7 |
|
//////////////////////////////////////////////////////////////////////////////// |
8 |
|
//Implementation of DCRollAFunctor |
9 |
|
//////////////////////////////////////////////////////////////////////////////// |
10 |
< |
int DCRollAFunctor::operator()(ConstraintRigidBody* consRB1, ConstraintRigidBody* consRB2){ |
10 |
> |
int DCRollAFunctor::operator()(ConstraintAtom* consAtom1, ConstraintAtom* consAtom2){ |
11 |
|
Vector3d posA; |
12 |
|
Vector3d posB; |
13 |
|
Vector3d oldPosA; |
17 |
|
Vector3d pab; |
18 |
|
Vector3d tempPab; |
19 |
|
Vector3d rab; |
20 |
< |
Vector3d rma; |
21 |
< |
Vector3d rmb; |
20 |
> |
Vector3d zetaA; |
21 |
> |
Vector3d zetaB; |
22 |
> |
Vector3d zeta; |
23 |
|
Vector3d consForce; |
24 |
|
Vector3d bondDirUnitVec; |
25 |
|
double dx, dy, dz; |
28 |
|
double diffsq; |
29 |
|
double gab; |
30 |
|
double dt; |
31 |
< |
double dt2; |
32 |
< |
double rijcDotInvMassVec; |
33 |
< |
|
34 |
< |
|
31 |
> |
double pabDotZeta; |
32 |
> |
double pabDotZeta2; |
33 |
> |
double zeta2; |
34 |
> |
double forceScalar; |
35 |
> |
|
36 |
|
const int conRBMaxIter = 10; |
37 |
|
|
38 |
|
dt = info->dt; |
37 |
– |
dt2 = dt * dt; |
39 |
|
|
40 |
< |
consRB1->getOldAtomPos(oldPosA.vec); |
41 |
< |
consRB2->getOldAtomPos(oldPosB.vec); |
40 |
> |
consAtom1->getOldPos(oldPosA.vec); |
41 |
> |
consAtom2->getOldPos(oldPosB.vec); |
42 |
|
|
43 |
|
|
44 |
|
for(int i=0 ; i < conRBMaxIter; i++){ |
45 |
< |
consRB1->getCurAtomPos(posA.vec); |
46 |
< |
consRB2->getCurAtomPos(posB.vec); |
45 |
> |
consAtom1->getPos(posA.vec); |
46 |
> |
consAtom2->getPos(posB.vec); |
47 |
|
|
48 |
< |
pab = posA - posB; |
48 |
> |
//discard the vector convention in alan tidesley's code |
49 |
> |
//rij = rj - ri; |
50 |
> |
pab = posB - posA; |
51 |
|
|
52 |
|
//periodic boundary condition |
53 |
|
|
56 |
|
pabsq = dotProduct(pab, pab); |
57 |
|
|
58 |
|
rabsq = curPair->getBondLength2(); |
59 |
< |
diffsq = rabsq - pabsq; |
59 |
> |
diffsq = pabsq -rabsq; |
60 |
|
|
61 |
|
if (fabs(diffsq) > (consTolerance * rabsq * 2)){ |
62 |
< |
rab = oldPosA - oldPosB; |
62 |
> |
rab = oldPosB - oldPosA; |
63 |
|
info->wrapVector(rab.vec); |
64 |
|
|
65 |
< |
rpab = dotProduct(rab, pab); |
65 |
> |
//rpab = dotProduct(rab, pab); |
66 |
|
|
67 |
< |
rpabsq = rpab * rpab; |
67 |
> |
//rpabsq = rpab * rpab; |
68 |
|
|
69 |
|
|
70 |
|
//if (rpabsq < (rabsq * -diffsq)){ |
74 |
|
bondDirUnitVec = pab; |
75 |
|
bondDirUnitVec.normalize(); |
76 |
|
|
77 |
< |
getEffInvMassVec(consRB1, bondDirUnitVec, rma); |
77 |
> |
calcZeta(consAtom1, bondDirUnitVec, zetaA); |
78 |
|
|
79 |
< |
getEffInvMassVec(consRB2, -bondDirUnitVec, rmb); |
79 |
> |
calcZeta(consAtom2, bondDirUnitVec, zetaB); |
80 |
|
|
81 |
< |
rijcDotInvMassVec = dotProduct(pab, rma + rmb); |
81 |
> |
zeta = zetaA + zetaB; |
82 |
> |
zeta2 = dotProduct(zeta, zeta); |
83 |
|
|
84 |
< |
consForce = diffsq /(2 * dt * dt * rijcDotInvMassVec) * bondDirUnitVec; |
84 |
> |
pabDotZeta = dotProduct(pab, zeta); |
85 |
> |
pabDotZeta2 = pabDotZeta * pabDotZeta; |
86 |
> |
|
87 |
> |
//solve quadratic equation |
88 |
> |
//dt^4 * zeta^2 * G^2 + 2* h^2 * pab * zeta * G + pab^2 - d^2 |
89 |
> |
//dt : time step |
90 |
> |
// pab : |
91 |
> |
//G : constraint force scalar |
92 |
> |
//d: equilibrium bond length |
93 |
> |
|
94 |
> |
if (pabDotZeta2 - zeta2 * diffsq < 0) |
95 |
> |
return consFail; |
96 |
> |
|
97 |
> |
//forceScalar = (pabDotZeta + sqrt(pabDotZeta2 - zeta2 * diffsq)) / dt * dt * zeta2; |
98 |
> |
forceScalar = diffsq / (2 * dt * dt * pabDotZeta); |
99 |
> |
//forceScalar = 1 / forceScalar; |
100 |
> |
consForce = forceScalar * bondDirUnitVec; |
101 |
|
//integrate consRB1 using constraint force; |
102 |
< |
integrate(consRB1,consForce); |
102 |
> |
integrate(consAtom1, consForce); |
103 |
> |
|
104 |
> |
//integrate consRB2 using constraint force; |
105 |
> |
integrate(consAtom2, -consForce); |
106 |
> |
|
107 |
> |
} |
108 |
> |
else{ |
109 |
> |
if (i ==0) |
110 |
> |
return consAlready; |
111 |
> |
else |
112 |
> |
return consSuccess; |
113 |
> |
} |
114 |
> |
} |
115 |
> |
|
116 |
> |
return consExceedMaxIter; |
117 |
> |
|
118 |
> |
} |
119 |
> |
void DCRollAFunctor::calcZeta(ConstraintAtom* consAtom, const Vector3d& bondDir, Vector3d&zeta){ |
120 |
> |
double invMass; |
121 |
> |
invMass = 1.0 / consAtom ->getMass(); |
122 |
> |
|
123 |
> |
zeta = invMass * bondDir; |
124 |
> |
} |
125 |
> |
|
126 |
> |
void DCRollAFunctor::integrate(ConstraintAtom* consAtom, const Vector3d& force){ |
127 |
> |
StuntDouble* sd; |
128 |
> |
Vector3d vel; |
129 |
> |
Vector3d pos; |
130 |
> |
Vector3d tempPos; |
131 |
> |
Vector3d tempVel; |
132 |
> |
double mass; |
133 |
> |
double dt; |
134 |
> |
|
135 |
> |
dt = info->dt; |
136 |
> |
sd = consAtom->getStuntDouble(); |
137 |
> |
|
138 |
> |
sd->getVel(vel.vec); |
139 |
> |
sd->getPos(pos.vec); |
140 |
> |
|
141 |
> |
mass = sd->getMass(); |
142 |
> |
|
143 |
> |
tempVel = dt/mass * force; |
144 |
> |
tempPos = dt * tempVel; |
145 |
> |
|
146 |
> |
vel += tempVel; |
147 |
> |
pos += tempPos; |
148 |
> |
|
149 |
> |
sd->setVel(vel.vec); |
150 |
> |
sd->setPos(pos.vec); |
151 |
> |
} |
152 |
> |
|
153 |
> |
int DCRollAFunctor::operator()(ConstraintRigidBody* consRB1, ConstraintRigidBody* consRB2){ |
154 |
> |
Vector3d posA; |
155 |
> |
Vector3d posB; |
156 |
> |
Vector3d oldPosA; |
157 |
> |
Vector3d oldPosB; |
158 |
> |
Vector3d velA; |
159 |
> |
Vector3d velB; |
160 |
> |
Vector3d pab; |
161 |
> |
Vector3d tempPab; |
162 |
> |
Vector3d rab; |
163 |
> |
Vector3d zetaA; |
164 |
> |
Vector3d zetaB; |
165 |
> |
Vector3d zeta; |
166 |
> |
Vector3d consForce; |
167 |
> |
Vector3d bondDirUnitVec; |
168 |
> |
double dx, dy, dz; |
169 |
> |
double rpab; |
170 |
> |
double rabsq, pabsq, rpabsq; |
171 |
> |
double diffsq; |
172 |
> |
double gab; |
173 |
> |
double dt; |
174 |
> |
double pabDotZeta; |
175 |
> |
double pabDotZeta2; |
176 |
> |
double zeta2; |
177 |
> |
double forceScalar; |
178 |
> |
|
179 |
> |
const int conRBMaxIter = 100; |
180 |
> |
|
181 |
> |
dt = info->dt; |
182 |
> |
|
183 |
> |
consRB1->getOldAtomPos(oldPosA.vec); |
184 |
> |
consRB2->getOldAtomPos(oldPosB.vec); |
185 |
> |
|
186 |
> |
|
187 |
> |
for(int i=0 ; i < conRBMaxIter; i++){ |
188 |
> |
consRB1->getCurAtomPos(posA.vec); |
189 |
> |
consRB2->getCurAtomPos(posB.vec); |
190 |
> |
|
191 |
> |
//discard the vector convention in alan tidesley's code |
192 |
> |
//rij = rj - ri; |
193 |
> |
pab = posB - posA; |
194 |
> |
|
195 |
> |
//periodic boundary condition |
196 |
> |
|
197 |
> |
info->wrapVector(pab.vec); |
198 |
> |
|
199 |
> |
pabsq = dotProduct(pab, pab); |
200 |
> |
|
201 |
> |
rabsq = curPair->getBondLength2(); |
202 |
> |
diffsq = pabsq -rabsq; |
203 |
> |
|
204 |
> |
if (fabs(diffsq) > (consTolerance * rabsq * 2)){ |
205 |
> |
rab = oldPosB - oldPosA; |
206 |
> |
info->wrapVector(rab.vec); |
207 |
> |
|
208 |
> |
bondDirUnitVec = rab; |
209 |
> |
bondDirUnitVec.normalize(); |
210 |
> |
|
211 |
> |
calcZeta(consRB1, bondDirUnitVec, zetaA); |
212 |
> |
|
213 |
> |
calcZeta(consRB2, bondDirUnitVec, zetaB); |
214 |
> |
|
215 |
> |
zeta = zetaA + zetaB; |
216 |
> |
zeta2 = dotProduct(zeta, zeta); |
217 |
> |
|
218 |
> |
pabDotZeta = dotProduct(pab, zeta); |
219 |
> |
pabDotZeta2 = pabDotZeta * pabDotZeta; |
220 |
> |
|
221 |
> |
//solve quadratic equation |
222 |
> |
//dt^4 * zeta^2 * G^2 + 2* h^2 * pab * zeta * G + pab^2 - d^2 |
223 |
> |
//dt : time step |
224 |
> |
// pab : |
225 |
> |
//G : constraint force scalar |
226 |
> |
//d: equilibrium bond length |
227 |
> |
|
228 |
> |
if (pabDotZeta2 - zeta2 * diffsq < 0){ |
229 |
> |
cerr << "DCRollAFunctor::operator() Error: Constraint Fail at " << info->getTime() << endl; |
230 |
> |
return consFail; |
231 |
> |
} |
232 |
> |
//if pabDotZeta is close to 0, we can't neglect the square term |
233 |
> |
if(fabs(pabDotZeta) < consTolerance) |
234 |
> |
forceScalar = (pabDotZeta - sqrt(pabDotZeta2 - zeta2 * diffsq)) / dt * dt * zeta2; |
235 |
> |
else |
236 |
> |
forceScalar = diffsq / (2 * dt * dt * pabDotZeta); |
237 |
> |
|
238 |
> |
// |
239 |
> |
consForce = forceScalar * bondDirUnitVec; |
240 |
> |
//integrate consRB1 using constraint force; |
241 |
> |
integrate(consRB1, consForce); |
242 |
|
|
243 |
|
//integrate consRB2 using constraint force; |
244 |
|
integrate(consRB2, -consForce); |
252 |
|
} |
253 |
|
} |
254 |
|
|
255 |
+ |
cerr << "DCRollAFunctor::operator() Error: can not constrain the bond within maximum iteration at " << info->getTime() << endl; |
256 |
|
return consExceedMaxIter; |
257 |
|
|
258 |
|
} |
259 |
|
|
260 |
< |
void DCRollAFunctor::getEffInvMassVec(ConstraintRigidBody* consRB, const Vector3d& bondDir, Vector3d& invMassVec){ |
260 |
> |
void DCRollAFunctor::calcZeta(ConstraintRigidBody* consRB, const Vector3d& bondDir, Vector3d& zeta){ |
261 |
|
double invMass; |
262 |
|
Vector3d tempVec1; |
263 |
|
Vector3d tempVec2; |
264 |
|
Vector3d refCoor; |
265 |
|
Vector3d refCrossBond; |
266 |
|
Mat3x3d IBody; |
107 |
– |
Mat3x3d IFrame; |
267 |
|
Mat3x3d invIBody; |
268 |
< |
Mat3x3d invIFrame; |
268 |
> |
Mat3x3d invILab; |
269 |
|
Mat3x3d a; |
270 |
|
Mat3x3d aTrans; |
271 |
|
|
272 |
|
invMass = 1.0 / consRB ->getMass(); |
273 |
|
|
274 |
< |
invMassVec = invMass * bondDir; |
274 |
> |
zeta = invMass * bondDir; |
275 |
|
|
276 |
|
consRB->getRefCoor(refCoor.vec); |
277 |
|
consRB->getA(a.element); |
280 |
|
aTrans = a.transpose(); |
281 |
|
invIBody = IBody.inverse(); |
282 |
|
|
283 |
< |
IFrame = aTrans * invIBody * a; |
283 |
> |
invILab = aTrans * invIBody * a; |
284 |
|
|
285 |
|
refCrossBond = crossProduct(refCoor, bondDir); |
286 |
|
|
287 |
< |
tempVec1 = invIFrame * refCrossBond; |
287 |
> |
tempVec1 = invILab * refCrossBond; |
288 |
|
tempVec2 = crossProduct(tempVec1, refCoor); |
289 |
|
|
290 |
< |
invMassVec += tempVec2; |
290 |
> |
zeta += tempVec2; |
291 |
|
|
292 |
|
} |
293 |
|
|
297 |
|
Vector3d pos; |
298 |
|
Vector3d Tb; |
299 |
|
Vector3d ji; |
300 |
+ |
Vector3d tempPos; |
301 |
+ |
Vector3d tempVel; |
302 |
+ |
Vector3d tempTrqLab; |
303 |
+ |
Vector3d tempTrqBody; |
304 |
+ |
Vector3d tempJi; |
305 |
+ |
Vector3d refCoor; |
306 |
|
double mass; |
307 |
< |
double dtOver2; |
307 |
> |
Mat3x3d oldA; |
308 |
|
double dt; |
309 |
< |
const double eConvert = 4.184e-4; |
145 |
< |
|
309 |
> |
double dtOver2; |
310 |
|
dt = info->dt; |
311 |
< |
dtOver2 = dt /2; |
311 |
> |
dtOver2 = dt /2; |
312 |
> |
|
313 |
> |
consRB->getOldA(oldA.element); |
314 |
|
sd = consRB->getStuntDouble(); |
315 |
|
|
316 |
|
sd->getVel(vel.vec); |
318 |
|
|
319 |
|
mass = sd->getMass(); |
320 |
|
|
321 |
< |
vel += eConvert * dtOver2/mass * force; |
322 |
< |
pos += dt * vel; |
321 |
> |
tempVel = dtOver2/mass * force; |
322 |
> |
tempPos = dt * tempVel; |
323 |
> |
|
324 |
> |
vel += tempVel; |
325 |
> |
pos += tempPos; |
326 |
|
|
327 |
|
sd->setVel(vel.vec); |
328 |
|
sd->setPos(pos.vec); |
329 |
|
|
330 |
|
if (sd->isDirectional()){ |
331 |
|
|
332 |
< |
// get and convert the torque to body frame |
332 |
> |
consRB->getRefCoor(refCoor.vec); |
333 |
> |
tempTrqLab = crossProduct(refCoor, force); |
334 |
|
|
335 |
< |
sd->getTrq(Tb.vec); |
336 |
< |
sd->lab2Body(Tb.vec); |
337 |
< |
|
338 |
< |
// get the angular momentum, and propagate a half step |
335 |
> |
//convert torque in lab frame to torque in body frame using old rotation matrix |
336 |
> |
//tempTrqBody = oldA * tempTrqLab; |
337 |
> |
|
338 |
> |
//tempJi = dtOver2 * tempTrqBody; |
339 |
> |
sd->lab2Body(tempTrqLab.vec); |
340 |
> |
tempJi = dtOver2 * tempTrqLab; |
341 |
> |
rotationPropagation( sd, tempJi.vec); |
342 |
|
|
343 |
|
sd->getJ(ji.vec); |
344 |
|
|
345 |
< |
ji += eConvert * dtOver2 * Tb; |
345 |
> |
ji += tempJi; |
346 |
|
|
174 |
– |
rotationPropagation( sd, ji.vec); |
175 |
– |
|
347 |
|
sd->setJ(ji.vec); |
348 |
|
} |
349 |
+ |
|
350 |
|
|
351 |
|
} |
352 |
|
|
487 |
|
//Implementation of DCRollBFunctor |
488 |
|
//////////////////////////////////////////////////////////////////////////////// |
489 |
|
int DCRollBFunctor::operator()(ConstraintRigidBody* consRB1, ConstraintRigidBody* consRB2){ |
490 |
< |
return consElemHandlerFail; |
491 |
< |
} |
490 |
> |
Vector3d posA; |
491 |
> |
Vector3d posB; |
492 |
> |
Vector3d velA; |
493 |
> |
Vector3d velB; |
494 |
> |
Vector3d pab; |
495 |
> |
Vector3d rab; |
496 |
> |
Vector3d vab; |
497 |
> |
Vector3d zetaA; |
498 |
> |
Vector3d zetaB; |
499 |
> |
Vector3d zeta; |
500 |
> |
Vector3d consForce; |
501 |
> |
Vector3d bondDirUnitVec; |
502 |
> |
double dt; |
503 |
> |
double pabDotvab; |
504 |
> |
double pabDotZeta; |
505 |
> |
double pvab; |
506 |
|
|
507 |
< |
void DCRollBFunctor::getEffInvMassVec(ConstraintRigidBody* consRB, const Vector3d& bondDir, Vector3d& invMassVec){ |
507 |
> |
const int conRBMaxIter = 100; |
508 |
> |
|
509 |
> |
dt = info->dt; |
510 |
> |
|
511 |
> |
for(int i=0 ; i < conRBMaxIter; i++){ |
512 |
> |
consRB1->getCurAtomPos(posA.vec); |
513 |
> |
consRB2->getCurAtomPos(posB.vec); |
514 |
> |
pab = posB - posA; |
515 |
|
|
516 |
+ |
//periodic boundary condition |
517 |
+ |
info->wrapVector(pab.vec); |
518 |
+ |
|
519 |
+ |
consRB1->getCurAtomVel(velA.vec); |
520 |
+ |
consRB2->getCurAtomVel(velB.vec); |
521 |
+ |
vab = velB -velA; |
522 |
+ |
|
523 |
+ |
pvab = dotProduct(pab, vab); |
524 |
+ |
|
525 |
+ |
if (fabs(pvab) > consTolerance ){ |
526 |
+ |
|
527 |
+ |
|
528 |
+ |
bondDirUnitVec = pab; |
529 |
+ |
bondDirUnitVec.normalize(); |
530 |
+ |
|
531 |
+ |
getZeta(consRB1, bondDirUnitVec, zetaA); |
532 |
+ |
getZeta(consRB2, bondDirUnitVec, zetaB); |
533 |
+ |
zeta = zetaA + zetaB; |
534 |
+ |
|
535 |
+ |
pabDotZeta = dotProduct(pab, zeta); |
536 |
+ |
|
537 |
+ |
consForce = pvab / (dt * pabDotZeta) * bondDirUnitVec; |
538 |
+ |
//integrate consRB1 using constraint force; |
539 |
+ |
integrate(consRB1, consForce); |
540 |
+ |
|
541 |
+ |
//integrate consRB2 using constraint force; |
542 |
+ |
integrate(consRB2, -consForce); |
543 |
+ |
|
544 |
+ |
} |
545 |
+ |
else{ |
546 |
+ |
if (i ==0) |
547 |
+ |
return consAlready; |
548 |
+ |
else |
549 |
+ |
return consSuccess; |
550 |
+ |
} |
551 |
+ |
} |
552 |
+ |
|
553 |
+ |
cerr << "DCRollBFunctor::operator() Error: can not constrain the bond within maximum iteration at " << info->getTime() << endl; |
554 |
+ |
return consExceedMaxIter; |
555 |
+ |
|
556 |
|
} |
557 |
|
|
558 |
+ |
void DCRollBFunctor::getZeta(ConstraintRigidBody* consRB, const Vector3d& bondDir, Vector3d& zeta){ |
559 |
+ |
double invMass; |
560 |
+ |
Vector3d tempVec1; |
561 |
+ |
Vector3d tempVec2; |
562 |
+ |
Vector3d refCoor; |
563 |
+ |
Vector3d refCrossBond; |
564 |
+ |
Mat3x3d IBody; |
565 |
+ |
Mat3x3d ILab; |
566 |
+ |
Mat3x3d invIBody; |
567 |
+ |
Mat3x3d invILab; |
568 |
+ |
Mat3x3d a; |
569 |
+ |
Mat3x3d aTrans; |
570 |
+ |
|
571 |
+ |
invMass = 1.0 / consRB ->getMass(); |
572 |
+ |
|
573 |
+ |
zeta = invMass * bondDir; |
574 |
+ |
|
575 |
+ |
consRB->getRefCoor(refCoor.vec); |
576 |
+ |
consRB->getA(a.element); |
577 |
+ |
consRB->getI(IBody.element); |
578 |
+ |
|
579 |
+ |
aTrans = a.transpose(); |
580 |
+ |
invIBody = IBody.inverse(); |
581 |
+ |
|
582 |
+ |
invILab = aTrans * invIBody * a; |
583 |
+ |
|
584 |
+ |
refCrossBond = crossProduct(refCoor, bondDir); |
585 |
+ |
|
586 |
+ |
tempVec1 = invILab * refCrossBond; |
587 |
+ |
tempVec2 = crossProduct(tempVec1, refCoor); |
588 |
+ |
|
589 |
+ |
zeta += tempVec2; |
590 |
+ |
} |
591 |
+ |
|
592 |
|
void DCRollBFunctor::integrate(ConstraintRigidBody* consRB, const Vector3d& force){ |
593 |
+ |
Vector3d vel; |
594 |
+ |
Vector3d ji; |
595 |
+ |
Vector3d tempJi; |
596 |
+ |
Vector3d tempTrq; |
597 |
+ |
Vector3d refCoor; |
598 |
+ |
double mass; |
599 |
+ |
double dtOver2; |
600 |
+ |
StuntDouble* sd; |
601 |
+ |
|
602 |
+ |
sd = consRB->getStuntDouble(); |
603 |
+ |
dtOver2 = info->dt/2; |
604 |
|
|
605 |
< |
} |
605 |
> |
sd->getVel(vel.vec); |
606 |
> |
mass = sd->getMass(); |
607 |
> |
vel +=dtOver2 /mass * force; |
608 |
> |
sd->setVel(vel.vec); |
609 |
> |
|
610 |
> |
if (sd->isDirectional()){ |
611 |
> |
tempTrq = crossProduct(refCoor, force); |
612 |
> |
sd->lab2Body(tempTrq.vec); |
613 |
> |
tempJi = dtOver2* tempTrq; |
614 |
> |
sd->getJ(ji.vec); |
615 |
> |
ji += tempJi; |
616 |
> |
sd->setJ(ji.vec); |
617 |
> |
} |
618 |
> |
|
619 |
> |
} |