6 |
|
|
7 |
|
RigidBody::RigidBody() : StuntDouble() { |
8 |
|
objType = OT_RIGIDBODY; |
9 |
< |
com_good = false; |
10 |
< |
precalc_done = false; |
9 |
> |
is_linear = false; |
10 |
> |
linear_axis = -1; |
11 |
> |
momIntTol = 1e-6; |
12 |
|
} |
13 |
|
|
14 |
|
RigidBody::~RigidBody() { |
86 |
|
theF[i] = frc[i]; |
87 |
|
} |
88 |
|
|
89 |
+ |
void RigidBody::setFrc(double theF[3]){ |
90 |
+ |
for (int i = 0; i < 3 ; i++) |
91 |
+ |
frc[i] = theF[i]; |
92 |
+ |
} |
93 |
+ |
|
94 |
|
void RigidBody::addFrc(double theF[3]){ |
95 |
|
for (int i = 0; i < 3 ; i++) |
96 |
|
frc[i] += theF[i]; |
103 |
|
trq[i] = 0.0; |
104 |
|
} |
105 |
|
|
100 |
– |
forces_good = false; |
101 |
– |
|
106 |
|
} |
107 |
|
|
108 |
< |
void RigidBody::setEulerAngles( double phi, double theta, double psi ){ |
108 |
> |
void RigidBody::setEuler( double phi, double theta, double psi ){ |
109 |
|
|
110 |
|
A[0][0] = (cos(phi) * cos(psi)) - (sin(phi) * cos(theta) * sin(psi)); |
111 |
|
A[0][1] = (sin(phi) * cos(psi)) + (cos(phi) * cos(theta) * sin(psi)); |
188 |
|
A[2][0] = 2.0 * ( the_q[1] * the_q[3] + the_q[0] * the_q[2] ); |
189 |
|
A[2][1] = 2.0 * ( the_q[2] * the_q[3] - the_q[0] * the_q[1] ); |
190 |
|
A[2][2] = q0Sqr - q1Sqr -q2Sqr +q3Sqr; |
187 |
– |
|
191 |
|
} |
192 |
|
|
193 |
|
void RigidBody::getA( double the_A[3][3] ){ |
194 |
|
|
195 |
|
for (int i = 0; i < 3; i++) |
196 |
|
for (int j = 0; j < 3; j++) |
197 |
< |
the_A[i][j] = the_A[i][j]; |
197 |
> |
the_A[i][j] = A[i][j]; |
198 |
|
|
199 |
|
} |
200 |
|
|
225 |
|
theT[i] = trq[i]; |
226 |
|
} |
227 |
|
|
228 |
+ |
void RigidBody::setTrq(double theT[3]){ |
229 |
+ |
for (int i = 0; i < 3 ; i++) |
230 |
+ |
trq[i] = theT[i]; |
231 |
+ |
} |
232 |
+ |
|
233 |
|
void RigidBody::addTrq(double theT[3]){ |
234 |
|
for (int i = 0; i < 3 ; i++) |
235 |
|
trq[i] += theT[i]; |
237 |
|
|
238 |
|
void RigidBody::getI( double the_I[3][3] ){ |
239 |
|
|
232 |
– |
if (precalc_done) { |
233 |
– |
|
240 |
|
for (int i = 0; i < 3; i++) |
241 |
|
for (int j = 0; j < 3; j++) |
242 |
|
the_I[i][j] = I[i][j]; |
243 |
|
|
238 |
– |
} else { |
239 |
– |
|
240 |
– |
} |
244 |
|
} |
245 |
|
|
246 |
|
void RigidBody::lab2Body( double r[3] ){ |
268 |
|
r[0] = (A[0][0] * rb[0]) + (A[1][0] * rb[1]) + (A[2][0] * rb[2]); |
269 |
|
r[1] = (A[0][1] * rb[0]) + (A[1][1] * rb[1]) + (A[2][1] * rb[2]); |
270 |
|
r[2] = (A[0][2] * rb[0]) + (A[1][2] * rb[1]) + (A[2][2] * rb[2]); |
271 |
+ |
|
272 |
+ |
} |
273 |
+ |
|
274 |
+ |
double RigidBody::getZangle( ){ |
275 |
+ |
return zAngle; |
276 |
+ |
} |
277 |
|
|
278 |
+ |
void RigidBody::setZangle( double zAng ){ |
279 |
+ |
zAngle = zAng; |
280 |
|
} |
281 |
|
|
282 |
+ |
void RigidBody::addZangle( double zAng ){ |
283 |
+ |
zAngle += zAng; |
284 |
+ |
} |
285 |
+ |
|
286 |
|
void RigidBody::calcRefCoords( ) { |
287 |
|
|
288 |
< |
int i,j,k; |
288 |
> |
int i,j,k, it, n_linear_coords; |
289 |
|
double mtmp; |
290 |
|
vec3 apos; |
291 |
|
double refCOM[3]; |
292 |
+ |
vec3 ptmp; |
293 |
+ |
double Itmp[3][3]; |
294 |
+ |
double evals[3]; |
295 |
+ |
double evects[3][3]; |
296 |
+ |
double r, r2, len; |
297 |
|
|
298 |
+ |
// First, find the center of mass: |
299 |
+ |
|
300 |
|
mass = 0.0; |
301 |
|
for (j=0; j<3; j++) |
302 |
|
refCOM[j] = 0.0; |
315 |
|
for(j = 0; j < 3; j++) |
316 |
|
refCOM[j] /= mass; |
317 |
|
|
318 |
+ |
// Next, move the origin of the reference coordinate system to the COM: |
319 |
+ |
|
320 |
|
for (i = 0; i < myAtoms.size(); i++) { |
321 |
|
apos = refCoords[i]; |
322 |
|
for (j=0; j < 3; j++) { |
325 |
|
refCoords[i] = apos; |
326 |
|
} |
327 |
|
|
328 |
+ |
// Moment of Inertia calculation |
329 |
+ |
|
330 |
+ |
for (i = 0; i < 3; i++) |
331 |
+ |
for (j = 0; j < 3; j++) |
332 |
+ |
Itmp[i][j] = 0.0; |
333 |
+ |
|
334 |
+ |
for (it = 0; it < myAtoms.size(); it++) { |
335 |
+ |
|
336 |
+ |
mtmp = myAtoms[it]->getMass(); |
337 |
+ |
ptmp = refCoords[it]; |
338 |
+ |
r= norm3(ptmp.vec); |
339 |
+ |
r2 = r*r; |
340 |
+ |
|
341 |
+ |
for (i = 0; i < 3; i++) { |
342 |
+ |
for (j = 0; j < 3; j++) { |
343 |
+ |
|
344 |
+ |
if (i==j) Itmp[i][j] += mtmp * r2; |
345 |
+ |
|
346 |
+ |
Itmp[i][j] -= mtmp * ptmp.vec[i]*ptmp.vec[j]; |
347 |
+ |
} |
348 |
+ |
} |
349 |
+ |
} |
350 |
+ |
|
351 |
+ |
diagonalize3x3(Itmp, evals, sU); |
352 |
+ |
|
353 |
+ |
// zero out I and then fill the diagonals with the moments of inertia: |
354 |
+ |
|
355 |
+ |
n_linear_coords = 0; |
356 |
+ |
|
357 |
+ |
for (i = 0; i < 3; i++) { |
358 |
+ |
for (j = 0; j < 3; j++) { |
359 |
+ |
I[i][j] = 0.0; |
360 |
+ |
} |
361 |
+ |
I[i][i] = evals[i]; |
362 |
+ |
|
363 |
+ |
if (fabs(evals[i]) < momIntTol) { |
364 |
+ |
is_linear = true; |
365 |
+ |
n_linear_coords++; |
366 |
+ |
linear_axis = i; |
367 |
+ |
} |
368 |
+ |
} |
369 |
+ |
|
370 |
+ |
if (n_linear_coords > 1) { |
371 |
+ |
sprintf( painCave.errMsg, |
372 |
+ |
"RigidBody error.\n" |
373 |
+ |
"\tOOPSE found more than one axis in this rigid body with a vanishing \n" |
374 |
+ |
"\tmoment of inertia. This can happen in one of three ways:\n" |
375 |
+ |
"\t 1) Only one atom was specified, or \n" |
376 |
+ |
"\t 2) All atoms were specified at the same location, or\n" |
377 |
+ |
"\t 3) The programmers did something stupid.\n" |
378 |
+ |
"\tIt is silly to use a rigid body to describe this situation. Be smarter.\n" |
379 |
+ |
); |
380 |
+ |
painCave.isFatal = 1; |
381 |
+ |
simError(); |
382 |
+ |
} |
383 |
+ |
|
384 |
+ |
// renormalize column vectors: |
385 |
+ |
|
386 |
+ |
for (i=0; i < 3; i++) { |
387 |
+ |
len = 0.0; |
388 |
+ |
for (j = 0; j < 3; j++) { |
389 |
+ |
len += sU[i][j]*sU[i][j]; |
390 |
+ |
} |
391 |
+ |
len = sqrt(len); |
392 |
+ |
for (j = 0; j < 3; j++) { |
393 |
+ |
sU[i][j] /= len; |
394 |
+ |
} |
395 |
+ |
} |
396 |
|
} |
397 |
|
|
398 |
|
void RigidBody::doEulerToRotMat(vec3 &euler, mat3x3 &myA ){ |
458 |
|
// (Actually, on second thought, don't. Integrator does this now.) |
459 |
|
// lab2Body(trq); |
460 |
|
|
369 |
– |
forces_good = true; |
370 |
– |
|
461 |
|
} |
462 |
|
|
463 |
|
void RigidBody::updateAtoms() { |
646 |
|
vel[j] /= mass; |
647 |
|
} |
648 |
|
|
559 |
– |
com_good = true; |
649 |
|
} |
650 |
< |
|
651 |
< |
void RigidBody::findOrient() { |
650 |
> |
|
651 |
> |
void RigidBody::accept(BaseVisitor* v){ |
652 |
> |
vector<Atom*>::iterator atomIter; |
653 |
> |
v->visit(this); |
654 |
> |
|
655 |
> |
//for(atomIter = myAtoms.begin(); atomIter != myAtoms.end(); ++atomIter) |
656 |
> |
// (*atomIter)->accept(v); |
657 |
> |
} |
658 |
> |
void RigidBody::getAtomRefCoor(double pos[3], int index){ |
659 |
> |
vec3 ref; |
660 |
> |
|
661 |
> |
ref = refCoords[index]; |
662 |
> |
pos[0] = ref[0]; |
663 |
> |
pos[1] = ref[1]; |
664 |
> |
pos[2] = ref[2]; |
665 |
|
|
666 |
< |
size_t it; |
565 |
< |
int i, j; |
566 |
< |
double ptmp[3]; |
567 |
< |
double Itmp[3][3]; |
568 |
< |
double evals[3]; |
569 |
< |
double evects[3][3]; |
570 |
< |
double r2, mtmp, len; |
666 |
> |
} |
667 |
|
|
572 |
– |
if (!com_good) findCOM(); |
668 |
|
|
669 |
< |
// Calculate inertial tensor matrix elements: |
669 |
> |
void RigidBody::getAtomPos(double theP[3], int index){ |
670 |
> |
vec3 ref; |
671 |
|
|
672 |
< |
for (i = 0; i < 3; i++) |
673 |
< |
for (j = 0; j < 3; j++) |
674 |
< |
Itmp[i][j] = 0.0; |
672 |
> |
if (index >= myAtoms.size()) |
673 |
> |
cerr << index << " is an invalid index, current rigid body contains " << myAtoms.size() << "atoms" << endl; |
674 |
> |
|
675 |
> |
ref = refCoords[index]; |
676 |
> |
body2Lab(ref.vec); |
677 |
|
|
678 |
< |
for (it = 0; it < myAtoms.size(); it++) { |
679 |
< |
|
680 |
< |
mtmp = myAtoms[it]->getMass(); |
681 |
< |
myAtoms[it]->getPos(ptmp); |
678 |
> |
theP[0] = pos[0] + ref[0]; |
679 |
> |
theP[1] = pos[1] + ref[1]; |
680 |
> |
theP[2] = pos[2] + ref[2]; |
681 |
> |
} |
682 |
|
|
585 |
– |
for (j = 0; j < 3; j++) |
586 |
– |
ptmp[j] = pos[j] - ptmp[j]; |
683 |
|
|
684 |
< |
r2 = norm3(ptmp); |
685 |
< |
|
686 |
< |
for (i = 0; i < 3; i++) { |
687 |
< |
for (j = 0; j < 3; j++) { |
688 |
< |
|
689 |
< |
if (i==j) Itmp[i][j] = mtmp * r2; |
594 |
< |
|
595 |
< |
Itmp[i][j] -= mtmp * ptmp[i]*ptmp[j]; |
596 |
< |
} |
597 |
< |
} |
598 |
< |
} |
684 |
> |
void RigidBody::getAtomVel(double theV[3], int index){ |
685 |
> |
vec3 ref; |
686 |
> |
double velRot[3]; |
687 |
> |
double skewMat[3][3]; |
688 |
> |
double aSkewMat[3][3]; |
689 |
> |
double aSkewTransMat[3][3]; |
690 |
|
|
691 |
< |
diagonalize3x3(Itmp, evals, sU); |
601 |
< |
|
602 |
< |
// zero out I and then fill the diagonals with the moments of inertia: |
691 |
> |
//velRot = $(A\cdot skew(I^{-1}j))^{T}refCoor$ |
692 |
|
|
693 |
< |
for (i = 0; i < 3; i++) { |
694 |
< |
for (j = 0; j < 3; j++) { |
695 |
< |
I[i][j] = 0.0; |
696 |
< |
} |
697 |
< |
I[i][i] = evals[i]; |
698 |
< |
} |
693 |
> |
if (index >= myAtoms.size()) |
694 |
> |
cerr << index << " is an invalid index, current rigid body contains " << myAtoms.size() << "atoms" << endl; |
695 |
> |
|
696 |
> |
ref = refCoords[index]; |
697 |
> |
|
698 |
> |
skewMat[0][0] =0; |
699 |
> |
skewMat[0][1] = ji[2] /I[2][2]; |
700 |
> |
skewMat[0][2] = -ji[1] /I[1][1]; |
701 |
> |
|
702 |
> |
skewMat[1][0] = -ji[2] /I[2][2]; |
703 |
> |
skewMat[1][1] = 0; |
704 |
> |
skewMat[1][2] = ji[0]/I[0][0]; |
705 |
> |
|
706 |
> |
skewMat[2][0] =ji[1] /I[1][1]; |
707 |
> |
skewMat[2][1] = -ji[0]/I[0][0]; |
708 |
> |
skewMat[2][2] = 0; |
709 |
|
|
710 |
< |
// renormalize column vectors: |
612 |
< |
|
613 |
< |
for (i=0; i < 3; i++) { |
614 |
< |
len = 0.0; |
615 |
< |
for (j = 0; j < 3; j++) { |
616 |
< |
len += sU[i][j]*sU[i][j]; |
617 |
< |
} |
618 |
< |
len = sqrt(len); |
619 |
< |
for (j = 0; j < 3; j++) { |
620 |
< |
sU[i][j] /= len; |
621 |
< |
} |
622 |
< |
} |
623 |
< |
|
624 |
< |
// sU now contains the coordinates of the 'special' frame; |
625 |
< |
|
626 |
< |
orient_good = true; |
710 |
> |
matMul3(A, skewMat, aSkewMat); |
711 |
|
|
712 |
+ |
transposeMat3(aSkewMat, aSkewTransMat); |
713 |
+ |
|
714 |
+ |
matVecMul3(aSkewTransMat, ref.vec, velRot); |
715 |
+ |
theV[0] = vel[0] + velRot[0]; |
716 |
+ |
theV[1] = vel[1] + velRot[1]; |
717 |
+ |
theV[2] = vel[2] + velRot[2]; |
718 |
|
} |
719 |
+ |
|
720 |
+ |
|