6 |
|
|
7 |
|
RigidBody::RigidBody() : StuntDouble() { |
8 |
|
objType = OT_RIGIDBODY; |
9 |
< |
com_good = false; |
10 |
< |
precalc_done = false; |
9 |
> |
is_linear = false; |
10 |
> |
linear_axis = -1; |
11 |
> |
momIntTol = 1e-6; |
12 |
|
} |
13 |
|
|
14 |
|
RigidBody::~RigidBody() { |
98 |
|
trq[i] = 0.0; |
99 |
|
} |
100 |
|
|
100 |
– |
forces_good = false; |
101 |
– |
|
101 |
|
} |
102 |
|
|
103 |
< |
void RigidBody::setEulerAngles( double phi, double theta, double psi ){ |
103 |
> |
void RigidBody::setEuler( double phi, double theta, double psi ){ |
104 |
|
|
105 |
|
A[0][0] = (cos(phi) * cos(psi)) - (sin(phi) * cos(theta) * sin(psi)); |
106 |
|
A[0][1] = (sin(phi) * cos(psi)) + (cos(phi) * cos(theta) * sin(psi)); |
190 |
|
|
191 |
|
for (int i = 0; i < 3; i++) |
192 |
|
for (int j = 0; j < 3; j++) |
193 |
< |
the_A[i][j] = the_A[i][j]; |
193 |
> |
the_A[i][j] = A[i][j]; |
194 |
|
|
195 |
|
} |
196 |
|
|
228 |
|
|
229 |
|
void RigidBody::getI( double the_I[3][3] ){ |
230 |
|
|
232 |
– |
if (precalc_done) { |
233 |
– |
|
231 |
|
for (int i = 0; i < 3; i++) |
232 |
|
for (int j = 0; j < 3; j++) |
233 |
|
the_I[i][j] = I[i][j]; |
237 |
– |
|
238 |
– |
} else { |
234 |
|
|
240 |
– |
} |
235 |
|
} |
236 |
|
|
237 |
|
void RigidBody::lab2Body( double r[3] ){ |
262 |
|
|
263 |
|
} |
264 |
|
|
265 |
+ |
double RigidBody::getZangle( ){ |
266 |
+ |
return zAngle; |
267 |
+ |
} |
268 |
+ |
|
269 |
+ |
void RigidBody::setZangle( double zAng ){ |
270 |
+ |
zAngle = zAng; |
271 |
+ |
} |
272 |
+ |
|
273 |
+ |
void RigidBody::addZangle( double zAng ){ |
274 |
+ |
zAngle += zAng; |
275 |
+ |
} |
276 |
+ |
|
277 |
|
void RigidBody::calcRefCoords( ) { |
278 |
|
|
279 |
< |
int i,j,k; |
279 |
> |
int i,j,k, it, n_linear_coords; |
280 |
|
double mtmp; |
281 |
|
vec3 apos; |
282 |
|
double refCOM[3]; |
283 |
+ |
vec3 ptmp; |
284 |
+ |
double Itmp[3][3]; |
285 |
+ |
double evals[3]; |
286 |
+ |
double evects[3][3]; |
287 |
+ |
double r, r2, len; |
288 |
|
|
289 |
+ |
// First, find the center of mass: |
290 |
+ |
|
291 |
|
mass = 0.0; |
292 |
|
for (j=0; j<3; j++) |
293 |
|
refCOM[j] = 0.0; |
306 |
|
for(j = 0; j < 3; j++) |
307 |
|
refCOM[j] /= mass; |
308 |
|
|
309 |
+ |
// Next, move the origin of the reference coordinate system to the COM: |
310 |
+ |
|
311 |
|
for (i = 0; i < myAtoms.size(); i++) { |
312 |
|
apos = refCoords[i]; |
313 |
|
for (j=0; j < 3; j++) { |
314 |
|
apos[j] = apos[j] - refCOM[j]; |
315 |
|
} |
316 |
|
refCoords[i] = apos; |
317 |
+ |
} |
318 |
+ |
|
319 |
+ |
// Moment of Inertia calculation |
320 |
+ |
|
321 |
+ |
for (i = 0; i < 3; i++) |
322 |
+ |
for (j = 0; j < 3; j++) |
323 |
+ |
Itmp[i][j] = 0.0; |
324 |
+ |
|
325 |
+ |
for (it = 0; it < myAtoms.size(); it++) { |
326 |
+ |
|
327 |
+ |
mtmp = myAtoms[it]->getMass(); |
328 |
+ |
ptmp = refCoords[it]; |
329 |
+ |
r= norm3(ptmp.vec); |
330 |
+ |
r2 = r*r; |
331 |
+ |
|
332 |
+ |
for (i = 0; i < 3; i++) { |
333 |
+ |
for (j = 0; j < 3; j++) { |
334 |
+ |
|
335 |
+ |
if (i==j) Itmp[i][j] += mtmp * r2; |
336 |
+ |
|
337 |
+ |
Itmp[i][j] -= mtmp * ptmp.vec[i]*ptmp.vec[j]; |
338 |
+ |
} |
339 |
+ |
} |
340 |
|
} |
341 |
+ |
|
342 |
+ |
diagonalize3x3(Itmp, evals, sU); |
343 |
+ |
|
344 |
+ |
// zero out I and then fill the diagonals with the moments of inertia: |
345 |
|
|
346 |
+ |
n_linear_coords = 0; |
347 |
+ |
|
348 |
+ |
for (i = 0; i < 3; i++) { |
349 |
+ |
for (j = 0; j < 3; j++) { |
350 |
+ |
I[i][j] = 0.0; |
351 |
+ |
} |
352 |
+ |
I[i][i] = evals[i]; |
353 |
+ |
|
354 |
+ |
if (fabs(evals[i]) < momIntTol) { |
355 |
+ |
is_linear = true; |
356 |
+ |
n_linear_coords++; |
357 |
+ |
linear_axis = i; |
358 |
+ |
} |
359 |
+ |
} |
360 |
+ |
|
361 |
+ |
if (n_linear_coords > 1) { |
362 |
+ |
sprintf( painCave.errMsg, |
363 |
+ |
"RigidBody error.\n" |
364 |
+ |
"\tOOPSE found more than one axis in this rigid body with a vanishing \n" |
365 |
+ |
"\tmoment of inertia. This can happen in one of three ways:\n" |
366 |
+ |
"\t 1) Only one atom was specified, or \n" |
367 |
+ |
"\t 2) All atoms were specified at the same location, or\n" |
368 |
+ |
"\t 3) The programmers did something stupid.\n" |
369 |
+ |
"\tIt is silly to use a rigid body to describe this situation. Be smarter.\n" |
370 |
+ |
); |
371 |
+ |
painCave.isFatal = 1; |
372 |
+ |
simError(); |
373 |
+ |
} |
374 |
+ |
|
375 |
+ |
// renormalize column vectors: |
376 |
+ |
|
377 |
+ |
for (i=0; i < 3; i++) { |
378 |
+ |
len = 0.0; |
379 |
+ |
for (j = 0; j < 3; j++) { |
380 |
+ |
len += sU[i][j]*sU[i][j]; |
381 |
+ |
} |
382 |
+ |
len = sqrt(len); |
383 |
+ |
for (j = 0; j < 3; j++) { |
384 |
+ |
sU[i][j] /= len; |
385 |
+ |
} |
386 |
+ |
} |
387 |
|
} |
388 |
|
|
389 |
|
void RigidBody::doEulerToRotMat(vec3 &euler, mat3x3 &myA ){ |
449 |
|
// (Actually, on second thought, don't. Integrator does this now.) |
450 |
|
// lab2Body(trq); |
451 |
|
|
369 |
– |
forces_good = true; |
370 |
– |
|
452 |
|
} |
453 |
|
|
454 |
|
void RigidBody::updateAtoms() { |
637 |
|
vel[j] /= mass; |
638 |
|
} |
639 |
|
|
559 |
– |
com_good = true; |
640 |
|
} |
561 |
– |
|
562 |
– |
void RigidBody::findOrient() { |
563 |
– |
|
564 |
– |
size_t it; |
565 |
– |
int i, j; |
566 |
– |
double ptmp[3]; |
567 |
– |
double Itmp[3][3]; |
568 |
– |
double evals[3]; |
569 |
– |
double evects[3][3]; |
570 |
– |
double r2, mtmp, len; |
641 |
|
|
642 |
< |
if (!com_good) findCOM(); |
642 |
> |
void RigidBody::accept(BaseVisitor* v){ |
643 |
> |
vector<Atom*>::iterator atomIter; |
644 |
> |
v->visit(this); |
645 |
|
|
646 |
< |
// Calculate inertial tensor matrix elements: |
646 |
> |
//for(atomIter = myAtoms.begin(); atomIter != myAtoms.end(); ++atomIter) |
647 |
> |
// (*atomIter)->accept(v); |
648 |
> |
} |
649 |
> |
void RigidBody::getAtomRefCoor(double pos[3], int index){ |
650 |
> |
vec3 ref; |
651 |
|
|
652 |
< |
for (i = 0; i < 3; i++) |
653 |
< |
for (j = 0; j < 3; j++) |
654 |
< |
Itmp[i][j] = 0.0; |
652 |
> |
ref = refCoords[index]; |
653 |
> |
pos[0] = ref[0]; |
654 |
> |
pos[1] = ref[1]; |
655 |
> |
pos[2] = ref[2]; |
656 |
|
|
657 |
< |
for (it = 0; it < myAtoms.size(); it++) { |
581 |
< |
|
582 |
< |
mtmp = myAtoms[it]->getMass(); |
583 |
< |
myAtoms[it]->getPos(ptmp); |
657 |
> |
} |
658 |
|
|
585 |
– |
for (j = 0; j < 3; j++) |
586 |
– |
ptmp[j] = pos[j] - ptmp[j]; |
659 |
|
|
660 |
< |
r2 = norm3(ptmp); |
661 |
< |
|
590 |
< |
for (i = 0; i < 3; i++) { |
591 |
< |
for (j = 0; j < 3; j++) { |
592 |
< |
|
593 |
< |
if (i==j) Itmp[i][j] = mtmp * r2; |
660 |
> |
void RigidBody::getAtomPos(double theP[3], int index){ |
661 |
> |
vec3 ref; |
662 |
|
|
663 |
< |
Itmp[i][j] -= mtmp * ptmp[i]*ptmp[j]; |
664 |
< |
} |
665 |
< |
} |
666 |
< |
} |
663 |
> |
if (index >= myAtoms.size()) |
664 |
> |
cerr << index << " is an invalid index, current rigid body contains " << myAtoms.size() << "atoms" << endl; |
665 |
> |
|
666 |
> |
ref = refCoords[index]; |
667 |
> |
body2Lab(ref.vec); |
668 |
|
|
669 |
< |
diagonalize3x3(Itmp, evals, sU); |
669 |
> |
theP[0] = pos[0] + ref[0]; |
670 |
> |
theP[1] = pos[1] + ref[1]; |
671 |
> |
theP[2] = pos[2] + ref[2]; |
672 |
> |
} |
673 |
> |
|
674 |
> |
|
675 |
> |
void RigidBody::getAtomVel(double theV[3], int index){ |
676 |
> |
vec3 ref; |
677 |
> |
double velRot[3]; |
678 |
> |
double skewMat[3][3]; |
679 |
> |
double aSkewMat[3][3]; |
680 |
> |
double aSkewTransMat[3][3]; |
681 |
|
|
682 |
< |
// zero out I and then fill the diagonals with the moments of inertia: |
682 |
> |
//velRot = $(A\cdot skew(I^{-1}j))^{T}refCoor$ |
683 |
|
|
684 |
< |
for (i = 0; i < 3; i++) { |
685 |
< |
for (j = 0; j < 3; j++) { |
686 |
< |
I[i][j] = 0.0; |
687 |
< |
} |
688 |
< |
I[i][i] = evals[i]; |
689 |
< |
} |
684 |
> |
if (index >= myAtoms.size()) |
685 |
> |
cerr << index << " is an invalid index, current rigid body contains " << myAtoms.size() << "atoms" << endl; |
686 |
> |
|
687 |
> |
ref = refCoords[index]; |
688 |
> |
|
689 |
> |
skewMat[0][0] =0; |
690 |
> |
skewMat[0][1] = ji[2] /I[2][2]; |
691 |
> |
skewMat[0][2] = -ji[1] /I[1][1]; |
692 |
> |
|
693 |
> |
skewMat[1][0] = -ji[2] /I[2][2]; |
694 |
> |
skewMat[1][1] = 0; |
695 |
> |
skewMat[1][2] = ji[0]/I[0][0]; |
696 |
> |
|
697 |
> |
skewMat[2][0] =ji[1] /I[1][1]; |
698 |
> |
skewMat[2][1] = -ji[0]/I[0][0]; |
699 |
> |
skewMat[2][2] = 0; |
700 |
|
|
701 |
< |
// renormalize column vectors: |
612 |
< |
|
613 |
< |
for (i=0; i < 3; i++) { |
614 |
< |
len = 0.0; |
615 |
< |
for (j = 0; j < 3; j++) { |
616 |
< |
len += sU[i][j]*sU[i][j]; |
617 |
< |
} |
618 |
< |
len = sqrt(len); |
619 |
< |
for (j = 0; j < 3; j++) { |
620 |
< |
sU[i][j] /= len; |
621 |
< |
} |
622 |
< |
} |
623 |
< |
|
624 |
< |
// sU now contains the coordinates of the 'special' frame; |
625 |
< |
|
626 |
< |
orient_good = true; |
701 |
> |
matMul3(A, skewMat, aSkewMat); |
702 |
|
|
703 |
+ |
transposeMat3(aSkewMat, aSkewTransMat); |
704 |
+ |
|
705 |
+ |
matVecMul3(aSkewTransMat, ref.vec, velRot); |
706 |
+ |
theV[0] = vel[0] + velRot[0]; |
707 |
+ |
theV[1] = vel[1] + velRot[1]; |
708 |
+ |
theV[2] = vel[2] + velRot[2]; |
709 |
|
} |
710 |
+ |
|
711 |
+ |
|