ |
Vector3d pab; |
| 156 |
+ |
Vector3d tempPab; |
| 157 |
+ |
Vector3d rab; |
| 158 |
+ |
Vector3d zetaA; |
| 159 |
+ |
Vector3d zetaB; |
| 160 |
+ |
Vector3d zeta; |
| 161 |
+ |
Vector3d consForce; |
| 162 |
+ |
Vector3d bondDirUnitVec; |
| 163 |
+ |
double dx, dy, dz; |
| 164 |
+ |
double rpab; |
| 165 |
+ |
double rabsq, pabsq, rpabsq; |
| 166 |
+ |
double diffsq; |
| 167 |
+ |
double gab; |
| 168 |
+ |
double dt; |
| 169 |
+ |
double pabDotZeta; |
| 170 |
+ |
double pabDotZeta2; |
| 171 |
+ |
double zeta2; |
| 172 |
+ |
double forceScalar; |
| 173 |
+ |
|
| 174 |
+ |
const int conRBMaxIter = 100; |
| 175 |
+ |
|
| 176 |
+ |
dt = info->dt; |
| 177 |
+ |
|
| 178 |
+ |
consRB1->getOldAtomPos(oldPosA.vec); |
| 179 |
+ |
consRB2->getOldAtomPos(oldPosB.vec); |
| 180 |
+ |
|
| 181 |
+ |
|
| 182 |
+ |
for(int i=0 ; i < conRBMaxIter; i++){ |
| 183 |
+ |
consRB1->getCurAtomPos(posA.vec); |
| 184 |
+ |
consRB2->getCurAtomPos(posB.vec); |
| 185 |
+ |
|
| 186 |
+ |
//discard the vector convention in alan tidesley's code |
| 187 |
+ |
//rij = rj - ri; |
| 188 |
+ |
pab = posB - posA; |
| 189 |
+ |
|
| 190 |
+ |
//periodic boundary condition |
| 191 |
+ |
|
| 192 |
+ |
info->wrapVector(pab.vec); |
| 193 |
+ |
|
| 194 |
+ |
pabsq = dotProduct(pab, pab); |
| 195 |
+ |
|
| 196 |
+ |
rabsq = curPair->getBondLength2(); |
| 197 |
+ |
diffsq = pabsq -rabsq; |
| 198 |
+ |
|
| 199 |
+ |
if (fabs(diffsq) > (consTolerance * rabsq * 2)){ |
| 200 |
+ |
rab = oldPosB - oldPosA; |
| 201 |
+ |
info->wrapVector(rab.vec); |
| 202 |
+ |
|
| 203 |
+ |
bondDirUnitVec = rab; |
| 204 |
+ |
bondDirUnitVec.normalize(); |
| 205 |
+ |
|
| 206 |
+ |
calcZeta(consRB1, bondDirUnitVec, zetaA); |
| 207 |
+ |
|
| 208 |
+ |
calcZeta(consRB2, bondDirUnitVec, zetaB); |
| 209 |
+ |
|
| 210 |
+ |
zeta = zetaA + zetaB; |
| 211 |
+ |
zeta2 = dotProduct(zeta, zeta); |
| 212 |
+ |
|
| 213 |
+ |
pabDotZeta = dotProduct(pab, zeta); |
| 214 |
+ |
pabDotZeta2 = pabDotZeta * pabDotZeta; |
| 215 |
+ |
|
| 216 |
+ |
//solve quadratic equation |
| 217 |
+ |
//dt^4 * zeta^2 * G^2 + 2* h^2 * pab * zeta * G + pab^2 - d^2 |
| 218 |
+ |
//dt : time step |
| 219 |
+ |
// pab : |
| 220 |
+ |
//G : constraint force scalar |
| 221 |
+ |
//d: equilibrium bond length |
| 222 |
+ |
|
| 223 |
+ |
if (pabDotZeta2 - zeta2 * diffsq < 0){ |
| 224 |
+ |
cerr << "DCRollAFunctor::operator() Error: Constraint Fail at " << info->getTime() << endl; |
| 225 |
+ |
return consFail; |
| 226 |
+ |
} |
| 227 |
+ |
//if pabDotZeta is close to 0, we can't neglect the square term |
| 228 |
+ |
if(fabs(pabDotZeta) < consTolerance) |
| 229 |
+ |
forceScalar = (pabDotZeta - sqrt(pabDotZeta2 - zeta2 * diffsq)) / dt * dt * zeta2; |
| 230 |
+ |
else |
| 231 |
+ |
forceScalar = diffsq / (2 * dt * dt * pabDotZeta); |
| 232 |
+ |
|
| 233 |
+ |
// |
| 234 |
+ |
consForce = forceScalar * bondDirUnitVec; |
| 235 |
+ |
//integrate consRB1 using constraint force; |
| 236 |
+ |
integrate(consRB1, consForce); |
| 237 |
+ |
|
| 238 |
+ |
//integrate consRB2 using constraint force; |
| 239 |
|
integrate(consRB2, -consForce); |
| 240 |
|
|
| 241 |
|
} |
| 247 |
|
} |
| 248 |
|
} |
| 249 |
|
|
| 250 |
+ |
cerr << "DCRollAFunctor::operator() Error: can not constrain the bond within maximum iteration at " << info->getTime() << endl; |
| 251 |
|
return consExceedMaxIter; |
| 252 |
|
|
| 253 |
|
} |
| 254 |
|
|
| 255 |
< |
void DCRollAFunctor::getEffInvMassVec(ConstraintRigidBody* consRB, const Vector3d& bondDir, Vector3d& invMassVec){ |
| 255 |
> |
void DCRollAFunctor::calcZeta(ConstraintRigidBody* consRB, const Vector3d& bondDir, Vector3d& zeta){ |
| 256 |
|
double invMass; |
| 257 |
|
Vector3d tempVec1; |
| 258 |
|
Vector3d tempVec2; |
| 259 |
|
Vector3d refCoor; |
| 260 |
|
Vector3d refCrossBond; |
| 261 |
|
Mat3x3d IBody; |
| 105 |
– |
Mat3x3d IFrame; |
| 262 |
|
Mat3x3d invIBody; |
| 263 |
< |
Mat3x3d invIFrame; |
| 263 |
> |
Mat3x3d invILab; |
| 264 |
|
Mat3x3d a; |
| 265 |
|
Mat3x3d aTrans; |
| 266 |
|
|
| 267 |
|
invMass = 1.0 / consRB ->getMass(); |
| 268 |
|
|
| 269 |
< |
invMassVec = invMass * bondDir; |
| 269 |
> |
zeta = invMass * bondDir; |
| 270 |
|
|
| 271 |
|
consRB->getRefCoor(refCoor.vec); |
| 272 |
< |
consRB->getA(a.element); |
| 272 |
> |
//consRB->getA(a.element); |
| 273 |
> |
consRB->getOldA(a.element); |
| 274 |
|
consRB->getI(IBody.element); |
| 275 |
|
|
| 276 |
|
aTrans = a.transpose(); |
| 277 |
|
invIBody = IBody.inverse(); |
| 278 |
|
|
| 279 |
< |
IFrame = aTrans * invIBody * a; |
| 279 |
> |
invILab = aTrans * invIBody * a; |
| 280 |
|
|
| 281 |
< |
refCrossBond = crossProduct(refCoor, bondDir); |
| 281 |
> |
refCrossBond = crossProduct(aTrans *refCoor, bondDir); |
| 282 |
|
|
| 283 |
< |
tempVec1 = invIFrame * refCrossBond; |
| 284 |
< |
tempVec2 = crossProduct(tempVec1, refCoor); |
| 283 |
> |
tempVec1 = invILab * refCrossBond; |
| 284 |
> |
tempVec2 = crossProduct(tempVec1, aTrans *refCoor); |
| 285 |
|
|
| 286 |
< |
invMassVec += tempVec2; |
| 286 |
> |
zeta += tempVec2; |
| 287 |
|
|
| 288 |
|
} |
| 289 |
|
|
| 290 |
< |
void DCRollAFunctor::integrate(ConstraintRigidBody* consRB, const Vector3d& force){ |
| 291 |
< |
StuntDouble* sd; |
| 290 |
> |
void DCRollAFunctor::integrate(ConstraintRigidBody* consRB, const Vector3d& consForce){ |
| 291 |
> |
RigidBody* rb; |
| 292 |
> |
Vector3d frc; |
| 293 |
> |
Vector3d totConsForce; |
| 294 |
|
Vector3d vel; |
| 295 |
|
Vector3d pos; |
| 296 |
|
Vector3d Tb; |
| 297 |
|
Vector3d ji; |
| 298 |
+ |
Vector3d refCoor; |
| 299 |
+ |
Vector3d consTorque; |
| 300 |
+ |
Vector3d totConsTorque; |
| 301 |
+ |
Mat3x3d a; |
| 302 |
|
double mass; |
| 140 |
– |
double dtOver2; |
| 303 |
|
double dt; |
| 304 |
+ |
double dtOver2; |
| 305 |
|
const double eConvert = 4.184e-4; |
| 306 |
|
|
| 307 |
|
dt = info->dt; |
| 308 |
< |
dtOver2 = dt /2; |
| 309 |
< |
sd = consRB->getStuntDouble(); |
| 308 |
> |
dtOver2 = dt /2; |
| 309 |
> |
|
| 310 |
> |
//restore to old status |
| 311 |
> |
consRB->restoreUnconsStatus(); |
| 312 |
> |
|
| 313 |
> |
//accumulate constraint force; |
| 314 |
> |
consRB->addConsForce(consForce/eConvert); |
| 315 |
> |
totConsForce = consRB->getConsForce(); |
| 316 |
> |
|
| 317 |
> |
rb = consRB->getRigidBody(); |
| 318 |
|
|
| 319 |
< |
sd->getVel(vel.vec); |
| 149 |
< |
sd->getPos(pos.vec); |
| 319 |
> |
rb->addFrc(totConsForce.vec); |
| 320 |
|
|
| 321 |
< |
mass = sd->getMass(); |
| 321 |
> |
rb->getVel(vel.vec); |
| 322 |
> |
rb->getPos(pos.vec); |
| 323 |
> |
rb->getFrc(frc.vec); |
| 324 |
> |
mass = rb->getMass(); |
| 325 |
|
|
| 326 |
< |
vel += eConvert * dtOver2/mass * force; |
| 326 |
> |
// velocity half step |
| 327 |
> |
vel += eConvert * dtOver2 / mass * frc; |
| 328 |
> |
// position whole step |
| 329 |
|
pos += dt * vel; |
| 330 |
|
|
| 331 |
< |
sd->setVel(vel.vec); |
| 332 |
< |
sd->setPos(pos.vec); |
| 331 |
> |
rb->setVel(vel.vec); |
| 332 |
> |
rb->setPos(pos.vec); |
| 333 |
|
|
| 334 |
< |
if (sd->isDirectional()){ |
| 334 |
> |
//evolve orientational part |
| 335 |
> |
consRB->getRefCoor(refCoor.vec); |
| 336 |
> |
rb->getA(a.element); |
| 337 |
|
|
| 338 |
< |
// get and convert the torque to body frame |
| 338 |
> |
//calculate constraint torque in lab frame |
| 339 |
> |
consTorque = crossProduct(a.transpose() * refCoor, consForce); |
| 340 |
> |
consRB->addConsTorque(consTorque/eConvert); |
| 341 |
|
|
| 342 |
< |
sd->getTrq(Tb.vec); |
| 343 |
< |
sd->lab2Body(Tb.vec); |
| 342 |
> |
//add constraint torque |
| 343 |
> |
totConsTorque = consRB->getConsTorque(); |
| 344 |
> |
rb->addTrq(totConsTorque.vec); |
| 345 |
> |
|
| 346 |
> |
//get and convert the torque to body frame |
| 347 |
|
|
| 348 |
< |
// get the angular momentum, and propagate a half step |
| 348 |
> |
rb->getTrq(Tb.vec); |
| 349 |
> |
rb->lab2Body(Tb.vec); |
| 350 |
|
|
| 351 |
< |
sd->getJ(ji.vec); |
| 351 |
> |
//get the angular momentum, and propagate a half step |
| 352 |
|
|
| 353 |
< |
ji += eConvert * dtOver2 * Tb; |
| 353 |
> |
rb->getJ(ji.vec); |
| 354 |
|
|
| 355 |
< |
rotationPropagation( sd, ji.vec); |
| 355 |
> |
ji += eConvert * dtOver2 * Tb; |
| 356 |
|
|
| 357 |
< |
sd->setJ(ji.vec); |
| 358 |
< |
} |
| 357 |
> |
rotationPropagation( rb, ji.vec ); |
| 358 |
> |
|
| 359 |
> |
rb->setJ(ji.vec); |
| 360 |
|
|
| 361 |
|
} |
| 362 |
|
|
| 365 |
|
double A[3][3], I[3][3]; |
| 366 |
|
int i, j, k; |
| 367 |
|
double dtOver2; |
| 368 |
< |
|
| 369 |
< |
dtOver2 = info->dt /2; |
| 368 |
> |
double dt; |
| 369 |
> |
dt = info->dt; |
| 370 |
> |
dtOver2 = dt /2; |
| 371 |
|
// use the angular velocities to propagate the rotation matrix a |
| 372 |
|
// full time step |
| 373 |
|
|
| 382 |
|
angle = dtOver2 * ji[j] / I[j][j]; |
| 383 |
|
this->rotate( k, i, angle, ji, A ); |
| 384 |
|
|
| 385 |
< |
angle = dtOver2 * ji[k] / I[k][k]; |
| 385 |
> |
angle = dt* ji[k] / I[k][k]; |
| 386 |
|
this->rotate( i, j, angle, ji, A); |
| 387 |
|
|
| 388 |
|
angle = dtOver2 * ji[j] / I[j][j]; |
| 398 |
|
this->rotate( 2, 0, angle, ji, A ); |
| 399 |
|
|
| 400 |
|
// rotate about the z-axis |
| 401 |
< |
angle = dtOver2 * ji[2] / I[2][2]; |
| 217 |
< |
sd->addZangle(angle); |
| 401 |
> |
angle = dt * ji[2] / I[2][2]; |
| 402 |
|
this->rotate( 0, 1, angle, ji, A); |
| 403 |
|
|
| 404 |
|
// rotate about the y-axis |
| 504 |
|
Vector3d pab; |
| 505 |
|
Vector3d rab; |
| 506 |
|
Vector3d vab; |
| 507 |
< |
Vector3d rma; |
| 508 |
< |
Vector3d rmb; |
| 507 |
> |
Vector3d zetaA; |
| 508 |
> |
Vector3d zetaB; |
| 509 |
> |
Vector3d zeta; |
| 510 |
|
Vector3d consForce; |
| 511 |
|
Vector3d bondDirUnitVec; |
| 327 |
– |
double dx, dy, dz; |
| 328 |
– |
double rpab; |
| 329 |
– |
double rabsq, pabsq, rpabsq; |
| 330 |
– |
double diffsq; |
| 331 |
– |
double gab; |
| 512 |
|
double dt; |
| 513 |
< |
double pabcDotvab; |
| 514 |
< |
double pabDotInvMassVec; |
| 513 |
> |
double pabDotvab; |
| 514 |
> |
double pabDotZeta; |
| 515 |
> |
double pvab; |
| 516 |
|
|
| 517 |
< |
|
| 337 |
< |
const int conRBMaxIter = 10; |
| 517 |
> |
const int conRBMaxIter = 20; |
| 518 |
|
|
| 519 |
|
dt = info->dt; |
| 520 |
|
|
| 521 |
|
for(int i=0 ; i < conRBMaxIter; i++){ |
| 522 |
|
consRB1->getCurAtomPos(posA.vec); |
| 523 |
|
consRB2->getCurAtomPos(posB.vec); |
| 524 |
< |
pab = posA - posB; |
| 345 |
< |
|
| 346 |
< |
consRB1->getVel(velA.vec); |
| 347 |
< |
consRB2->getVel(velB.vec); |
| 348 |
< |
vab = velA -velB; |
| 524 |
> |
pab = posB - posA; |
| 525 |
|
|
| 526 |
|
//periodic boundary condition |
| 351 |
– |
|
| 527 |
|
info->wrapVector(pab.vec); |
| 528 |
+ |
|
| 529 |
+ |
consRB1->getCurAtomVel(velA.vec); |
| 530 |
+ |
consRB2->getCurAtomVel(velB.vec); |
| 531 |
+ |
vab = velB -velA; |
| 532 |
|
|
| 533 |
< |
pabsq = pab.length2(); |
| 533 |
> |
pvab = dotProduct(pab, vab); |
| 534 |
|
|
| 535 |
< |
rabsq = curPair->getBondLength2(); |
| 357 |
< |
diffsq = rabsq - pabsq; |
| 535 |
> |
if (fabs(pvab) > consTolerance ){ |
| 536 |
|
|
| 359 |
– |
if (fabs(diffsq) > (consTolerance * rabsq * 2)){ |
| 537 |
|
|
| 361 |
– |
|
| 538 |
|
bondDirUnitVec = pab; |
| 539 |
|
bondDirUnitVec.normalize(); |
| 540 |
|
|
| 541 |
< |
getEffInvMassVec(consRB1, bondDirUnitVec, rma); |
| 542 |
< |
|
| 543 |
< |
getEffInvMassVec(consRB2, -bondDirUnitVec, rmb); |
| 368 |
< |
|
| 369 |
< |
pabcDotvab = dotProduct(pab, vab); |
| 370 |
< |
pabDotInvMassVec = dotProduct(pab, rma + rmb); |
| 541 |
> |
getZeta(consRB1, bondDirUnitVec, zetaA); |
| 542 |
> |
getZeta(consRB2, bondDirUnitVec, zetaB); |
| 543 |
> |
zeta = zetaA + zetaB; |
| 544 |
|
|
| 545 |
< |
consForce = pabcDotvab /(2 * dt * pabDotInvMassVec) * bondDirUnitVec; |
| 545 |
> |
pabDotZeta = dotProduct(pab, zeta); |
| 546 |
> |
|
| 547 |
> |
consForce = 2 * pvab / (dt * pabDotZeta) * bondDirUnitVec; |
| 548 |
|
//integrate consRB1 using constraint force; |
| 549 |
< |
integrate(consRB1,consForce); |
| 549 |
> |
integrate(consRB1, consForce); |
| 550 |
|
|
| 551 |
|
//integrate consRB2 using constraint force; |
| 552 |
|
integrate(consRB2, -consForce); |
| 560 |
|
} |
| 561 |
|
} |
| 562 |
|
|
| 563 |
+ |
cerr << "DCRollBFunctor::operator() Error: can not constrain the bond within maximum iteration at " << info->getTime() << endl; |
| 564 |
|
return consExceedMaxIter; |
| 565 |
|
|
| 566 |
|
} |
| 567 |
|
|
| 568 |
< |
void DCRollBFunctor::getEffInvMassVec(ConstraintRigidBody* consRB, const Vector3d& bondDir, Vector3d& invMassVec){ |
| 568 |
> |
void DCRollBFunctor::getZeta(ConstraintRigidBody* consRB, const Vector3d& bondDir, Vector3d& zeta){ |
| 569 |
|
double invMass; |
| 570 |
|
Vector3d tempVec1; |
| 571 |
|
Vector3d tempVec2; |
| 572 |
|
Vector3d refCoor; |
| 573 |
|
Vector3d refCrossBond; |
| 574 |
|
Mat3x3d IBody; |
| 575 |
< |
Mat3x3d IFrame; |
| 575 |
> |
Mat3x3d ILab; |
| 576 |
|
Mat3x3d invIBody; |
| 577 |
< |
Mat3x3d invIFrame; |
| 577 |
> |
Mat3x3d invILab; |
| 578 |
|
Mat3x3d a; |
| 403 |
– |
Mat3x3d aTrans; |
| 579 |
|
|
| 580 |
|
invMass = 1.0 / consRB ->getMass(); |
| 581 |
|
|
| 582 |
< |
invMassVec = invMass * bondDir; |
| 582 |
> |
zeta = invMass * bondDir; |
| 583 |
|
|
| 584 |
|
consRB->getRefCoor(refCoor.vec); |
| 585 |
|
consRB->getA(a.element); |
| 586 |
|
consRB->getI(IBody.element); |
| 587 |
|
|
| 413 |
– |
aTrans = a.transpose(); |
| 588 |
|
invIBody = IBody.inverse(); |
| 589 |
|
|
| 590 |
< |
IFrame = aTrans * invIBody * a; |
| 590 |
> |
|
| 591 |
> |
refCrossBond = crossProduct(refCoor, a * bondDir); |
| 592 |
|
|
| 593 |
< |
refCrossBond = crossProduct(refCoor, bondDir); |
| 593 |
> |
tempVec1 = invIBody * refCrossBond; |
| 594 |
|
|
| 595 |
< |
tempVec1 = invIFrame * refCrossBond; |
| 596 |
< |
tempVec2 = crossProduct(tempVec1, refCoor); |
| 595 |
> |
tempVec2 = (a * tempVec1.makeSkewMat()).transpose() * refCoor; |
| 596 |
> |
|
| 597 |
> |
zeta += tempVec2; |
| 598 |
|
|
| 423 |
– |
invMassVec += tempVec2; |
| 599 |
|
} |
| 600 |
|
|
| 601 |
|
void DCRollBFunctor::integrate(ConstraintRigidBody* consRB, const Vector3d& force){ |
| 427 |
– |
const double eConvert = 4.184e-4; |
| 602 |
|
Vector3d vel; |
| 429 |
– |
Vector3d pos; |
| 430 |
– |
Vector3d Tb; |
| 603 |
|
Vector3d ji; |
| 604 |
+ |
Vector3d tempJi; |
| 605 |
+ |
Vector3d tempTrq; |
| 606 |
+ |
Vector3d refCoor; |
| 607 |
|
double mass; |
| 608 |
|
double dtOver2; |
| 609 |
+ |
Mat3x3d a; |
| 610 |
|
StuntDouble* sd; |
| 611 |
|
|
| 612 |
|
sd = consRB->getStuntDouble(); |
| 613 |
|
dtOver2 = info->dt/2; |
| 614 |
|
|
| 615 |
+ |
sd->getVel(vel.vec); |
| 616 |
|
mass = sd->getMass(); |
| 617 |
< |
|
| 441 |
< |
// velocity half step |
| 442 |
< |
|
| 443 |
< |
vel += eConvert * dtOver2 /mass * force; |
| 444 |
< |
|
| 617 |
> |
vel +=dtOver2 /mass * force; |
| 618 |
|
sd->setVel(vel.vec); |
| 619 |
|
|
| 620 |
|
if (sd->isDirectional()){ |
| 621 |
+ |
sd->getA(a.element); |
| 622 |
+ |
consRB->getRefCoor(refCoor.vec); |
| 623 |
+ |
tempTrq = crossProduct(refCoor, a *force); |
| 624 |
|
|
| 625 |
< |
// get and convert the torque to body frame |
| 450 |
< |
|
| 451 |
< |
sd->getTrq(Tb.vec); |
| 452 |
< |
sd->lab2Body(Tb.vec); |
| 453 |
< |
|
| 454 |
< |
// get the angular momentum, and propagate a half step |
| 455 |
< |
|
| 625 |
> |
tempJi = dtOver2* tempTrq; |
| 626 |
|
sd->getJ(ji.vec); |
| 627 |
< |
|
| 458 |
< |
ji += eConvert * dtOver2* Tb; |
| 459 |
< |
|
| 627 |
> |
ji += tempJi; |
| 628 |
|
sd->setJ(ji.vec); |
| 629 |
|
} |
| 630 |
|
|