| 1 | 
#include <iostream> | 
| 2 | 
#include <stdlib.h> | 
| 3 | 
#include <cstdio> | 
| 4 | 
#include <fstream> | 
| 5 | 
#include <iomanip> | 
| 6 | 
#include <string> | 
| 7 | 
#include <cstring> | 
| 8 | 
#include <math.h> | 
| 9 | 
 | 
| 10 | 
using namespace std; | 
| 11 | 
 | 
| 12 | 
#include "Restraints.hpp" | 
| 13 | 
#include "SimInfo.hpp" | 
| 14 | 
#include "simError.h" | 
| 15 | 
 | 
| 16 | 
#define PI 3.14159265359 | 
| 17 | 
#define TWO_PI 6.28318530718 | 
| 18 | 
 | 
| 19 | 
Restraints::Restraints(int nMolInfo, double lambdaVal, double lambdaExp){ | 
| 20 | 
  nMol = nMolInfo; | 
| 21 | 
  lambdaValue = lambdaVal; | 
| 22 | 
  lambdaK = lambdaExp; | 
| 23 | 
 | 
| 24 | 
  const char *jolt = " \t\n;,"; | 
| 25 | 
 | 
| 26 | 
  strcpy(springName, "HarmSpringConsts.txt"); | 
| 27 | 
 | 
| 28 | 
  ifstream springs(springName); | 
| 29 | 
 | 
| 30 | 
  if (!springs) {  | 
| 31 | 
    cout << "Unable to open HarmSpringConsts.txt for reading.\n"; | 
| 32 | 
 | 
| 33 | 
    // load place holder spring constants | 
| 34 | 
    kDist  = 6;  // spring constant in units of kcal/(mol*ang^2) | 
| 35 | 
    kTheta = 7.5;   // in units of kcal/mol | 
| 36 | 
    kOmega = 13.5;   // in units of kcal/mol | 
| 37 | 
    return; | 
| 38 | 
  } | 
| 39 | 
 | 
| 40 | 
  springs.getline(inLine,999,'\n'); | 
| 41 | 
  springs.getline(inLine,999,'\n'); | 
| 42 | 
  token = strtok(inLine,jolt); | 
| 43 | 
  token = strtok(NULL,jolt); | 
| 44 | 
  strcpy(inValue,token); | 
| 45 | 
  kDist = (atof(inValue)); | 
| 46 | 
  springs.getline(inLine,999,'\n'); | 
| 47 | 
  token = strtok(inLine,jolt); | 
| 48 | 
  token = strtok(NULL,jolt); | 
| 49 | 
  strcpy(inValue,token); | 
| 50 | 
  kTheta = (atof(inValue)); | 
| 51 | 
  springs.getline(inLine,999,'\n'); | 
| 52 | 
  token = strtok(inLine,jolt); | 
| 53 | 
  token = strtok(NULL,jolt); | 
| 54 | 
  strcpy(inValue,token); | 
| 55 | 
  kOmega = (atof(inValue)); | 
| 56 | 
  springs.close(); | 
| 57 | 
 | 
| 58 | 
  cout << "Spring Constants: " << kDist << "\t" << kTheta << "\t" << kOmega << "\n"; | 
| 59 | 
} | 
| 60 | 
 | 
| 61 | 
Restraints::~Restraints(){ | 
| 62 | 
} | 
| 63 | 
 | 
| 64 | 
void Restraints::Calc_rVal(double position[3], int currentMol){ | 
| 65 | 
  delRx = position[0] - cofmPosX[currentMol]; | 
| 66 | 
  delRy = position[1] - cofmPosY[currentMol]; | 
| 67 | 
  delRz = position[2] - cofmPosZ[currentMol]; | 
| 68 | 
 | 
| 69 | 
  return; | 
| 70 | 
} | 
| 71 | 
 | 
| 72 | 
void Restraints::Calc_thetaVal(double matrix[3][3], int currentMol){ | 
| 73 | 
  uTx = matrix[2][0]; | 
| 74 | 
  uTy = matrix[2][1]; | 
| 75 | 
  uTz = matrix[2][2]; | 
| 76 | 
 | 
| 77 | 
  normalize = sqrt(uTx*uTx + uTy*uTy + uTz*uTz); | 
| 78 | 
  uTx = uTx/normalize; | 
| 79 | 
  uTy = uTy/normalize; | 
| 80 | 
  uTz = uTz/normalize; | 
| 81 | 
 | 
| 82 | 
  // Theta is the dot product of the reference and new z-axes | 
| 83 | 
  theta = acos(uTx*uX0[currentMol]+uTy*uY0[currentMol]+uTz*uZ0[currentMol]); | 
| 84 | 
 | 
| 85 | 
  return; | 
| 86 | 
} | 
| 87 | 
 | 
| 88 | 
void Restraints::Calc_body_thetaVal(double matrix[3][3], int currentMol){ | 
| 89 | 
  ub0x = matrix[0][0]*uX0[currentMol] + matrix[0][1]*uY0[currentMol] | 
| 90 | 
    + matrix[0][2]*uZ0[currentMol]; | 
| 91 | 
  ub0y = matrix[1][0]*uX0[currentMol] + matrix[1][1]*uY0[currentMol] | 
| 92 | 
    + matrix[1][2]*uZ0[currentMol]; | 
| 93 | 
  ub0z = matrix[2][0]*uX0[currentMol] + matrix[2][1]*uY0[currentMol] | 
| 94 | 
    + matrix[2][2]*uZ0[currentMol]; | 
| 95 | 
 | 
| 96 | 
  normalize = sqrt(ub0x*ub0x + ub0y*ub0y + ub0z*ub0z); | 
| 97 | 
  ub0x = ub0x/normalize; | 
| 98 | 
  ub0y = ub0y/normalize; | 
| 99 | 
  ub0z = ub0z/normalize; | 
| 100 | 
 | 
| 101 | 
  // Theta is the dot product of the reference and new z-axes | 
| 102 | 
  theta = acos(ub0z); | 
| 103 | 
 | 
| 104 | 
  return; | 
| 105 | 
} | 
| 106 | 
 | 
| 107 | 
void Restraints::Calc_omegaVal(double matrix[3][3], int currentMol){ | 
| 108 | 
  double dot; | 
| 109 | 
 | 
| 110 | 
  uTx = matrix[2][0]; | 
| 111 | 
  uTy = matrix[2][1]; | 
| 112 | 
  uTz = matrix[2][2]; | 
| 113 | 
  vTx = matrix[1][0]; | 
| 114 | 
  vTy = matrix[1][1]; | 
| 115 | 
  vTz = matrix[1][2]; | 
| 116 | 
 | 
| 117 | 
  normalize = sqrt(uTx*uTx + uTy*uTy + uTz*uTz); | 
| 118 | 
  uTx = uTx/normalize; | 
| 119 | 
  uTy = uTy/normalize; | 
| 120 | 
  uTz = uTz/normalize; | 
| 121 | 
 | 
| 122 | 
  normalize = sqrt(vTx*vTx + vTy*vTy + vTz*vTz); | 
| 123 | 
  vTx = vTx/normalize; | 
| 124 | 
  vTy = vTy/normalize; | 
| 125 | 
  vTz = vTz/normalize; | 
| 126 | 
 | 
| 127 | 
  dot = uTx * vX0[currentMol] + uTy * vY0[currentMol] + uTz * vZ0[currentMol]; | 
| 128 | 
   | 
| 129 | 
  // Find the original y-axis vector projection on the current  | 
| 130 | 
  // space-fixed xy-plane | 
| 131 | 
  vProj0[0] = vX0[currentMol] - dot * uTx; | 
| 132 | 
  vProj0[1] = vY0[currentMol] - dot * uTy; | 
| 133 | 
  vProj0[2] = vZ0[currentMol] - dot * uTz; | 
| 134 | 
 | 
| 135 | 
  // Convert the projection to a unit vector | 
| 136 | 
  vProjDist = sqrt(vProj0[0]*vProj0[0] + vProj0[1]*vProj0[1]  | 
| 137 | 
                   + vProj0[2]*vProj0[2]); | 
| 138 | 
  vProj0[0] = vProj0[0]/vProjDist; | 
| 139 | 
  vProj0[1] = vProj0[1]/vProjDist; | 
| 140 | 
  vProj0[2] = vProj0[2]/vProjDist; | 
| 141 | 
 | 
| 142 | 
  // Omega is the dot product of the new y-axis and the projection | 
| 143 | 
  // of the reference y-axis on the current xy-plane | 
| 144 | 
  omega = acos(vTx*vProj0[0] + vTy*vProj0[1] + vTz*vProj0[2]); | 
| 145 | 
 | 
| 146 | 
  return; | 
| 147 | 
} | 
| 148 | 
 | 
| 149 | 
void Restraints::Calc_body_omegaVal(double matrix[3][3], int currentMol){ | 
| 150 | 
  double zRotator[3][3]; | 
| 151 | 
  double tempOmega; | 
| 152 | 
  double wholeTwoPis; | 
| 153 | 
  // Use the omega accumulated from the rotation propagation | 
| 154 | 
  omega = zAngle[currentMol]; | 
| 155 | 
 | 
| 156 | 
  // translate the omega into a range between -PI and PI | 
| 157 | 
  if (omega < -PI){ | 
| 158 | 
    tempOmega = omega / -TWO_PI; | 
| 159 | 
    wholeTwoPis = floor(tempOmega); | 
| 160 | 
    tempOmega = omega + TWO_PI*wholeTwoPis; | 
| 161 | 
    if (tempOmega < -PI) | 
| 162 | 
      omega = tempOmega + TWO_PI; | 
| 163 | 
    else | 
| 164 | 
      omega = tempOmega; | 
| 165 | 
  } | 
| 166 | 
  if (omega > PI){ | 
| 167 | 
    tempOmega = omega / TWO_PI; | 
| 168 | 
    wholeTwoPis = floor(tempOmega); | 
| 169 | 
    tempOmega = omega - TWO_PI*wholeTwoPis; | 
| 170 | 
    if (tempOmega > PI) | 
| 171 | 
      omega = tempOmega - TWO_PI;    | 
| 172 | 
    else | 
| 173 | 
      omega = tempOmega; | 
| 174 | 
  } | 
| 175 | 
 | 
| 176 | 
  vb0x = sin(omega); | 
| 177 | 
  vb0y = cos(omega); | 
| 178 | 
  vb0z = 0.0; | 
| 179 | 
 | 
| 180 | 
  normalize = sqrt(vb0x*vb0x + vb0y*vb0y + vb0z*vb0z); | 
| 181 | 
  vb0x = vb0x/normalize; | 
| 182 | 
  vb0y = vb0y/normalize; | 
| 183 | 
  vb0z = vb0z/normalize; | 
| 184 | 
 | 
| 185 | 
  return; | 
| 186 | 
} | 
| 187 | 
 | 
| 188 | 
double Restraints::Calc_Restraint_Forces(vector<StuntDouble*> vecParticles){ | 
| 189 | 
  double pos[3]; | 
| 190 | 
  double A[3][3]; | 
| 191 | 
  double tolerance; | 
| 192 | 
  double tempPotent; | 
| 193 | 
  double factor; | 
| 194 | 
  double spaceTrq[3]; | 
| 195 | 
 | 
| 196 | 
  //  atoms = atomPoint; | 
| 197 | 
 | 
| 198 | 
//   kDist  = 6;  // spring constant in units of kcal/(mol*ang^2) | 
| 199 | 
//   kTheta = 7.5;   // in units of kcal/mol | 
| 200 | 
//   kOmega = 13.5;   // in units of kcal/mol | 
| 201 | 
 | 
| 202 | 
  tolerance = 5.72957795131e-7; | 
| 203 | 
 | 
| 204 | 
  harmPotent = 0.0;  // zero out the global harmonic potential variable | 
| 205 | 
 | 
| 206 | 
  factor = 1 - pow(lambdaValue, lambdaK); | 
| 207 | 
 | 
| 208 | 
  for (i=0; i<vecParticles.size(); i++){ | 
| 209 | 
    if (vecParticles[i]->isDirectional()){ | 
| 210 | 
      vecParticles[i]->getPos(pos); | 
| 211 | 
      vecParticles[i]->getA(A); | 
| 212 | 
      Calc_rVal( pos, i ); | 
| 213 | 
      Calc_body_thetaVal( A, i ); | 
| 214 | 
      Calc_body_omegaVal( A, i ); | 
| 215 | 
 | 
| 216 | 
      if (omega > PI || omega < -PI) | 
| 217 | 
        cout << "oops... " << omega << "\n"; | 
| 218 | 
 | 
| 219 | 
      // first we calculate the derivatives | 
| 220 | 
      dVdrx = -kDist*delRx; | 
| 221 | 
      dVdry = -kDist*delRy; | 
| 222 | 
      dVdrz = -kDist*delRz; | 
| 223 | 
 | 
| 224 | 
      // uTx... and vTx... are the body-fixed z and y unit vectors | 
| 225 | 
      uTx = 0.0; | 
| 226 | 
      uTy = 0.0; | 
| 227 | 
      uTz = 1.0; | 
| 228 | 
      vTx = 0.0; | 
| 229 | 
      vTy = 1.0; | 
| 230 | 
      vTz = 0.0; | 
| 231 | 
 | 
| 232 | 
      dVdux = 0; | 
| 233 | 
      dVduy = 0; | 
| 234 | 
      dVduz = 0; | 
| 235 | 
      dVdvx = 0; | 
| 236 | 
      dVdvy = 0; | 
| 237 | 
      dVdvz = 0; | 
| 238 | 
 | 
| 239 | 
      if (fabs(theta) > tolerance) { | 
| 240 | 
        dVdux = -(kTheta*theta/sin(theta))*ub0x; | 
| 241 | 
        dVduy = -(kTheta*theta/sin(theta))*ub0y; | 
| 242 | 
        dVduz = -(kTheta*theta/sin(theta))*ub0z; | 
| 243 | 
      } | 
| 244 | 
 | 
| 245 | 
      if (fabs(omega) > tolerance) { | 
| 246 | 
        dVdvx = -(kOmega*omega/sin(omega))*vb0x; | 
| 247 | 
        dVdvy = -(kOmega*omega/sin(omega))*vb0y; | 
| 248 | 
        dVdvz = -(kOmega*omega/sin(omega))*vb0z; | 
| 249 | 
      } | 
| 250 | 
 | 
| 251 | 
      // next we calculate the restraint forces and torques | 
| 252 | 
      restraintFrc[0] = dVdrx; | 
| 253 | 
      restraintFrc[1] = dVdry; | 
| 254 | 
      restraintFrc[2] = dVdrz; | 
| 255 | 
      tempPotent = 0.5*kDist*(delRx*delRx + delRy*delRy + delRz*delRz); | 
| 256 | 
 | 
| 257 | 
      restraintTrq[0] = 0.0; | 
| 258 | 
      restraintTrq[1] = 0.0; | 
| 259 | 
      restraintTrq[2] = 0.0; | 
| 260 | 
 | 
| 261 | 
      if (fabs(omega) > tolerance) { | 
| 262 | 
        restraintTrq[0] += 0.0; | 
| 263 | 
        restraintTrq[1] += 0.0; | 
| 264 | 
        restraintTrq[2] += vTy*dVdvx; | 
| 265 | 
        tempPotent += 0.5*(kOmega*omega*omega); | 
| 266 | 
      } | 
| 267 | 
      if (fabs(theta) > tolerance) { | 
| 268 | 
        restraintTrq[0] += (uTz*dVduy); | 
| 269 | 
        restraintTrq[1] += -(uTz*dVdux); | 
| 270 | 
        restraintTrq[2] += 0.0; | 
| 271 | 
        tempPotent += 0.5*(kTheta*theta*theta); | 
| 272 | 
      } | 
| 273 | 
 | 
| 274 | 
      for (j = 0; j < 3; j++) { | 
| 275 | 
        restraintFrc[j] *= factor; | 
| 276 | 
        restraintTrq[j] *= factor; | 
| 277 | 
      } | 
| 278 | 
 | 
| 279 | 
      harmPotent += tempPotent; | 
| 280 | 
 | 
| 281 | 
      // now we need to convert from body-fixed torques to space-fixed torques | 
| 282 | 
      spaceTrq[0] = A[0][0]*restraintTrq[0] + A[1][0]*restraintTrq[1]  | 
| 283 | 
        + A[2][0]*restraintTrq[2]; | 
| 284 | 
      spaceTrq[1] = A[0][1]*restraintTrq[0] + A[1][1]*restraintTrq[1]  | 
| 285 | 
        + A[2][1]*restraintTrq[2]; | 
| 286 | 
      spaceTrq[2] = A[0][2]*restraintTrq[0] + A[1][2]*restraintTrq[1]  | 
| 287 | 
        + A[2][2]*restraintTrq[2]; | 
| 288 | 
 | 
| 289 | 
      // now it's time to pass these temporary forces and torques | 
| 290 | 
      // to the total forces and torques | 
| 291 | 
      vecParticles[i]->addFrc(restraintFrc); | 
| 292 | 
      vecParticles[i]->addTrq(spaceTrq); | 
| 293 | 
    } | 
| 294 | 
  } | 
| 295 | 
 | 
| 296 | 
  // and we can return the appropriately scaled potential energy | 
| 297 | 
  tempPotent = harmPotent * factor; | 
| 298 | 
  return tempPotent; | 
| 299 | 
} | 
| 300 | 
 | 
| 301 | 
void Restraints::Store_Init_Info(){ | 
| 302 | 
  double pos[3]; | 
| 303 | 
  double A[3][3]; | 
| 304 | 
  double RfromQ[3][3]; | 
| 305 | 
  double quat0, quat1, quat2, quat3; | 
| 306 | 
  double dot; | 
| 307 | 
//   char *token; | 
| 308 | 
//   char fileName[200]; | 
| 309 | 
//   char angleName[200]; | 
| 310 | 
//   char inLine[1000]; | 
| 311 | 
//   char inValue[200]; | 
| 312 | 
  const char *delimit = " \t\n;,"; | 
| 313 | 
 | 
| 314 | 
  //open the idealCrystal.in file and zAngle.ang file | 
| 315 | 
  strcpy(fileName, "idealCrystal.in"); | 
| 316 | 
  strcpy(angleName, "zAngle.ang"); | 
| 317 | 
   | 
| 318 | 
  ifstream crystalIn(fileName); | 
| 319 | 
  ifstream angleIn(angleName); | 
| 320 | 
 | 
| 321 | 
  if (!crystalIn) {  | 
| 322 | 
    cout << "Unable to open idealCrystal.in for reading.\n"; | 
| 323 | 
    return; | 
| 324 | 
  } | 
| 325 | 
 | 
| 326 | 
  if (!angleIn) {  | 
| 327 | 
    cout << "Unable to open zAngle.ang for reading.\n"; | 
| 328 | 
    cout << "The omega values are all assumed to be zero.\n"; | 
| 329 | 
  } | 
| 330 | 
 | 
| 331 | 
  // A rather specific reader for OOPSE .eor files... | 
| 332 | 
  // Let's read in the perfect crystal file | 
| 333 | 
  crystalIn.getline(inLine,999,'\n'); | 
| 334 | 
  crystalIn.getline(inLine,999,'\n'); | 
| 335 | 
   | 
| 336 | 
  for (i=0; i<nMol; i++) { | 
| 337 | 
    crystalIn.getline(inLine,999,'\n'); | 
| 338 | 
    token = strtok(inLine,delimit); | 
| 339 | 
    token = strtok(NULL,delimit); | 
| 340 | 
    strcpy(inValue,token); | 
| 341 | 
    cofmPosX.push_back(atof(inValue)); | 
| 342 | 
    token = strtok(NULL,delimit); | 
| 343 | 
    strcpy(inValue,token); | 
| 344 | 
    cofmPosY.push_back(atof(inValue)); | 
| 345 | 
    token = strtok(NULL,delimit); | 
| 346 | 
    strcpy(inValue,token); | 
| 347 | 
    cofmPosZ.push_back(atof(inValue)); | 
| 348 | 
    token = strtok(NULL,delimit); | 
| 349 | 
    token = strtok(NULL,delimit); | 
| 350 | 
    token = strtok(NULL,delimit); | 
| 351 | 
    token = strtok(NULL,delimit); | 
| 352 | 
    strcpy(inValue,token); | 
| 353 | 
    quat0 = atof(inValue); | 
| 354 | 
    token = strtok(NULL,delimit); | 
| 355 | 
    strcpy(inValue,token); | 
| 356 | 
    quat1 = atof(inValue); | 
| 357 | 
    token = strtok(NULL,delimit); | 
| 358 | 
    strcpy(inValue,token); | 
| 359 | 
    quat2 = atof(inValue); | 
| 360 | 
    token = strtok(NULL,delimit); | 
| 361 | 
    strcpy(inValue,token); | 
| 362 | 
    quat3 = atof(inValue); | 
| 363 | 
 | 
| 364 | 
    // now build the rotation matrix and find the unit vectors | 
| 365 | 
    RfromQ[0][0] = quat0*quat0 + quat1*quat1 - quat2*quat2 - quat3*quat3; | 
| 366 | 
    RfromQ[0][1] = 2*(quat1*quat2 + quat0*quat3); | 
| 367 | 
    RfromQ[0][2] = 2*(quat1*quat3 - quat0*quat2); | 
| 368 | 
    RfromQ[1][0] = 2*(quat1*quat2 - quat0*quat3); | 
| 369 | 
    RfromQ[1][1] = quat0*quat0 - quat1*quat1 + quat2*quat2 - quat3*quat3; | 
| 370 | 
    RfromQ[1][2] = 2*(quat2*quat3 + quat0*quat1); | 
| 371 | 
    RfromQ[2][0] = 2*(quat1*quat3 + quat0*quat2); | 
| 372 | 
    RfromQ[2][1] = 2*(quat2*quat3 - quat0*quat1); | 
| 373 | 
    RfromQ[2][2] = quat0*quat0 - quat1*quat1 - quat2*quat2 + quat3*quat3; | 
| 374 | 
     | 
| 375 | 
    normalize = sqrt(RfromQ[2][0]*RfromQ[2][0] + RfromQ[2][1]*RfromQ[2][1]  | 
| 376 | 
                     + RfromQ[2][2]*RfromQ[2][2]); | 
| 377 | 
    uX0.push_back(RfromQ[2][0]/normalize); | 
| 378 | 
    uY0.push_back(RfromQ[2][1]/normalize); | 
| 379 | 
    uZ0.push_back(RfromQ[2][2]/normalize); | 
| 380 | 
 | 
| 381 | 
    normalize = sqrt(RfromQ[1][0]*RfromQ[1][0] + RfromQ[1][1]*RfromQ[1][1] | 
| 382 | 
                     + RfromQ[1][2]*RfromQ[1][2]); | 
| 383 | 
    vX0.push_back(RfromQ[1][0]/normalize); | 
| 384 | 
    vY0.push_back(RfromQ[1][1]/normalize); | 
| 385 | 
    vZ0.push_back(RfromQ[1][2]/normalize); | 
| 386 | 
  } | 
| 387 | 
 | 
| 388 | 
  // now we can read in the zAngle.ang file | 
| 389 | 
  if (angleIn){ | 
| 390 | 
    angleIn.getline(inLine,999,'\n'); | 
| 391 | 
    for (i=0; i<nMol; i++) { | 
| 392 | 
      angleIn.getline(inLine,999,'\n'); | 
| 393 | 
      token = strtok(inLine,delimit); | 
| 394 | 
      strcpy(inValue,token); | 
| 395 | 
      zAngle[i] = (atof(inValue)); | 
| 396 | 
    } | 
| 397 | 
  } | 
| 398 | 
 | 
| 399 | 
  return; | 
| 400 | 
} | 
| 401 | 
 | 
| 402 | 
void Restraints::Determine_Lambda(){ | 
| 403 | 
//   double tempEps; | 
| 404 | 
 | 
| 405 | 
//   atoms = entry_plug->atoms; | 
| 406 | 
 | 
| 407 | 
//   if (!strcmp(atoms[0]->getType(),"SSD") ||  | 
| 408 | 
//       !strcmp(atoms[0]->getType(),"SSD_E") || | 
| 409 | 
//       !strcmp(atoms[0]->getType(),"SSD_RF") ||  | 
| 410 | 
//       !strcmp(atoms[0]->getType(),"SSD1")){ | 
| 411 | 
     | 
| 412 | 
//     tempEps = atoms[0]->getEpsilon(); | 
| 413 | 
//     scaleLam = 1.0 - (tempEps/0.152);  | 
| 414 | 
//   } | 
| 415 | 
//   else if (!strcmp(atoms[0]->getType(),"O_TIP3P")){ | 
| 416 | 
//     tempEps = atoms[0]->getEpsilon(); | 
| 417 | 
//     scaleLam = 1.0 - (tempEps/0.1521);    | 
| 418 | 
//   } | 
| 419 | 
//   else if (!strcmp(atoms[0]->getType(),"O_TIP4P")){ | 
| 420 | 
//     tempEps = atoms[0]->getEpsilon(); | 
| 421 | 
//     scaleLam = 1.0 - (tempEps/0.1550);    | 
| 422 | 
//   } | 
| 423 | 
//   else if (!strcmp(atoms[0]->getType(),"O_TIP5P")){ | 
| 424 | 
//     tempEps = atoms[0]->getEpsilon(); | 
| 425 | 
//     scaleLam = 1.0 - (tempEps/0.16);    | 
| 426 | 
//   } | 
| 427 | 
//   else if (!strcmp(atoms[0]->getType(),"O_SPCE")){ | 
| 428 | 
//     tempEps = atoms[0]->getEpsilon(); | 
| 429 | 
//     scaleLam = 1.0 - (tempEps/0.15532);    | 
| 430 | 
//   } | 
| 431 | 
//   else | 
| 432 | 
//     sprintf( painCave.errMsg, | 
| 433 | 
//           "Error in setting the lambda scale: Restraints\n" ); | 
| 434 | 
 | 
| 435 | 
//   if (fabs(scaleLam < 1e-9)) | 
| 436 | 
//       scaleLam = 0.0; | 
| 437 | 
//   cout << "The scaleLam is " << scaleLam << "\n"; | 
| 438 | 
} | 
| 439 | 
 | 
| 440 | 
void Restraints::Write_zAngle_File(){ | 
| 441 | 
 | 
| 442 | 
  char zOutName[200]; | 
| 443 | 
 | 
| 444 | 
  strcpy(zOutName,"zAngle.ang"); | 
| 445 | 
 | 
| 446 | 
  ofstream angleOut(zOutName); | 
| 447 | 
  angleOut << "This file contains the omega values for the .eor file\n"; | 
| 448 | 
  for (i=0; i<nMol; i++) | 
| 449 | 
    angleOut << zAngle[i] << "\n"; | 
| 450 | 
 | 
| 451 | 
  return; | 
| 452 | 
} | 
| 453 | 
 | 
| 454 | 
double Restraints::getVharm(){ | 
| 455 | 
  return harmPotent; | 
| 456 | 
} | 
| 457 | 
 |