| 1 | 
tim | 
1254 | 
#include <cmath> | 
| 2 | 
  | 
  | 
#include "Mat3x3d.hpp" | 
| 3 | 
  | 
  | 
#include "Roll.hpp" | 
| 4 | 
  | 
  | 
#include "SimInfo.hpp" | 
| 5 | 
  | 
  | 
 | 
| 6 | 
  | 
  | 
 | 
| 7 | 
  | 
  | 
//////////////////////////////////////////////////////////////////////////////// | 
| 8 | 
  | 
  | 
//Implementation of DCRollAFunctor | 
| 9 | 
  | 
  | 
//////////////////////////////////////////////////////////////////////////////// | 
| 10 | 
  | 
  | 
int DCRollAFunctor::operator()(ConstraintRigidBody* consRB1, ConstraintRigidBody* consRB2){ | 
| 11 | 
  | 
  | 
  Vector3d posA; | 
| 12 | 
  | 
  | 
  Vector3d posB; | 
| 13 | 
  | 
  | 
  Vector3d oldPosA; | 
| 14 | 
  | 
  | 
  Vector3d oldPosB; | 
| 15 | 
  | 
  | 
  Vector3d velA; | 
| 16 | 
  | 
  | 
  Vector3d velB; | 
| 17 | 
  | 
  | 
  Vector3d pab; | 
| 18 | 
  | 
  | 
  Vector3d tempPab; | 
| 19 | 
  | 
  | 
  Vector3d rab; | 
| 20 | 
  | 
  | 
  Vector3d rma; | 
| 21 | 
  | 
  | 
  Vector3d rmb; | 
| 22 | 
  | 
  | 
  Vector3d consForce; | 
| 23 | 
  | 
  | 
  Vector3d bondDirUnitVec;   | 
| 24 | 
  | 
  | 
  double dx, dy, dz; | 
| 25 | 
  | 
  | 
  double rpab; | 
| 26 | 
  | 
  | 
  double rabsq, pabsq, rpabsq; | 
| 27 | 
  | 
  | 
  double diffsq; | 
| 28 | 
  | 
  | 
  double gab; | 
| 29 | 
  | 
  | 
  double dt; | 
| 30 | 
tim | 
1255 | 
  double pabDotInvMassVec; | 
| 31 | 
tim | 
1254 | 
 | 
| 32 | 
  | 
  | 
 | 
| 33 | 
  | 
  | 
  const int conRBMaxIter = 10; | 
| 34 | 
  | 
  | 
   | 
| 35 | 
  | 
  | 
  dt = info->dt; | 
| 36 | 
  | 
  | 
 | 
| 37 | 
  | 
  | 
  consRB1->getOldAtomPos(oldPosA.vec); | 
| 38 | 
  | 
  | 
  consRB2->getOldAtomPos(oldPosB.vec);       | 
| 39 | 
  | 
  | 
 | 
| 40 | 
  | 
  | 
 | 
| 41 | 
  | 
  | 
  for(int i=0 ; i < conRBMaxIter; i++){    | 
| 42 | 
  | 
  | 
    consRB1->getCurAtomPos(posA.vec); | 
| 43 | 
  | 
  | 
    consRB2->getCurAtomPos(posB.vec); | 
| 44 | 
  | 
  | 
 | 
| 45 | 
  | 
  | 
    pab = posA - posB; | 
| 46 | 
  | 
  | 
 | 
| 47 | 
  | 
  | 
    //periodic boundary condition | 
| 48 | 
  | 
  | 
 | 
| 49 | 
  | 
  | 
    info->wrapVector(pab.vec); | 
| 50 | 
  | 
  | 
 | 
| 51 | 
  | 
  | 
    pabsq = dotProduct(pab, pab); | 
| 52 | 
  | 
  | 
 | 
| 53 | 
  | 
  | 
    rabsq = curPair->getBondLength2(); | 
| 54 | 
  | 
  | 
    diffsq = rabsq - pabsq; | 
| 55 | 
  | 
  | 
 | 
| 56 | 
  | 
  | 
    if (fabs(diffsq) > (consTolerance * rabsq * 2)){ | 
| 57 | 
  | 
  | 
      rab = oldPosA - oldPosB;        | 
| 58 | 
  | 
  | 
      info->wrapVector(rab.vec); | 
| 59 | 
  | 
  | 
 | 
| 60 | 
  | 
  | 
      rpab = dotProduct(rab, pab); | 
| 61 | 
  | 
  | 
 | 
| 62 | 
  | 
  | 
      rpabsq = rpab * rpab; | 
| 63 | 
  | 
  | 
 | 
| 64 | 
  | 
  | 
 | 
| 65 | 
  | 
  | 
      //if (rpabsq < (rabsq * -diffsq)){ | 
| 66 | 
  | 
  | 
      //  return consFail; | 
| 67 | 
  | 
  | 
      //} | 
| 68 | 
  | 
  | 
 | 
| 69 | 
  | 
  | 
      bondDirUnitVec = pab; | 
| 70 | 
  | 
  | 
      bondDirUnitVec.normalize(); | 
| 71 | 
  | 
  | 
           | 
| 72 | 
  | 
  | 
      getEffInvMassVec(consRB1, bondDirUnitVec, rma); | 
| 73 | 
  | 
  | 
 | 
| 74 | 
  | 
  | 
      getEffInvMassVec(consRB2, -bondDirUnitVec, rmb); | 
| 75 | 
  | 
  | 
 | 
| 76 | 
tim | 
1255 | 
      pabDotInvMassVec = dotProduct(pab,  rma + rmb); | 
| 77 | 
tim | 
1254 | 
       | 
| 78 | 
tim | 
1255 | 
      consForce = diffsq /(2 * dt * dt * pabDotInvMassVec) * bondDirUnitVec; | 
| 79 | 
tim | 
1254 | 
      //integrate consRB1 using constraint force; | 
| 80 | 
  | 
  | 
      integrate(consRB1,consForce); | 
| 81 | 
  | 
  | 
 | 
| 82 | 
  | 
  | 
      //integrate consRB2 using constraint force; | 
| 83 | 
  | 
  | 
      integrate(consRB2, -consForce);     | 
| 84 | 
  | 
  | 
       | 
| 85 | 
  | 
  | 
    } | 
| 86 | 
  | 
  | 
    else{ | 
| 87 | 
  | 
  | 
      if (i ==0) | 
| 88 | 
  | 
  | 
        return consAlready; | 
| 89 | 
  | 
  | 
      else | 
| 90 | 
  | 
  | 
        return consSuccess; | 
| 91 | 
  | 
  | 
    } | 
| 92 | 
  | 
  | 
  } | 
| 93 | 
  | 
  | 
 | 
| 94 | 
  | 
  | 
  return consExceedMaxIter; | 
| 95 | 
  | 
  | 
 | 
| 96 | 
  | 
  | 
} | 
| 97 | 
  | 
  | 
 | 
| 98 | 
  | 
  | 
void DCRollAFunctor::getEffInvMassVec(ConstraintRigidBody* consRB, const Vector3d& bondDir, Vector3d& invMassVec){ | 
| 99 | 
  | 
  | 
  double invMass; | 
| 100 | 
  | 
  | 
  Vector3d tempVec1; | 
| 101 | 
  | 
  | 
  Vector3d tempVec2; | 
| 102 | 
  | 
  | 
  Vector3d refCoor; | 
| 103 | 
  | 
  | 
  Vector3d refCrossBond;   | 
| 104 | 
  | 
  | 
  Mat3x3d IBody; | 
| 105 | 
  | 
  | 
  Mat3x3d IFrame; | 
| 106 | 
  | 
  | 
  Mat3x3d invIBody; | 
| 107 | 
  | 
  | 
  Mat3x3d invIFrame; | 
| 108 | 
  | 
  | 
  Mat3x3d a; | 
| 109 | 
  | 
  | 
  Mat3x3d aTrans; | 
| 110 | 
  | 
  | 
   | 
| 111 | 
  | 
  | 
  invMass = 1.0 / consRB ->getMass(); | 
| 112 | 
  | 
  | 
 | 
| 113 | 
  | 
  | 
  invMassVec = invMass * bondDir; | 
| 114 | 
  | 
  | 
   | 
| 115 | 
  | 
  | 
  consRB->getRefCoor(refCoor.vec); | 
| 116 | 
  | 
  | 
  consRB->getA(a.element); | 
| 117 | 
  | 
  | 
  consRB->getI(IBody.element); | 
| 118 | 
  | 
  | 
 | 
| 119 | 
  | 
  | 
  aTrans = a.transpose(); | 
| 120 | 
  | 
  | 
  invIBody = IBody.inverse(); | 
| 121 | 
  | 
  | 
 | 
| 122 | 
  | 
  | 
  IFrame = aTrans * invIBody * a; | 
| 123 | 
  | 
  | 
 | 
| 124 | 
  | 
  | 
  refCrossBond = crossProduct(refCoor, bondDir);   | 
| 125 | 
  | 
  | 
 | 
| 126 | 
  | 
  | 
  tempVec1 = invIFrame * refCrossBond; | 
| 127 | 
  | 
  | 
  tempVec2 = crossProduct(tempVec1, refCoor); | 
| 128 | 
  | 
  | 
 | 
| 129 | 
  | 
  | 
  invMassVec += tempVec2; | 
| 130 | 
  | 
  | 
    | 
| 131 | 
  | 
  | 
} | 
| 132 | 
  | 
  | 
 | 
| 133 | 
  | 
  | 
void DCRollAFunctor::integrate(ConstraintRigidBody* consRB, const Vector3d& force){ | 
| 134 | 
  | 
  | 
  StuntDouble* sd; | 
| 135 | 
  | 
  | 
  Vector3d vel; | 
| 136 | 
  | 
  | 
  Vector3d pos; | 
| 137 | 
  | 
  | 
  Vector3d Tb; | 
| 138 | 
  | 
  | 
  Vector3d ji; | 
| 139 | 
  | 
  | 
  double mass; | 
| 140 | 
  | 
  | 
  double dtOver2; | 
| 141 | 
  | 
  | 
  double dt; | 
| 142 | 
  | 
  | 
  const double eConvert = 4.184e-4; | 
| 143 | 
  | 
  | 
   | 
| 144 | 
  | 
  | 
  dt = info->dt; | 
| 145 | 
  | 
  | 
  dtOver2 = dt /2;   | 
| 146 | 
  | 
  | 
  sd = consRB->getStuntDouble(); | 
| 147 | 
  | 
  | 
   | 
| 148 | 
  | 
  | 
  sd->getVel(vel.vec); | 
| 149 | 
  | 
  | 
  sd->getPos(pos.vec); | 
| 150 | 
  | 
  | 
   | 
| 151 | 
  | 
  | 
  mass = sd->getMass(); | 
| 152 | 
  | 
  | 
 | 
| 153 | 
  | 
  | 
  vel += eConvert * dtOver2/mass * force; | 
| 154 | 
  | 
  | 
  pos += dt * vel; | 
| 155 | 
  | 
  | 
 | 
| 156 | 
  | 
  | 
  sd->setVel(vel.vec); | 
| 157 | 
  | 
  | 
  sd->setPos(pos.vec); | 
| 158 | 
  | 
  | 
 | 
| 159 | 
  | 
  | 
  if (sd->isDirectional()){ | 
| 160 | 
  | 
  | 
 | 
| 161 | 
  | 
  | 
    // get and convert the torque to body frame | 
| 162 | 
  | 
  | 
 | 
| 163 | 
  | 
  | 
    sd->getTrq(Tb.vec); | 
| 164 | 
  | 
  | 
    sd->lab2Body(Tb.vec); | 
| 165 | 
  | 
  | 
 | 
| 166 | 
  | 
  | 
    // get the angular momentum, and propagate a half step | 
| 167 | 
  | 
  | 
 | 
| 168 | 
  | 
  | 
    sd->getJ(ji.vec); | 
| 169 | 
  | 
  | 
 | 
| 170 | 
  | 
  | 
    ji += eConvert * dtOver2 * Tb; | 
| 171 | 
  | 
  | 
 | 
| 172 | 
  | 
  | 
    rotationPropagation( sd, ji.vec); | 
| 173 | 
  | 
  | 
 | 
| 174 | 
  | 
  | 
    sd->setJ(ji.vec); | 
| 175 | 
  | 
  | 
  } | 
| 176 | 
  | 
  | 
   | 
| 177 | 
  | 
  | 
} | 
| 178 | 
  | 
  | 
 | 
| 179 | 
  | 
  | 
void DCRollAFunctor::rotationPropagation(StuntDouble* sd, double ji[3]){ | 
| 180 | 
  | 
  | 
  double angle; | 
| 181 | 
  | 
  | 
  double A[3][3], I[3][3]; | 
| 182 | 
  | 
  | 
  int i, j, k; | 
| 183 | 
  | 
  | 
  double dtOver2; | 
| 184 | 
  | 
  | 
 | 
| 185 | 
  | 
  | 
  dtOver2 = info->dt /2; | 
| 186 | 
  | 
  | 
  // use the angular velocities to propagate the rotation matrix a | 
| 187 | 
  | 
  | 
  // full time step | 
| 188 | 
  | 
  | 
 | 
| 189 | 
  | 
  | 
  sd->getA(A); | 
| 190 | 
  | 
  | 
  sd->getI(I); | 
| 191 | 
  | 
  | 
 | 
| 192 | 
  | 
  | 
  if (sd->isLinear()) { | 
| 193 | 
  | 
  | 
    i = sd->linearAxis(); | 
| 194 | 
  | 
  | 
    j = (i+1)%3; | 
| 195 | 
  | 
  | 
    k = (i+2)%3; | 
| 196 | 
  | 
  | 
     | 
| 197 | 
  | 
  | 
    angle = dtOver2 * ji[j] / I[j][j]; | 
| 198 | 
  | 
  | 
    this->rotate( k, i, angle, ji, A ); | 
| 199 | 
  | 
  | 
 | 
| 200 | 
  | 
  | 
    angle = dtOver2 * ji[k] / I[k][k]; | 
| 201 | 
  | 
  | 
    this->rotate( i, j, angle, ji, A); | 
| 202 | 
  | 
  | 
 | 
| 203 | 
  | 
  | 
    angle = dtOver2 * ji[j] / I[j][j]; | 
| 204 | 
  | 
  | 
    this->rotate( k, i, angle, ji, A ); | 
| 205 | 
  | 
  | 
 | 
| 206 | 
  | 
  | 
  } else { | 
| 207 | 
  | 
  | 
    // rotate about the x-axis | 
| 208 | 
  | 
  | 
    angle = dtOver2 * ji[0] / I[0][0]; | 
| 209 | 
  | 
  | 
    this->rotate( 1, 2, angle, ji, A ); | 
| 210 | 
  | 
  | 
     | 
| 211 | 
  | 
  | 
    // rotate about the y-axis | 
| 212 | 
  | 
  | 
    angle = dtOver2 * ji[1] / I[1][1]; | 
| 213 | 
  | 
  | 
    this->rotate( 2, 0, angle, ji, A ); | 
| 214 | 
  | 
  | 
     | 
| 215 | 
  | 
  | 
    // rotate about the z-axis | 
| 216 | 
  | 
  | 
    angle = dtOver2 * ji[2] / I[2][2]; | 
| 217 | 
  | 
  | 
    sd->addZangle(angle); | 
| 218 | 
  | 
  | 
    this->rotate( 0, 1, angle, ji, A); | 
| 219 | 
  | 
  | 
     | 
| 220 | 
  | 
  | 
    // rotate about the y-axis | 
| 221 | 
  | 
  | 
    angle = dtOver2 * ji[1] / I[1][1]; | 
| 222 | 
  | 
  | 
    this->rotate( 2, 0, angle, ji, A ); | 
| 223 | 
  | 
  | 
     | 
| 224 | 
  | 
  | 
    // rotate about the x-axis | 
| 225 | 
  | 
  | 
    angle = dtOver2 * ji[0] / I[0][0]; | 
| 226 | 
  | 
  | 
    this->rotate( 1, 2, angle, ji, A ); | 
| 227 | 
  | 
  | 
     | 
| 228 | 
  | 
  | 
  } | 
| 229 | 
  | 
  | 
  sd->setA( A  ); | 
| 230 | 
  | 
  | 
} | 
| 231 | 
  | 
  | 
 | 
| 232 | 
  | 
  | 
void DCRollAFunctor::rotate(int axes1, int axes2, double angle, double ji[3], double A[3][3]){ | 
| 233 | 
  | 
  | 
  int i, j, k; | 
| 234 | 
  | 
  | 
  double sinAngle; | 
| 235 | 
  | 
  | 
  double cosAngle; | 
| 236 | 
  | 
  | 
  double angleSqr; | 
| 237 | 
  | 
  | 
  double angleSqrOver4; | 
| 238 | 
  | 
  | 
  double top, bottom; | 
| 239 | 
  | 
  | 
  double rot[3][3]; | 
| 240 | 
  | 
  | 
  double tempA[3][3]; | 
| 241 | 
  | 
  | 
  double tempJ[3]; | 
| 242 | 
  | 
  | 
 | 
| 243 | 
  | 
  | 
  // initialize the tempA | 
| 244 | 
  | 
  | 
 | 
| 245 | 
  | 
  | 
  for (i = 0; i < 3; i++){ | 
| 246 | 
  | 
  | 
    for (j = 0; j < 3; j++){ | 
| 247 | 
  | 
  | 
      tempA[j][i] = A[i][j]; | 
| 248 | 
  | 
  | 
    } | 
| 249 | 
  | 
  | 
  } | 
| 250 | 
  | 
  | 
 | 
| 251 | 
  | 
  | 
  // initialize the tempJ | 
| 252 | 
  | 
  | 
 | 
| 253 | 
  | 
  | 
  for (i = 0; i < 3; i++) | 
| 254 | 
  | 
  | 
    tempJ[i] = ji[i]; | 
| 255 | 
  | 
  | 
 | 
| 256 | 
  | 
  | 
  // initalize rot as a unit matrix | 
| 257 | 
  | 
  | 
 | 
| 258 | 
  | 
  | 
  rot[0][0] = 1.0; | 
| 259 | 
  | 
  | 
  rot[0][1] = 0.0; | 
| 260 | 
  | 
  | 
  rot[0][2] = 0.0; | 
| 261 | 
  | 
  | 
 | 
| 262 | 
  | 
  | 
  rot[1][0] = 0.0; | 
| 263 | 
  | 
  | 
  rot[1][1] = 1.0; | 
| 264 | 
  | 
  | 
  rot[1][2] = 0.0; | 
| 265 | 
  | 
  | 
 | 
| 266 | 
  | 
  | 
  rot[2][0] = 0.0; | 
| 267 | 
  | 
  | 
  rot[2][1] = 0.0; | 
| 268 | 
  | 
  | 
  rot[2][2] = 1.0; | 
| 269 | 
  | 
  | 
 | 
| 270 | 
  | 
  | 
  // use a small angle aproximation for sin and cosine | 
| 271 | 
  | 
  | 
 | 
| 272 | 
  | 
  | 
  angleSqr = angle * angle; | 
| 273 | 
  | 
  | 
  angleSqrOver4 = angleSqr / 4.0; | 
| 274 | 
  | 
  | 
  top = 1.0 - angleSqrOver4; | 
| 275 | 
  | 
  | 
  bottom = 1.0 + angleSqrOver4; | 
| 276 | 
  | 
  | 
 | 
| 277 | 
  | 
  | 
  cosAngle = top / bottom; | 
| 278 | 
  | 
  | 
  sinAngle = angle / bottom; | 
| 279 | 
  | 
  | 
 | 
| 280 | 
  | 
  | 
  rot[axes1][axes1] = cosAngle; | 
| 281 | 
  | 
  | 
  rot[axes2][axes2] = cosAngle; | 
| 282 | 
  | 
  | 
 | 
| 283 | 
  | 
  | 
  rot[axes1][axes2] = sinAngle; | 
| 284 | 
  | 
  | 
  rot[axes2][axes1] = -sinAngle; | 
| 285 | 
  | 
  | 
 | 
| 286 | 
  | 
  | 
  // rotate the momentum acoording to: ji[] = rot[][] * ji[] | 
| 287 | 
  | 
  | 
 | 
| 288 | 
  | 
  | 
  for (i = 0; i < 3; i++){ | 
| 289 | 
  | 
  | 
    ji[i] = 0.0; | 
| 290 | 
  | 
  | 
    for (k = 0; k < 3; k++){ | 
| 291 | 
  | 
  | 
      ji[i] += rot[i][k] * tempJ[k]; | 
| 292 | 
  | 
  | 
    } | 
| 293 | 
  | 
  | 
  } | 
| 294 | 
  | 
  | 
 | 
| 295 | 
  | 
  | 
  // rotate the Rotation matrix acording to: | 
| 296 | 
  | 
  | 
  //            A[][] = A[][] * transpose(rot[][]) | 
| 297 | 
  | 
  | 
 | 
| 298 | 
  | 
  | 
 | 
| 299 | 
  | 
  | 
  // NOte for as yet unknown reason, we are performing the | 
| 300 | 
  | 
  | 
  // calculation as: | 
| 301 | 
  | 
  | 
  //                transpose(A[][]) = transpose(A[][]) * transpose(rot[][]) | 
| 302 | 
  | 
  | 
 | 
| 303 | 
  | 
  | 
  for (i = 0; i < 3; i++){ | 
| 304 | 
  | 
  | 
    for (j = 0; j < 3; j++){ | 
| 305 | 
  | 
  | 
      A[j][i] = 0.0; | 
| 306 | 
  | 
  | 
      for (k = 0; k < 3; k++){ | 
| 307 | 
  | 
  | 
        A[j][i] += tempA[i][k] * rot[j][k]; | 
| 308 | 
  | 
  | 
      } | 
| 309 | 
  | 
  | 
    } | 
| 310 | 
  | 
  | 
  } | 
| 311 | 
  | 
  | 
} | 
| 312 | 
  | 
  | 
//////////////////////////////////////////////////////////////////////////////// | 
| 313 | 
  | 
  | 
//Implementation of DCRollBFunctor | 
| 314 | 
  | 
  | 
//////////////////////////////////////////////////////////////////////////////// | 
| 315 | 
  | 
  | 
int DCRollBFunctor::operator()(ConstraintRigidBody* consRB1, ConstraintRigidBody* consRB2){ | 
| 316 | 
tim | 
1255 | 
  Vector3d posA; | 
| 317 | 
  | 
  | 
  Vector3d posB; | 
| 318 | 
  | 
  | 
  Vector3d velA; | 
| 319 | 
  | 
  | 
  Vector3d velB; | 
| 320 | 
  | 
  | 
  Vector3d pab; | 
| 321 | 
  | 
  | 
  Vector3d rab; | 
| 322 | 
  | 
  | 
  Vector3d vab; | 
| 323 | 
  | 
  | 
  Vector3d rma; | 
| 324 | 
  | 
  | 
  Vector3d rmb; | 
| 325 | 
  | 
  | 
  Vector3d consForce; | 
| 326 | 
  | 
  | 
  Vector3d bondDirUnitVec;   | 
| 327 | 
  | 
  | 
  double dx, dy, dz; | 
| 328 | 
  | 
  | 
  double rpab; | 
| 329 | 
  | 
  | 
  double rabsq, pabsq, rpabsq; | 
| 330 | 
  | 
  | 
  double diffsq; | 
| 331 | 
  | 
  | 
  double gab; | 
| 332 | 
  | 
  | 
  double dt; | 
| 333 | 
  | 
  | 
  double pabcDotvab; | 
| 334 | 
  | 
  | 
  double pabDotInvMassVec; | 
| 335 | 
  | 
  | 
 | 
| 336 | 
  | 
  | 
 | 
| 337 | 
  | 
  | 
  const int conRBMaxIter = 10; | 
| 338 | 
  | 
  | 
   | 
| 339 | 
  | 
  | 
  dt = info->dt; | 
| 340 | 
  | 
  | 
   | 
| 341 | 
  | 
  | 
  for(int i=0 ; i < conRBMaxIter; i++){    | 
| 342 | 
  | 
  | 
    consRB1->getCurAtomPos(posA.vec); | 
| 343 | 
  | 
  | 
    consRB2->getCurAtomPos(posB.vec); | 
| 344 | 
  | 
  | 
    pab = posA - posB; | 
| 345 | 
  | 
  | 
     | 
| 346 | 
  | 
  | 
    consRB1->getVel(velA.vec); | 
| 347 | 
  | 
  | 
    consRB2->getVel(velB.vec); | 
| 348 | 
  | 
  | 
    vab = velA -velB; | 
| 349 | 
  | 
  | 
 | 
| 350 | 
  | 
  | 
    //periodic boundary condition | 
| 351 | 
  | 
  | 
 | 
| 352 | 
  | 
  | 
    info->wrapVector(pab.vec); | 
| 353 | 
  | 
  | 
 | 
| 354 | 
  | 
  | 
    pabsq = pab.length2(); | 
| 355 | 
  | 
  | 
 | 
| 356 | 
  | 
  | 
    rabsq = curPair->getBondLength2(); | 
| 357 | 
  | 
  | 
    diffsq = rabsq - pabsq; | 
| 358 | 
  | 
  | 
 | 
| 359 | 
  | 
  | 
    if (fabs(diffsq) > (consTolerance * rabsq * 2)){ | 
| 360 | 
  | 
  | 
 | 
| 361 | 
  | 
  | 
 | 
| 362 | 
  | 
  | 
      bondDirUnitVec = pab; | 
| 363 | 
  | 
  | 
      bondDirUnitVec.normalize(); | 
| 364 | 
  | 
  | 
           | 
| 365 | 
  | 
  | 
      getEffInvMassVec(consRB1, bondDirUnitVec, rma); | 
| 366 | 
  | 
  | 
 | 
| 367 | 
  | 
  | 
      getEffInvMassVec(consRB2, -bondDirUnitVec, rmb); | 
| 368 | 
  | 
  | 
 | 
| 369 | 
  | 
  | 
      pabcDotvab = dotProduct(pab, vab); | 
| 370 | 
  | 
  | 
      pabDotInvMassVec = dotProduct(pab,  rma + rmb); | 
| 371 | 
  | 
  | 
       | 
| 372 | 
  | 
  | 
      consForce = pabcDotvab /(2 * dt * pabDotInvMassVec) * bondDirUnitVec; | 
| 373 | 
  | 
  | 
      //integrate consRB1 using constraint force; | 
| 374 | 
  | 
  | 
      integrate(consRB1,consForce); | 
| 375 | 
  | 
  | 
 | 
| 376 | 
  | 
  | 
      //integrate consRB2 using constraint force; | 
| 377 | 
  | 
  | 
      integrate(consRB2, -consForce);     | 
| 378 | 
  | 
  | 
       | 
| 379 | 
  | 
  | 
    } | 
| 380 | 
  | 
  | 
    else{ | 
| 381 | 
  | 
  | 
      if (i ==0) | 
| 382 | 
  | 
  | 
        return consAlready; | 
| 383 | 
  | 
  | 
      else | 
| 384 | 
  | 
  | 
        return consSuccess; | 
| 385 | 
  | 
  | 
    } | 
| 386 | 
  | 
  | 
  } | 
| 387 | 
  | 
  | 
 | 
| 388 | 
  | 
  | 
  return consExceedMaxIter; | 
| 389 | 
  | 
  | 
 | 
| 390 | 
tim | 
1254 | 
} | 
| 391 | 
  | 
  | 
 | 
| 392 | 
  | 
  | 
void DCRollBFunctor::getEffInvMassVec(ConstraintRigidBody* consRB, const Vector3d& bondDir, Vector3d& invMassVec){ | 
| 393 | 
tim | 
1255 | 
  double invMass; | 
| 394 | 
  | 
  | 
  Vector3d tempVec1; | 
| 395 | 
  | 
  | 
  Vector3d tempVec2; | 
| 396 | 
  | 
  | 
  Vector3d refCoor; | 
| 397 | 
  | 
  | 
  Vector3d refCrossBond;   | 
| 398 | 
  | 
  | 
  Mat3x3d IBody; | 
| 399 | 
  | 
  | 
  Mat3x3d IFrame; | 
| 400 | 
  | 
  | 
  Mat3x3d invIBody; | 
| 401 | 
  | 
  | 
  Mat3x3d invIFrame; | 
| 402 | 
  | 
  | 
  Mat3x3d a; | 
| 403 | 
  | 
  | 
  Mat3x3d aTrans; | 
| 404 | 
  | 
  | 
   | 
| 405 | 
  | 
  | 
  invMass = 1.0 / consRB ->getMass(); | 
| 406 | 
tim | 
1254 | 
 | 
| 407 | 
tim | 
1255 | 
  invMassVec = invMass * bondDir; | 
| 408 | 
  | 
  | 
   | 
| 409 | 
  | 
  | 
  consRB->getRefCoor(refCoor.vec); | 
| 410 | 
  | 
  | 
  consRB->getA(a.element); | 
| 411 | 
  | 
  | 
  consRB->getI(IBody.element); | 
| 412 | 
  | 
  | 
 | 
| 413 | 
  | 
  | 
  aTrans = a.transpose(); | 
| 414 | 
  | 
  | 
  invIBody = IBody.inverse(); | 
| 415 | 
  | 
  | 
 | 
| 416 | 
  | 
  | 
  IFrame = aTrans * invIBody * a; | 
| 417 | 
  | 
  | 
 | 
| 418 | 
  | 
  | 
  refCrossBond = crossProduct(refCoor, bondDir);   | 
| 419 | 
  | 
  | 
 | 
| 420 | 
  | 
  | 
  tempVec1 = invIFrame * refCrossBond; | 
| 421 | 
  | 
  | 
  tempVec2 = crossProduct(tempVec1, refCoor); | 
| 422 | 
  | 
  | 
 | 
| 423 | 
  | 
  | 
  invMassVec += tempVec2; | 
| 424 | 
tim | 
1254 | 
} | 
| 425 | 
  | 
  | 
 | 
| 426 | 
  | 
  | 
void DCRollBFunctor::integrate(ConstraintRigidBody* consRB, const Vector3d& force){ | 
| 427 | 
tim | 
1255 | 
  const double eConvert = 4.184e-4; | 
| 428 | 
  | 
  | 
  Vector3d vel; | 
| 429 | 
  | 
  | 
  Vector3d pos; | 
| 430 | 
  | 
  | 
  Vector3d Tb; | 
| 431 | 
  | 
  | 
  Vector3d ji; | 
| 432 | 
  | 
  | 
  double mass; | 
| 433 | 
  | 
  | 
  double dtOver2; | 
| 434 | 
  | 
  | 
  StuntDouble* sd; | 
| 435 | 
  | 
  | 
   | 
| 436 | 
  | 
  | 
  sd = consRB->getStuntDouble();   | 
| 437 | 
  | 
  | 
  dtOver2 = info->dt/2; | 
| 438 | 
tim | 
1254 | 
 | 
| 439 | 
tim | 
1255 | 
  mass = sd->getMass(); | 
| 440 | 
  | 
  | 
 | 
| 441 | 
  | 
  | 
  // velocity half step | 
| 442 | 
  | 
  | 
 | 
| 443 | 
  | 
  | 
  vel += eConvert * dtOver2 /mass * force; | 
| 444 | 
  | 
  | 
 | 
| 445 | 
  | 
  | 
  sd->setVel(vel.vec); | 
| 446 | 
  | 
  | 
 | 
| 447 | 
  | 
  | 
  if (sd->isDirectional()){ | 
| 448 | 
  | 
  | 
 | 
| 449 | 
  | 
  | 
    // get and convert the torque to body frame | 
| 450 | 
  | 
  | 
 | 
| 451 | 
  | 
  | 
    sd->getTrq(Tb.vec); | 
| 452 | 
  | 
  | 
    sd->lab2Body(Tb.vec); | 
| 453 | 
  | 
  | 
 | 
| 454 | 
  | 
  | 
    // get the angular momentum, and propagate a half step | 
| 455 | 
  | 
  | 
 | 
| 456 | 
  | 
  | 
    sd->getJ(ji.vec); | 
| 457 | 
  | 
  | 
 | 
| 458 | 
  | 
  | 
    ji += eConvert * dtOver2* Tb; | 
| 459 | 
  | 
  | 
 | 
| 460 | 
  | 
  | 
    sd->setJ(ji.vec); | 
| 461 | 
  | 
  | 
  } | 
| 462 | 
  | 
  | 
   | 
| 463 | 
  | 
  | 
} |