| 1 |
#include <iostream> |
| 2 |
#include <stdlib.h> |
| 3 |
#include <cstdio> |
| 4 |
#include <fstream> |
| 5 |
#include <iomanip> |
| 6 |
#include <string> |
| 7 |
#include <cstring> |
| 8 |
#include <math.h> |
| 9 |
|
| 10 |
using namespace std; |
| 11 |
|
| 12 |
#include "Restraints.hpp" |
| 13 |
#include "SimInfo.hpp" |
| 14 |
#include "simError.h" |
| 15 |
|
| 16 |
#define PI 3.14159265359 |
| 17 |
#define TWO_PI 6.28318530718 |
| 18 |
|
| 19 |
Restraints::Restraints(int nMolInfo, double lambdaVal, double lambdaExp){ |
| 20 |
nMol = nMolInfo; |
| 21 |
lambdaValue = lambdaVal; |
| 22 |
lambdaK = lambdaExp; |
| 23 |
|
| 24 |
const char *jolt = " \t\n;,"; |
| 25 |
|
| 26 |
strcpy(springName, "HarmSpringConsts.txt"); |
| 27 |
|
| 28 |
ifstream springs(springName); |
| 29 |
|
| 30 |
if (!springs) { |
| 31 |
cout << "Unable to open HarmSpringConsts.txt for reading.\n"; |
| 32 |
|
| 33 |
// load place holder spring constants |
| 34 |
kDist = 6; // spring constant in units of kcal/(mol*ang^2) |
| 35 |
kTheta = 7.5; // in units of kcal/mol |
| 36 |
kOmega = 13.5; // in units of kcal/mol |
| 37 |
return; |
| 38 |
} |
| 39 |
|
| 40 |
springs.getline(inLine,999,'\n'); |
| 41 |
springs.getline(inLine,999,'\n'); |
| 42 |
token = strtok(inLine,jolt); |
| 43 |
token = strtok(NULL,jolt); |
| 44 |
strcpy(inValue,token); |
| 45 |
kDist = (atof(inValue)); |
| 46 |
springs.getline(inLine,999,'\n'); |
| 47 |
token = strtok(inLine,jolt); |
| 48 |
token = strtok(NULL,jolt); |
| 49 |
strcpy(inValue,token); |
| 50 |
kTheta = (atof(inValue)); |
| 51 |
springs.getline(inLine,999,'\n'); |
| 52 |
token = strtok(inLine,jolt); |
| 53 |
token = strtok(NULL,jolt); |
| 54 |
strcpy(inValue,token); |
| 55 |
kOmega = (atof(inValue)); |
| 56 |
springs.close(); |
| 57 |
|
| 58 |
cout << "Spring Constants: " << kDist << "\t" << kTheta << "\t" << kOmega << "\n"; |
| 59 |
} |
| 60 |
|
| 61 |
Restraints::~Restraints(){ |
| 62 |
} |
| 63 |
|
| 64 |
void Restraints::Calc_rVal(double position[3], int currentMol){ |
| 65 |
delRx = position[0] - cofmPosX[currentMol]; |
| 66 |
delRy = position[1] - cofmPosY[currentMol]; |
| 67 |
delRz = position[2] - cofmPosZ[currentMol]; |
| 68 |
|
| 69 |
return; |
| 70 |
} |
| 71 |
|
| 72 |
void Restraints::Calc_thetaVal(double matrix[3][3], int currentMol){ |
| 73 |
uTx = matrix[2][0]; |
| 74 |
uTy = matrix[2][1]; |
| 75 |
uTz = matrix[2][2]; |
| 76 |
|
| 77 |
normalize = sqrt(uTx*uTx + uTy*uTy + uTz*uTz); |
| 78 |
uTx = uTx/normalize; |
| 79 |
uTy = uTy/normalize; |
| 80 |
uTz = uTz/normalize; |
| 81 |
|
| 82 |
// Theta is the dot product of the reference and new z-axes |
| 83 |
theta = acos(uTx*uX0[currentMol]+uTy*uY0[currentMol]+uTz*uZ0[currentMol]); |
| 84 |
|
| 85 |
return; |
| 86 |
} |
| 87 |
|
| 88 |
void Restraints::Calc_body_thetaVal(double matrix[3][3], int currentMol){ |
| 89 |
ub0x = matrix[0][0]*uX0[currentMol] + matrix[0][1]*uY0[currentMol] |
| 90 |
+ matrix[0][2]*uZ0[currentMol]; |
| 91 |
ub0y = matrix[1][0]*uX0[currentMol] + matrix[1][1]*uY0[currentMol] |
| 92 |
+ matrix[1][2]*uZ0[currentMol]; |
| 93 |
ub0z = matrix[2][0]*uX0[currentMol] + matrix[2][1]*uY0[currentMol] |
| 94 |
+ matrix[2][2]*uZ0[currentMol]; |
| 95 |
|
| 96 |
normalize = sqrt(ub0x*ub0x + ub0y*ub0y + ub0z*ub0z); |
| 97 |
ub0x = ub0x/normalize; |
| 98 |
ub0y = ub0y/normalize; |
| 99 |
ub0z = ub0z/normalize; |
| 100 |
|
| 101 |
// Theta is the dot product of the reference and new z-axes |
| 102 |
theta = acos(ub0z); |
| 103 |
|
| 104 |
return; |
| 105 |
} |
| 106 |
|
| 107 |
void Restraints::Calc_omegaVal(double matrix[3][3], int currentMol){ |
| 108 |
double dot; |
| 109 |
|
| 110 |
uTx = matrix[2][0]; |
| 111 |
uTy = matrix[2][1]; |
| 112 |
uTz = matrix[2][2]; |
| 113 |
vTx = matrix[1][0]; |
| 114 |
vTy = matrix[1][1]; |
| 115 |
vTz = matrix[1][2]; |
| 116 |
|
| 117 |
normalize = sqrt(uTx*uTx + uTy*uTy + uTz*uTz); |
| 118 |
uTx = uTx/normalize; |
| 119 |
uTy = uTy/normalize; |
| 120 |
uTz = uTz/normalize; |
| 121 |
|
| 122 |
normalize = sqrt(vTx*vTx + vTy*vTy + vTz*vTz); |
| 123 |
vTx = vTx/normalize; |
| 124 |
vTy = vTy/normalize; |
| 125 |
vTz = vTz/normalize; |
| 126 |
|
| 127 |
dot = uTx * vX0[currentMol] + uTy * vY0[currentMol] + uTz * vZ0[currentMol]; |
| 128 |
|
| 129 |
// Find the original y-axis vector projection on the current |
| 130 |
// space-fixed xy-plane |
| 131 |
vProj0[0] = vX0[currentMol] - dot * uTx; |
| 132 |
vProj0[1] = vY0[currentMol] - dot * uTy; |
| 133 |
vProj0[2] = vZ0[currentMol] - dot * uTz; |
| 134 |
|
| 135 |
// Convert the projection to a unit vector |
| 136 |
vProjDist = sqrt(vProj0[0]*vProj0[0] + vProj0[1]*vProj0[1] |
| 137 |
+ vProj0[2]*vProj0[2]); |
| 138 |
vProj0[0] = vProj0[0]/vProjDist; |
| 139 |
vProj0[1] = vProj0[1]/vProjDist; |
| 140 |
vProj0[2] = vProj0[2]/vProjDist; |
| 141 |
|
| 142 |
// Omega is the dot product of the new y-axis and the projection |
| 143 |
// of the reference y-axis on the current xy-plane |
| 144 |
omega = acos(vTx*vProj0[0] + vTy*vProj0[1] + vTz*vProj0[2]); |
| 145 |
|
| 146 |
return; |
| 147 |
} |
| 148 |
|
| 149 |
void Restraints::Calc_body_omegaVal(double matrix[3][3], int currentMol){ |
| 150 |
double zRotator[3][3]; |
| 151 |
double tempOmega; |
| 152 |
double wholeTwoPis; |
| 153 |
// Use the omega accumulated from the rotation propagation |
| 154 |
omega = zAngle[currentMol]; |
| 155 |
|
| 156 |
// translate the omega into a range between -PI and PI |
| 157 |
if (omega < -PI){ |
| 158 |
tempOmega = omega / -TWO_PI; |
| 159 |
wholeTwoPis = floor(tempOmega); |
| 160 |
tempOmega = omega + TWO_PI*wholeTwoPis; |
| 161 |
if (tempOmega < -PI) |
| 162 |
omega = tempOmega + TWO_PI; |
| 163 |
else |
| 164 |
omega = tempOmega; |
| 165 |
} |
| 166 |
if (omega > PI){ |
| 167 |
tempOmega = omega / TWO_PI; |
| 168 |
wholeTwoPis = floor(tempOmega); |
| 169 |
tempOmega = omega - TWO_PI*wholeTwoPis; |
| 170 |
if (tempOmega > PI) |
| 171 |
omega = tempOmega - TWO_PI; |
| 172 |
else |
| 173 |
omega = tempOmega; |
| 174 |
} |
| 175 |
|
| 176 |
vb0x = sin(omega); |
| 177 |
vb0y = cos(omega); |
| 178 |
vb0z = 0.0; |
| 179 |
|
| 180 |
normalize = sqrt(vb0x*vb0x + vb0y*vb0y + vb0z*vb0z); |
| 181 |
vb0x = vb0x/normalize; |
| 182 |
vb0y = vb0y/normalize; |
| 183 |
vb0z = vb0z/normalize; |
| 184 |
|
| 185 |
return; |
| 186 |
} |
| 187 |
|
| 188 |
double Restraints::Calc_Restraint_Forces(vector<StuntDouble*> vecParticles){ |
| 189 |
double pos[3]; |
| 190 |
double A[3][3]; |
| 191 |
double tolerance; |
| 192 |
double tempPotent; |
| 193 |
double factor; |
| 194 |
double spaceTrq[3]; |
| 195 |
|
| 196 |
// atoms = atomPoint; |
| 197 |
|
| 198 |
// kDist = 6; // spring constant in units of kcal/(mol*ang^2) |
| 199 |
// kTheta = 7.5; // in units of kcal/mol |
| 200 |
// kOmega = 13.5; // in units of kcal/mol |
| 201 |
|
| 202 |
tolerance = 5.72957795131e-7; |
| 203 |
|
| 204 |
harmPotent = 0.0; // zero out the global harmonic potential variable |
| 205 |
|
| 206 |
factor = 1 - pow(lambdaValue, lambdaK); |
| 207 |
|
| 208 |
for (i=0; i<vecParticles.size(); i++){ |
| 209 |
if (vecParticles[i]->isDirectional()){ |
| 210 |
vecParticles[i]->getPos(pos); |
| 211 |
vecParticles[i]->getA(A); |
| 212 |
Calc_rVal( pos, i ); |
| 213 |
Calc_body_thetaVal( A, i ); |
| 214 |
Calc_body_omegaVal( A, i ); |
| 215 |
|
| 216 |
if (omega > PI || omega < -PI) |
| 217 |
cout << "oops... " << omega << "\n"; |
| 218 |
|
| 219 |
// first we calculate the derivatives |
| 220 |
dVdrx = -kDist*delRx; |
| 221 |
dVdry = -kDist*delRy; |
| 222 |
dVdrz = -kDist*delRz; |
| 223 |
|
| 224 |
// uTx... and vTx... are the body-fixed z and y unit vectors |
| 225 |
uTx = 0.0; |
| 226 |
uTy = 0.0; |
| 227 |
uTz = 1.0; |
| 228 |
vTx = 0.0; |
| 229 |
vTy = 1.0; |
| 230 |
vTz = 0.0; |
| 231 |
|
| 232 |
dVdux = 0; |
| 233 |
dVduy = 0; |
| 234 |
dVduz = 0; |
| 235 |
dVdvx = 0; |
| 236 |
dVdvy = 0; |
| 237 |
dVdvz = 0; |
| 238 |
|
| 239 |
if (fabs(theta) > tolerance) { |
| 240 |
dVdux = -(kTheta*theta/sin(theta))*ub0x; |
| 241 |
dVduy = -(kTheta*theta/sin(theta))*ub0y; |
| 242 |
dVduz = -(kTheta*theta/sin(theta))*ub0z; |
| 243 |
} |
| 244 |
|
| 245 |
if (fabs(omega) > tolerance) { |
| 246 |
dVdvx = -(kOmega*omega/sin(omega))*vb0x; |
| 247 |
dVdvy = -(kOmega*omega/sin(omega))*vb0y; |
| 248 |
dVdvz = -(kOmega*omega/sin(omega))*vb0z; |
| 249 |
} |
| 250 |
|
| 251 |
// next we calculate the restraint forces and torques |
| 252 |
restraintFrc[0] = dVdrx; |
| 253 |
restraintFrc[1] = dVdry; |
| 254 |
restraintFrc[2] = dVdrz; |
| 255 |
tempPotent = 0.5*kDist*(delRx*delRx + delRy*delRy + delRz*delRz); |
| 256 |
|
| 257 |
restraintTrq[0] = 0.0; |
| 258 |
restraintTrq[1] = 0.0; |
| 259 |
restraintTrq[2] = 0.0; |
| 260 |
|
| 261 |
if (fabs(omega) > tolerance) { |
| 262 |
restraintTrq[0] += 0.0; |
| 263 |
restraintTrq[1] += 0.0; |
| 264 |
restraintTrq[2] += vTy*dVdvx; |
| 265 |
tempPotent += 0.5*(kOmega*omega*omega); |
| 266 |
} |
| 267 |
if (fabs(theta) > tolerance) { |
| 268 |
restraintTrq[0] += (uTz*dVduy); |
| 269 |
restraintTrq[1] += -(uTz*dVdux); |
| 270 |
restraintTrq[2] += 0.0; |
| 271 |
tempPotent += 0.5*(kTheta*theta*theta); |
| 272 |
} |
| 273 |
|
| 274 |
for (j = 0; j < 3; j++) { |
| 275 |
restraintFrc[j] *= factor; |
| 276 |
restraintTrq[j] *= factor; |
| 277 |
} |
| 278 |
|
| 279 |
harmPotent += tempPotent; |
| 280 |
|
| 281 |
// now we need to convert from body-fixed torques to space-fixed torques |
| 282 |
spaceTrq[0] = A[0][0]*restraintTrq[0] + A[1][0]*restraintTrq[1] |
| 283 |
+ A[2][0]*restraintTrq[2]; |
| 284 |
spaceTrq[1] = A[0][1]*restraintTrq[0] + A[1][1]*restraintTrq[1] |
| 285 |
+ A[2][1]*restraintTrq[2]; |
| 286 |
spaceTrq[2] = A[0][2]*restraintTrq[0] + A[1][2]*restraintTrq[1] |
| 287 |
+ A[2][2]*restraintTrq[2]; |
| 288 |
|
| 289 |
// now it's time to pass these temporary forces and torques |
| 290 |
// to the total forces and torques |
| 291 |
vecParticles[i]->addFrc(restraintFrc); |
| 292 |
vecParticles[i]->addTrq(spaceTrq); |
| 293 |
} |
| 294 |
} |
| 295 |
|
| 296 |
// and we can return the appropriately scaled potential energy |
| 297 |
tempPotent = harmPotent * factor; |
| 298 |
return tempPotent; |
| 299 |
} |
| 300 |
|
| 301 |
void Restraints::Store_Init_Info(){ |
| 302 |
double pos[3]; |
| 303 |
double A[3][3]; |
| 304 |
double RfromQ[3][3]; |
| 305 |
double quat0, quat1, quat2, quat3; |
| 306 |
double dot; |
| 307 |
// char *token; |
| 308 |
// char fileName[200]; |
| 309 |
// char angleName[200]; |
| 310 |
// char inLine[1000]; |
| 311 |
// char inValue[200]; |
| 312 |
const char *delimit = " \t\n;,"; |
| 313 |
|
| 314 |
//open the idealCrystal.in file and zAngle.ang file |
| 315 |
strcpy(fileName, "idealCrystal.in"); |
| 316 |
strcpy(angleName, "zAngle.ang"); |
| 317 |
|
| 318 |
ifstream crystalIn(fileName); |
| 319 |
ifstream angleIn(angleName); |
| 320 |
|
| 321 |
if (!crystalIn) { |
| 322 |
cout << "Unable to open idealCrystal.in for reading.\n"; |
| 323 |
return; |
| 324 |
} |
| 325 |
|
| 326 |
if (!angleIn) { |
| 327 |
cout << "Unable to open zAngle.ang for reading.\n"; |
| 328 |
cout << "The omega values are all assumed to be zero.\n"; |
| 329 |
} |
| 330 |
|
| 331 |
// A rather specific reader for OOPSE .eor files... |
| 332 |
// Let's read in the perfect crystal file |
| 333 |
crystalIn.getline(inLine,999,'\n'); |
| 334 |
crystalIn.getline(inLine,999,'\n'); |
| 335 |
|
| 336 |
for (i=0; i<nMol; i++) { |
| 337 |
crystalIn.getline(inLine,999,'\n'); |
| 338 |
token = strtok(inLine,delimit); |
| 339 |
token = strtok(NULL,delimit); |
| 340 |
strcpy(inValue,token); |
| 341 |
cofmPosX.push_back(atof(inValue)); |
| 342 |
token = strtok(NULL,delimit); |
| 343 |
strcpy(inValue,token); |
| 344 |
cofmPosY.push_back(atof(inValue)); |
| 345 |
token = strtok(NULL,delimit); |
| 346 |
strcpy(inValue,token); |
| 347 |
cofmPosZ.push_back(atof(inValue)); |
| 348 |
token = strtok(NULL,delimit); |
| 349 |
token = strtok(NULL,delimit); |
| 350 |
token = strtok(NULL,delimit); |
| 351 |
token = strtok(NULL,delimit); |
| 352 |
strcpy(inValue,token); |
| 353 |
quat0 = atof(inValue); |
| 354 |
token = strtok(NULL,delimit); |
| 355 |
strcpy(inValue,token); |
| 356 |
quat1 = atof(inValue); |
| 357 |
token = strtok(NULL,delimit); |
| 358 |
strcpy(inValue,token); |
| 359 |
quat2 = atof(inValue); |
| 360 |
token = strtok(NULL,delimit); |
| 361 |
strcpy(inValue,token); |
| 362 |
quat3 = atof(inValue); |
| 363 |
|
| 364 |
// now build the rotation matrix and find the unit vectors |
| 365 |
RfromQ[0][0] = quat0*quat0 + quat1*quat1 - quat2*quat2 - quat3*quat3; |
| 366 |
RfromQ[0][1] = 2*(quat1*quat2 + quat0*quat3); |
| 367 |
RfromQ[0][2] = 2*(quat1*quat3 - quat0*quat2); |
| 368 |
RfromQ[1][0] = 2*(quat1*quat2 - quat0*quat3); |
| 369 |
RfromQ[1][1] = quat0*quat0 - quat1*quat1 + quat2*quat2 - quat3*quat3; |
| 370 |
RfromQ[1][2] = 2*(quat2*quat3 + quat0*quat1); |
| 371 |
RfromQ[2][0] = 2*(quat1*quat3 + quat0*quat2); |
| 372 |
RfromQ[2][1] = 2*(quat2*quat3 - quat0*quat1); |
| 373 |
RfromQ[2][2] = quat0*quat0 - quat1*quat1 - quat2*quat2 + quat3*quat3; |
| 374 |
|
| 375 |
normalize = sqrt(RfromQ[2][0]*RfromQ[2][0] + RfromQ[2][1]*RfromQ[2][1] |
| 376 |
+ RfromQ[2][2]*RfromQ[2][2]); |
| 377 |
uX0.push_back(RfromQ[2][0]/normalize); |
| 378 |
uY0.push_back(RfromQ[2][1]/normalize); |
| 379 |
uZ0.push_back(RfromQ[2][2]/normalize); |
| 380 |
|
| 381 |
normalize = sqrt(RfromQ[1][0]*RfromQ[1][0] + RfromQ[1][1]*RfromQ[1][1] |
| 382 |
+ RfromQ[1][2]*RfromQ[1][2]); |
| 383 |
vX0.push_back(RfromQ[1][0]/normalize); |
| 384 |
vY0.push_back(RfromQ[1][1]/normalize); |
| 385 |
vZ0.push_back(RfromQ[1][2]/normalize); |
| 386 |
} |
| 387 |
|
| 388 |
// now we can read in the zAngle.ang file |
| 389 |
if (angleIn){ |
| 390 |
angleIn.getline(inLine,999,'\n'); |
| 391 |
for (i=0; i<nMol; i++) { |
| 392 |
angleIn.getline(inLine,999,'\n'); |
| 393 |
token = strtok(inLine,delimit); |
| 394 |
strcpy(inValue,token); |
| 395 |
zAngle[i] = (atof(inValue)); |
| 396 |
} |
| 397 |
} |
| 398 |
|
| 399 |
return; |
| 400 |
} |
| 401 |
|
| 402 |
void Restraints::Determine_Lambda(){ |
| 403 |
// double tempEps; |
| 404 |
|
| 405 |
// atoms = entry_plug->atoms; |
| 406 |
|
| 407 |
// if (!strcmp(atoms[0]->getType(),"SSD") || |
| 408 |
// !strcmp(atoms[0]->getType(),"SSD_E") || |
| 409 |
// !strcmp(atoms[0]->getType(),"SSD_RF") || |
| 410 |
// !strcmp(atoms[0]->getType(),"SSD1")){ |
| 411 |
|
| 412 |
// tempEps = atoms[0]->getEpsilon(); |
| 413 |
// scaleLam = 1.0 - (tempEps/0.152); |
| 414 |
// } |
| 415 |
// else if (!strcmp(atoms[0]->getType(),"O_TIP3P")){ |
| 416 |
// tempEps = atoms[0]->getEpsilon(); |
| 417 |
// scaleLam = 1.0 - (tempEps/0.1521); |
| 418 |
// } |
| 419 |
// else if (!strcmp(atoms[0]->getType(),"O_TIP4P")){ |
| 420 |
// tempEps = atoms[0]->getEpsilon(); |
| 421 |
// scaleLam = 1.0 - (tempEps/0.1550); |
| 422 |
// } |
| 423 |
// else if (!strcmp(atoms[0]->getType(),"O_TIP5P")){ |
| 424 |
// tempEps = atoms[0]->getEpsilon(); |
| 425 |
// scaleLam = 1.0 - (tempEps/0.16); |
| 426 |
// } |
| 427 |
// else if (!strcmp(atoms[0]->getType(),"O_SPCE")){ |
| 428 |
// tempEps = atoms[0]->getEpsilon(); |
| 429 |
// scaleLam = 1.0 - (tempEps/0.15532); |
| 430 |
// } |
| 431 |
// else |
| 432 |
// sprintf( painCave.errMsg, |
| 433 |
// "Error in setting the lambda scale: Restraints\n" ); |
| 434 |
|
| 435 |
// if (fabs(scaleLam < 1e-9)) |
| 436 |
// scaleLam = 0.0; |
| 437 |
// cout << "The scaleLam is " << scaleLam << "\n"; |
| 438 |
} |
| 439 |
|
| 440 |
void Restraints::Write_zAngle_File(){ |
| 441 |
|
| 442 |
char zOutName[200]; |
| 443 |
|
| 444 |
strcpy(zOutName,"zAngle.ang"); |
| 445 |
|
| 446 |
ofstream angleOut(zOutName); |
| 447 |
angleOut << "This file contains the omega values for the .eor file\n"; |
| 448 |
for (i=0; i<nMol; i++) |
| 449 |
angleOut << zAngle[i] << "\n"; |
| 450 |
|
| 451 |
return; |
| 452 |
} |
| 453 |
|
| 454 |
double Restraints::getVharm(){ |
| 455 |
return harmPotent; |
| 456 |
} |
| 457 |
|