32 |
|
double pabDotZeta2; |
33 |
|
double zeta2; |
34 |
|
double forceScalar; |
35 |
+ |
|
36 |
|
|
36 |
– |
const int conRBMaxIter = 10; |
37 |
– |
|
37 |
|
dt = info->dt; |
38 |
|
|
39 |
|
consAtom1->getOldPos(oldPosA.vec); |
40 |
|
consAtom2->getOldPos(oldPosB.vec); |
41 |
|
|
42 |
|
|
44 |
– |
for(int i=0 ; i < conRBMaxIter; i++){ |
43 |
|
consAtom1->getPos(posA.vec); |
44 |
|
consAtom2->getPos(posB.vec); |
45 |
|
|
89 |
|
//G : constraint force scalar |
90 |
|
//d: equilibrium bond length |
91 |
|
|
92 |
< |
if (pabDotZeta2 - zeta2 * diffsq < 0) |
92 |
> |
if (pabDotZeta2 - zeta2 * diffsq < 0) |
93 |
|
return consFail; |
94 |
< |
|
94 |
> |
|
95 |
|
//forceScalar = (pabDotZeta + sqrt(pabDotZeta2 - zeta2 * diffsq)) / dt * dt * zeta2; |
96 |
|
forceScalar = diffsq / (2 * dt * dt * pabDotZeta); |
97 |
< |
// |
97 |
> |
//forceScalar = 1 / forceScalar; |
98 |
|
consForce = forceScalar * bondDirUnitVec; |
99 |
|
//integrate consRB1 using constraint force; |
100 |
|
integrate(consAtom1, consForce); |
101 |
|
|
102 |
|
//integrate consRB2 using constraint force; |
103 |
|
integrate(consAtom2, -consForce); |
104 |
< |
|
104 |
> |
|
105 |
> |
return consSuccess; |
106 |
|
} |
107 |
< |
else{ |
109 |
< |
if (i ==0) |
107 |
> |
else |
108 |
|
return consAlready; |
111 |
– |
else |
112 |
– |
return consSuccess; |
113 |
– |
} |
114 |
– |
} |
109 |
|
|
110 |
< |
return consExceedMaxIter; |
110 |
> |
|
111 |
|
|
112 |
+ |
|
113 |
|
} |
114 |
|
void DCRollAFunctor::calcZeta(ConstraintAtom* consAtom, const Vector3d& bondDir, Vector3d&zeta){ |
115 |
|
double invMass; |
124 |
|
Vector3d pos; |
125 |
|
Vector3d tempPos; |
126 |
|
Vector3d tempVel; |
132 |
– |
|
127 |
|
double mass; |
134 |
– |
double dtOver2; |
128 |
|
double dt; |
136 |
– |
const double eConvert = 4.184e-4; |
129 |
|
|
130 |
|
dt = info->dt; |
139 |
– |
dtOver2 = dt /2; |
131 |
|
sd = consAtom->getStuntDouble(); |
132 |
|
|
133 |
|
sd->getVel(vel.vec); |
135 |
|
|
136 |
|
mass = sd->getMass(); |
137 |
|
|
138 |
< |
tempVel = eConvert * dtOver2/mass * force; |
138 |
> |
tempVel = dt/mass * force; |
139 |
|
tempPos = dt * tempVel; |
140 |
|
|
141 |
|
vel += tempVel; |
171 |
|
double zeta2; |
172 |
|
double forceScalar; |
173 |
|
|
174 |
< |
const int conRBMaxIter = 10; |
174 |
> |
const int conRBMaxIter = 100; |
175 |
|
|
176 |
|
dt = info->dt; |
177 |
|
|
200 |
|
rab = oldPosB - oldPosA; |
201 |
|
info->wrapVector(rab.vec); |
202 |
|
|
203 |
< |
//rpab = dotProduct(rab, pab); |
213 |
< |
|
214 |
< |
//rpabsq = rpab * rpab; |
215 |
< |
|
216 |
< |
|
217 |
< |
//if (rpabsq < (rabsq * -diffsq)){ |
218 |
< |
// return consFail; |
219 |
< |
//} |
220 |
< |
|
221 |
< |
bondDirUnitVec = pab; |
203 |
> |
bondDirUnitVec = rab; |
204 |
|
bondDirUnitVec.normalize(); |
205 |
|
|
206 |
|
calcZeta(consRB1, bondDirUnitVec, zetaA); |
220 |
|
//G : constraint force scalar |
221 |
|
//d: equilibrium bond length |
222 |
|
|
223 |
< |
if (pabDotZeta2 - zeta2 * diffsq < 0) |
223 |
> |
if (pabDotZeta2 - zeta2 * diffsq < 0){ |
224 |
> |
cerr << "DCRollAFunctor::operator() Error: Constraint Fail at " << info->getTime() << endl; |
225 |
|
return consFail; |
226 |
< |
|
227 |
< |
//forceScalar = (pabDotZeta + sqrt(pabDotZeta2 - zeta2 * diffsq)) / dt * dt * zeta2; |
228 |
< |
forceScalar = diffsq / (2 * dt * dt * pabDotZeta); |
226 |
> |
} |
227 |
> |
//if pabDotZeta is close to 0, we can't neglect the square term |
228 |
> |
if(fabs(pabDotZeta) < consTolerance) |
229 |
> |
forceScalar = (pabDotZeta - sqrt(pabDotZeta2 - zeta2 * diffsq)) / dt * dt * zeta2; |
230 |
> |
else |
231 |
> |
forceScalar = diffsq / (2 * dt * dt * pabDotZeta); |
232 |
> |
|
233 |
|
// |
234 |
|
consForce = forceScalar * bondDirUnitVec; |
235 |
|
//integrate consRB1 using constraint force; |
247 |
|
} |
248 |
|
} |
249 |
|
|
250 |
+ |
cerr << "DCRollAFunctor::operator() Error: can not constrain the bond within maximum iteration at " << info->getTime() << endl; |
251 |
|
return consExceedMaxIter; |
252 |
|
|
253 |
|
} |
259 |
|
Vector3d refCoor; |
260 |
|
Vector3d refCrossBond; |
261 |
|
Mat3x3d IBody; |
274 |
– |
Mat3x3d IFrame; |
262 |
|
Mat3x3d invIBody; |
263 |
< |
Mat3x3d invIFrame; |
263 |
> |
Mat3x3d invILab; |
264 |
|
Mat3x3d a; |
265 |
|
Mat3x3d aTrans; |
266 |
|
|
269 |
|
zeta = invMass * bondDir; |
270 |
|
|
271 |
|
consRB->getRefCoor(refCoor.vec); |
272 |
< |
consRB->getA(a.element); |
272 |
> |
//consRB->getA(a.element); |
273 |
> |
consRB->getOldA(a.element); |
274 |
|
consRB->getI(IBody.element); |
275 |
|
|
276 |
|
aTrans = a.transpose(); |
277 |
|
invIBody = IBody.inverse(); |
278 |
|
|
279 |
< |
IFrame = aTrans * invIBody * a; |
279 |
> |
invILab = aTrans * invIBody * a; |
280 |
|
|
281 |
< |
refCrossBond = crossProduct(refCoor, bondDir); |
281 |
> |
refCrossBond = crossProduct(aTrans *refCoor, bondDir); |
282 |
|
|
283 |
< |
tempVec1 = invIFrame * refCrossBond; |
284 |
< |
tempVec2 = crossProduct(tempVec1, refCoor); |
283 |
> |
tempVec1 = invILab * refCrossBond; |
284 |
> |
tempVec2 = crossProduct(tempVec1, aTrans *refCoor); |
285 |
|
|
286 |
|
zeta += tempVec2; |
287 |
|
|
288 |
|
} |
289 |
|
|
290 |
< |
void DCRollAFunctor::integrate(ConstraintRigidBody* consRB, const Vector3d& force){ |
291 |
< |
StuntDouble* sd; |
290 |
> |
void DCRollAFunctor::integrate(ConstraintRigidBody* consRB, const Vector3d& consForce){ |
291 |
> |
RigidBody* rb; |
292 |
> |
Vector3d frc; |
293 |
> |
Vector3d totConsForce; |
294 |
|
Vector3d vel; |
295 |
|
Vector3d pos; |
296 |
|
Vector3d Tb; |
297 |
|
Vector3d ji; |
298 |
< |
Vector3d tempPos; |
299 |
< |
Vector3d tempVel; |
300 |
< |
Vector3d tempTrq; |
301 |
< |
Vector3d tempJi; |
298 |
> |
Vector3d refCoor; |
299 |
> |
Vector3d consTorque; |
300 |
> |
Vector3d totConsTorque; |
301 |
> |
Mat3x3d a; |
302 |
|
double mass; |
313 |
– |
double dtOver2; |
303 |
|
double dt; |
304 |
+ |
double dtOver2; |
305 |
|
const double eConvert = 4.184e-4; |
306 |
|
|
307 |
|
dt = info->dt; |
308 |
< |
dtOver2 = dt /2; |
309 |
< |
sd = consRB->getStuntDouble(); |
308 |
> |
dtOver2 = dt /2; |
309 |
> |
|
310 |
> |
//restore to old status |
311 |
> |
consRB->restoreUnconsStatus(); |
312 |
> |
|
313 |
> |
//accumulate constraint force; |
314 |
> |
consRB->addConsForce(consForce/eConvert); |
315 |
> |
totConsForce = consRB->getConsForce(); |
316 |
> |
|
317 |
> |
rb = consRB->getRigidBody(); |
318 |
|
|
319 |
< |
sd->getVel(vel.vec); |
322 |
< |
sd->getPos(pos.vec); |
319 |
> |
rb->addFrc(totConsForce.vec); |
320 |
|
|
321 |
< |
mass = sd->getMass(); |
321 |
> |
rb->getVel(vel.vec); |
322 |
> |
rb->getPos(pos.vec); |
323 |
> |
rb->getFrc(frc.vec); |
324 |
> |
mass = rb->getMass(); |
325 |
|
|
326 |
< |
tempVel = eConvert * dtOver2/mass * force; |
327 |
< |
tempPos = dt * tempVel; |
328 |
< |
|
329 |
< |
vel += tempVel; |
330 |
< |
pos += tempPos; |
326 |
> |
// velocity half step |
327 |
> |
vel += eConvert * dtOver2 / mass * frc; |
328 |
> |
// position whole step |
329 |
> |
pos += dt * vel; |
330 |
|
|
331 |
< |
sd->setVel(vel.vec); |
332 |
< |
sd->setPos(pos.vec); |
331 |
> |
rb->setVel(vel.vec); |
332 |
> |
rb->setPos(pos.vec); |
333 |
|
|
334 |
< |
if (sd->isDirectional()){ |
334 |
> |
//evolve orientational part |
335 |
> |
consRB->getRefCoor(refCoor.vec); |
336 |
> |
rb->getA(a.element); |
337 |
|
|
338 |
< |
// get and convert the torque to body frame |
338 |
> |
//calculate constraint torque in lab frame |
339 |
> |
consTorque = crossProduct(a.transpose() * refCoor, consForce); |
340 |
> |
consRB->addConsTorque(consTorque/eConvert); |
341 |
|
|
342 |
< |
sd->getTrq(Tb.vec); |
343 |
< |
sd->lab2Body(Tb.vec); |
342 |
> |
//add constraint torque |
343 |
> |
totConsTorque = consRB->getConsTorque(); |
344 |
> |
rb->addTrq(totConsTorque.vec); |
345 |
> |
|
346 |
> |
//get and convert the torque to body frame |
347 |
|
|
348 |
< |
// get the angular momentum, and propagate a half step |
348 |
> |
rb->getTrq(Tb.vec); |
349 |
> |
rb->lab2Body(Tb.vec); |
350 |
|
|
351 |
< |
sd->getJ(ji.vec); |
351 |
> |
//get the angular momentum, and propagate a half step |
352 |
|
|
353 |
< |
ji += eConvert * dtOver2 * Tb; |
353 |
> |
rb->getJ(ji.vec); |
354 |
> |
|
355 |
> |
ji += eConvert * dtOver2 * Tb; |
356 |
|
|
357 |
< |
rotationPropagation( sd, ji.vec); |
357 |
> |
rotationPropagation( rb, ji.vec ); |
358 |
|
|
359 |
< |
sd->setJ(ji.vec); |
351 |
< |
} |
359 |
> |
rb->setJ(ji.vec); |
360 |
|
|
361 |
|
} |
362 |
|
|
365 |
|
double A[3][3], I[3][3]; |
366 |
|
int i, j, k; |
367 |
|
double dtOver2; |
368 |
< |
|
369 |
< |
dtOver2 = info->dt /2; |
368 |
> |
double dt; |
369 |
> |
dt = info->dt; |
370 |
> |
dtOver2 = dt /2; |
371 |
|
// use the angular velocities to propagate the rotation matrix a |
372 |
|
// full time step |
373 |
|
|
382 |
|
angle = dtOver2 * ji[j] / I[j][j]; |
383 |
|
this->rotate( k, i, angle, ji, A ); |
384 |
|
|
385 |
< |
angle = dtOver2 * ji[k] / I[k][k]; |
385 |
> |
angle = dt* ji[k] / I[k][k]; |
386 |
|
this->rotate( i, j, angle, ji, A); |
387 |
|
|
388 |
|
angle = dtOver2 * ji[j] / I[j][j]; |
398 |
|
this->rotate( 2, 0, angle, ji, A ); |
399 |
|
|
400 |
|
// rotate about the z-axis |
401 |
< |
angle = dtOver2 * ji[2] / I[2][2]; |
393 |
< |
sd->addZangle(angle); |
401 |
> |
angle = dt * ji[2] / I[2][2]; |
402 |
|
this->rotate( 0, 1, angle, ji, A); |
403 |
|
|
404 |
|
// rotate about the y-axis |
504 |
|
Vector3d pab; |
505 |
|
Vector3d rab; |
506 |
|
Vector3d vab; |
507 |
< |
Vector3d rma; |
508 |
< |
Vector3d rmb; |
507 |
> |
Vector3d zetaA; |
508 |
> |
Vector3d zetaB; |
509 |
> |
Vector3d zeta; |
510 |
|
Vector3d consForce; |
511 |
|
Vector3d bondDirUnitVec; |
503 |
– |
double dx, dy, dz; |
504 |
– |
double rpab; |
505 |
– |
double rabsq, pabsq, rpabsq; |
506 |
– |
double diffsq; |
507 |
– |
double gab; |
512 |
|
double dt; |
513 |
< |
double pabcDotvab; |
514 |
< |
double pabDotInvMassVec; |
513 |
> |
double pabDotvab; |
514 |
> |
double pabDotZeta; |
515 |
> |
double pvab; |
516 |
|
|
517 |
< |
|
513 |
< |
const int conRBMaxIter = 10; |
517 |
> |
const int conRBMaxIter = 20; |
518 |
|
|
519 |
|
dt = info->dt; |
520 |
|
|
521 |
|
for(int i=0 ; i < conRBMaxIter; i++){ |
522 |
|
consRB1->getCurAtomPos(posA.vec); |
523 |
|
consRB2->getCurAtomPos(posB.vec); |
524 |
< |
pab = posA - posB; |
521 |
< |
|
522 |
< |
consRB1->getVel(velA.vec); |
523 |
< |
consRB2->getVel(velB.vec); |
524 |
< |
vab = velA -velB; |
524 |
> |
pab = posB - posA; |
525 |
|
|
526 |
|
//periodic boundary condition |
527 |
– |
|
527 |
|
info->wrapVector(pab.vec); |
528 |
+ |
|
529 |
+ |
consRB1->getCurAtomVel(velA.vec); |
530 |
+ |
consRB2->getCurAtomVel(velB.vec); |
531 |
+ |
vab = velB -velA; |
532 |
|
|
533 |
< |
pabsq = pab.length2(); |
533 |
> |
pvab = dotProduct(pab, vab); |
534 |
|
|
535 |
< |
rabsq = curPair->getBondLength2(); |
533 |
< |
diffsq = rabsq - pabsq; |
535 |
> |
if (fabs(pvab) > consTolerance ){ |
536 |
|
|
535 |
– |
if (fabs(diffsq) > (consTolerance * rabsq * 2)){ |
537 |
|
|
537 |
– |
|
538 |
|
bondDirUnitVec = pab; |
539 |
|
bondDirUnitVec.normalize(); |
540 |
|
|
541 |
< |
getEffInvMassVec(consRB1, bondDirUnitVec, rma); |
542 |
< |
|
543 |
< |
getEffInvMassVec(consRB2, bondDirUnitVec, rmb); |
544 |
< |
|
545 |
< |
pabcDotvab = dotProduct(pab, vab); |
546 |
< |
pabDotInvMassVec = dotProduct(pab, rma + rmb); |
541 |
> |
getZeta(consRB1, bondDirUnitVec, zetaA); |
542 |
> |
getZeta(consRB2, bondDirUnitVec, zetaB); |
543 |
> |
zeta = zetaA + zetaB; |
544 |
|
|
545 |
< |
consForce = pabcDotvab /(2 * dt * pabDotInvMassVec) * bondDirUnitVec; |
545 |
> |
pabDotZeta = dotProduct(pab, zeta); |
546 |
> |
|
547 |
> |
consForce = 2 * pvab / (dt * pabDotZeta) * bondDirUnitVec; |
548 |
|
//integrate consRB1 using constraint force; |
549 |
< |
integrate(consRB1,consForce); |
549 |
> |
integrate(consRB1, consForce); |
550 |
|
|
551 |
|
//integrate consRB2 using constraint force; |
552 |
|
integrate(consRB2, -consForce); |
560 |
|
} |
561 |
|
} |
562 |
|
|
563 |
+ |
cerr << "DCRollBFunctor::operator() Error: can not constrain the bond within maximum iteration at " << info->getTime() << endl; |
564 |
|
return consExceedMaxIter; |
565 |
|
|
566 |
|
} |
567 |
|
|
568 |
< |
void DCRollBFunctor::getEffInvMassVec(ConstraintRigidBody* consRB, const Vector3d& bondDir, Vector3d& invMassVec){ |
568 |
> |
void DCRollBFunctor::getZeta(ConstraintRigidBody* consRB, const Vector3d& bondDir, Vector3d& zeta){ |
569 |
|
double invMass; |
570 |
|
Vector3d tempVec1; |
571 |
|
Vector3d tempVec2; |
572 |
|
Vector3d refCoor; |
573 |
|
Vector3d refCrossBond; |
574 |
|
Mat3x3d IBody; |
575 |
< |
Mat3x3d IFrame; |
575 |
> |
Mat3x3d ILab; |
576 |
|
Mat3x3d invIBody; |
577 |
< |
Mat3x3d invIFrame; |
577 |
> |
Mat3x3d invILab; |
578 |
|
Mat3x3d a; |
579 |
– |
Mat3x3d aTrans; |
579 |
|
|
580 |
|
invMass = 1.0 / consRB ->getMass(); |
581 |
|
|
582 |
< |
invMassVec = invMass * bondDir; |
582 |
> |
zeta = invMass * bondDir; |
583 |
|
|
584 |
|
consRB->getRefCoor(refCoor.vec); |
585 |
|
consRB->getA(a.element); |
586 |
|
consRB->getI(IBody.element); |
587 |
|
|
589 |
– |
aTrans = a.transpose(); |
588 |
|
invIBody = IBody.inverse(); |
589 |
|
|
590 |
< |
IFrame = aTrans * invIBody * a; |
590 |
> |
|
591 |
> |
refCrossBond = crossProduct(refCoor, a * bondDir); |
592 |
|
|
593 |
< |
refCrossBond = crossProduct(refCoor, bondDir); |
593 |
> |
tempVec1 = invIBody * refCrossBond; |
594 |
|
|
595 |
< |
tempVec1 = invIFrame * refCrossBond; |
596 |
< |
tempVec2 = crossProduct(tempVec1, refCoor); |
595 |
> |
tempVec2 = (a * tempVec1.makeSkewMat()).transpose() * refCoor; |
596 |
> |
|
597 |
> |
zeta += tempVec2; |
598 |
|
|
599 |
– |
invMassVec += tempVec2; |
599 |
|
} |
600 |
|
|
601 |
|
void DCRollBFunctor::integrate(ConstraintRigidBody* consRB, const Vector3d& force){ |
603 |
– |
const double eConvert = 4.184e-4; |
602 |
|
Vector3d vel; |
605 |
– |
Vector3d pos; |
606 |
– |
Vector3d Tb; |
603 |
|
Vector3d ji; |
604 |
+ |
Vector3d tempJi; |
605 |
+ |
Vector3d tempTrq; |
606 |
+ |
Vector3d refCoor; |
607 |
|
double mass; |
608 |
|
double dtOver2; |
609 |
+ |
Mat3x3d a; |
610 |
|
StuntDouble* sd; |
611 |
|
|
612 |
|
sd = consRB->getStuntDouble(); |
613 |
|
dtOver2 = info->dt/2; |
614 |
|
|
615 |
+ |
sd->getVel(vel.vec); |
616 |
|
mass = sd->getMass(); |
617 |
< |
|
617 |
< |
// velocity half step |
618 |
< |
|
619 |
< |
vel += eConvert * dtOver2 /mass * force; |
620 |
< |
|
617 |
> |
vel +=dtOver2 /mass * force; |
618 |
|
sd->setVel(vel.vec); |
619 |
|
|
620 |
|
if (sd->isDirectional()){ |
621 |
+ |
sd->getA(a.element); |
622 |
+ |
consRB->getRefCoor(refCoor.vec); |
623 |
+ |
tempTrq = crossProduct(refCoor, a *force); |
624 |
|
|
625 |
< |
// get and convert the torque to body frame |
626 |
< |
|
627 |
< |
sd->getTrq(Tb.vec); |
628 |
< |
sd->lab2Body(Tb.vec); |
629 |
< |
|
630 |
< |
// get the angular momentum, and propagate a half step |
631 |
< |
|
625 |
> |
tempJi = dtOver2* tempTrq; |
626 |
|
sd->getJ(ji.vec); |
627 |
< |
|
634 |
< |
ji += eConvert * dtOver2* Tb; |
635 |
< |
|
627 |
> |
ji += tempJi; |
628 |
|
sd->setJ(ji.vec); |
629 |
|
} |
630 |
|
|