1 |
#include <iostream> |
2 |
#include <stdlib.h> |
3 |
#include <cstdio> |
4 |
#include <fstream> |
5 |
#include <iomanip> |
6 |
#include <string> |
7 |
#include <cstring> |
8 |
#include <math.h> |
9 |
|
10 |
using namespace std; |
11 |
|
12 |
#include "Restraints.hpp" |
13 |
#include "SimInfo.hpp" |
14 |
#include "simError.h" |
15 |
|
16 |
#define PI 3.14159265359 |
17 |
#define TWO_PI 6.28318530718 |
18 |
|
19 |
Restraints::Restraints(int nMolInfo, double lambdaVal, double lambdaExp){ |
20 |
nMol = nMolInfo; |
21 |
lambdaValue = lambdaVal; |
22 |
lambdaK = lambdaExp; |
23 |
|
24 |
const char *jolt = " \t\n;,"; |
25 |
|
26 |
strcpy(springName, "HarmSpringConsts.txt"); |
27 |
|
28 |
ifstream springs(springName); |
29 |
|
30 |
if (!springs) { |
31 |
sprintf(painCave.errMsg, |
32 |
"Restraints Warning: Unable to open HarmSpringConsts.txt for reading.\n" |
33 |
"\tDefault spring constants will be loaded. If you want to specify\n" |
34 |
"\tspring constants, include a three line HarmSpringConsts.txt file\n" |
35 |
"\tin the current directory.\n"); |
36 |
painCave.isFatal = 0; |
37 |
simError(); |
38 |
|
39 |
// load default spring constants |
40 |
kDist = 6; // spring constant in units of kcal/(mol*ang^2) |
41 |
kTheta = 7.5; // in units of kcal/mol |
42 |
kOmega = 13.5; // in units of kcal/mol |
43 |
return; |
44 |
} |
45 |
|
46 |
springs.getline(inLine,999,'\n'); |
47 |
springs.getline(inLine,999,'\n'); |
48 |
token = strtok(inLine,jolt); |
49 |
token = strtok(NULL,jolt); |
50 |
strcpy(inValue,token); |
51 |
kDist = (atof(inValue)); |
52 |
springs.getline(inLine,999,'\n'); |
53 |
token = strtok(inLine,jolt); |
54 |
token = strtok(NULL,jolt); |
55 |
strcpy(inValue,token); |
56 |
kTheta = (atof(inValue)); |
57 |
springs.getline(inLine,999,'\n'); |
58 |
token = strtok(inLine,jolt); |
59 |
token = strtok(NULL,jolt); |
60 |
strcpy(inValue,token); |
61 |
kOmega = (atof(inValue)); |
62 |
springs.close(); |
63 |
|
64 |
cout << "The Spring Constants are:\n\tkDist = " << kDist << "\n\tkTheta = " << kTheta << "\n\tkOmega = " << kOmega << "\n"; |
65 |
} |
66 |
|
67 |
Restraints::~Restraints(){ |
68 |
} |
69 |
|
70 |
void Restraints::Calc_rVal(double position[3], int currentMol){ |
71 |
delRx = position[0] - cofmPosX[currentMol]; |
72 |
delRy = position[1] - cofmPosY[currentMol]; |
73 |
delRz = position[2] - cofmPosZ[currentMol]; |
74 |
|
75 |
return; |
76 |
} |
77 |
|
78 |
void Restraints::Calc_body_thetaVal(double matrix[3][3], int currentMol){ |
79 |
ub0x = matrix[0][0]*uX0[currentMol] + matrix[0][1]*uY0[currentMol] |
80 |
+ matrix[0][2]*uZ0[currentMol]; |
81 |
ub0y = matrix[1][0]*uX0[currentMol] + matrix[1][1]*uY0[currentMol] |
82 |
+ matrix[1][2]*uZ0[currentMol]; |
83 |
ub0z = matrix[2][0]*uX0[currentMol] + matrix[2][1]*uY0[currentMol] |
84 |
+ matrix[2][2]*uZ0[currentMol]; |
85 |
|
86 |
normalize = sqrt(ub0x*ub0x + ub0y*ub0y + ub0z*ub0z); |
87 |
ub0x = ub0x/normalize; |
88 |
ub0y = ub0y/normalize; |
89 |
ub0z = ub0z/normalize; |
90 |
|
91 |
// Theta is the dot product of the reference and new z-axes |
92 |
theta = acos(ub0z); |
93 |
|
94 |
return; |
95 |
} |
96 |
|
97 |
void Restraints::Calc_body_omegaVal(double matrix[3][3], double zAngle){ |
98 |
double zRotator[3][3]; |
99 |
double tempOmega; |
100 |
double wholeTwoPis; |
101 |
// Use the omega accumulated from the rotation propagation |
102 |
omega = zAngle; |
103 |
|
104 |
// translate the omega into a range between -PI and PI |
105 |
if (omega < -PI){ |
106 |
tempOmega = omega / -TWO_PI; |
107 |
wholeTwoPis = floor(tempOmega); |
108 |
tempOmega = omega + TWO_PI*wholeTwoPis; |
109 |
if (tempOmega < -PI) |
110 |
omega = tempOmega + TWO_PI; |
111 |
else |
112 |
omega = tempOmega; |
113 |
} |
114 |
if (omega > PI){ |
115 |
tempOmega = omega / TWO_PI; |
116 |
wholeTwoPis = floor(tempOmega); |
117 |
tempOmega = omega - TWO_PI*wholeTwoPis; |
118 |
if (tempOmega > PI) |
119 |
omega = tempOmega - TWO_PI; |
120 |
else |
121 |
omega = tempOmega; |
122 |
} |
123 |
|
124 |
vb0x = sin(omega); |
125 |
vb0y = cos(omega); |
126 |
vb0z = 0.0; |
127 |
|
128 |
normalize = sqrt(vb0x*vb0x + vb0y*vb0y + vb0z*vb0z); |
129 |
vb0x = vb0x/normalize; |
130 |
vb0y = vb0y/normalize; |
131 |
vb0z = vb0z/normalize; |
132 |
|
133 |
return; |
134 |
} |
135 |
|
136 |
double Restraints::Calc_Restraint_Forces(vector<StuntDouble*> vecParticles){ |
137 |
double pos[3]; |
138 |
double A[3][3]; |
139 |
double tolerance; |
140 |
double tempPotent; |
141 |
double factor; |
142 |
double spaceTrq[3]; |
143 |
double omega; |
144 |
|
145 |
tolerance = 5.72957795131e-7; |
146 |
|
147 |
harmPotent = 0.0; // zero out the global harmonic potential variable |
148 |
|
149 |
factor = 1 - pow(lambdaValue, lambdaK); |
150 |
|
151 |
for (i=0; i<nMol; i++){ |
152 |
if (vecParticles[i]->isDirectional()){ |
153 |
vecParticles[i]->getPos(pos); |
154 |
vecParticles[i]->getA(A); |
155 |
Calc_rVal( pos, i ); |
156 |
Calc_body_thetaVal( A, i ); |
157 |
vecParticles[i]->getZangle(omega); |
158 |
Calc_body_omegaVal( A, omega ); |
159 |
|
160 |
if (omega > PI || omega < -PI) |
161 |
cout << "oops... " << omega << "\n"; |
162 |
|
163 |
// first we calculate the derivatives |
164 |
dVdrx = -kDist*delRx; |
165 |
dVdry = -kDist*delRy; |
166 |
dVdrz = -kDist*delRz; |
167 |
|
168 |
// uTx... and vTx... are the body-fixed z and y unit vectors |
169 |
uTx = 0.0; |
170 |
uTy = 0.0; |
171 |
uTz = 1.0; |
172 |
vTx = 0.0; |
173 |
vTy = 1.0; |
174 |
vTz = 0.0; |
175 |
|
176 |
dVdux = 0; |
177 |
dVduy = 0; |
178 |
dVduz = 0; |
179 |
dVdvx = 0; |
180 |
dVdvy = 0; |
181 |
dVdvz = 0; |
182 |
|
183 |
if (fabs(theta) > tolerance) { |
184 |
dVdux = -(kTheta*theta/sin(theta))*ub0x; |
185 |
dVduy = -(kTheta*theta/sin(theta))*ub0y; |
186 |
dVduz = -(kTheta*theta/sin(theta))*ub0z; |
187 |
} |
188 |
|
189 |
if (fabs(omega) > tolerance) { |
190 |
dVdvx = -(kOmega*omega/sin(omega))*vb0x; |
191 |
dVdvy = -(kOmega*omega/sin(omega))*vb0y; |
192 |
dVdvz = -(kOmega*omega/sin(omega))*vb0z; |
193 |
} |
194 |
|
195 |
// next we calculate the restraint forces and torques |
196 |
restraintFrc[0] = dVdrx; |
197 |
restraintFrc[1] = dVdry; |
198 |
restraintFrc[2] = dVdrz; |
199 |
tempPotent = 0.5*kDist*(delRx*delRx + delRy*delRy + delRz*delRz); |
200 |
|
201 |
restraintTrq[0] = 0.0; |
202 |
restraintTrq[1] = 0.0; |
203 |
restraintTrq[2] = 0.0; |
204 |
|
205 |
if (fabs(omega) > tolerance) { |
206 |
restraintTrq[0] += 0.0; |
207 |
restraintTrq[1] += 0.0; |
208 |
restraintTrq[2] += vTy*dVdvx; |
209 |
tempPotent += 0.5*(kOmega*omega*omega); |
210 |
} |
211 |
if (fabs(theta) > tolerance) { |
212 |
restraintTrq[0] += (uTz*dVduy); |
213 |
restraintTrq[1] += -(uTz*dVdux); |
214 |
restraintTrq[2] += 0.0; |
215 |
tempPotent += 0.5*(kTheta*theta*theta); |
216 |
} |
217 |
|
218 |
for (j = 0; j < 3; j++) { |
219 |
restraintFrc[j] *= factor; |
220 |
restraintTrq[j] *= factor; |
221 |
} |
222 |
|
223 |
harmPotent += tempPotent; |
224 |
|
225 |
// now we need to convert from body-fixed torques to space-fixed torques |
226 |
spaceTrq[0] = A[0][0]*restraintTrq[0] + A[1][0]*restraintTrq[1] |
227 |
+ A[2][0]*restraintTrq[2]; |
228 |
spaceTrq[1] = A[0][1]*restraintTrq[0] + A[1][1]*restraintTrq[1] |
229 |
+ A[2][1]*restraintTrq[2]; |
230 |
spaceTrq[2] = A[0][2]*restraintTrq[0] + A[1][2]*restraintTrq[1] |
231 |
+ A[2][2]*restraintTrq[2]; |
232 |
|
233 |
// now it's time to pass these temporary forces and torques |
234 |
// to the total forces and torques |
235 |
vecParticles[i]->addFrc(restraintFrc); |
236 |
vecParticles[i]->addTrq(spaceTrq); |
237 |
} |
238 |
} |
239 |
|
240 |
// and we can return the appropriately scaled potential energy |
241 |
tempPotent = harmPotent * factor; |
242 |
return tempPotent; |
243 |
} |
244 |
|
245 |
void Restraints::Store_Init_Info(vector<StuntDouble*> vecParticles){ |
246 |
double pos[3]; |
247 |
double A[3][3]; |
248 |
double RfromQ[3][3]; |
249 |
double quat0, quat1, quat2, quat3; |
250 |
double dot; |
251 |
// char *token; |
252 |
// char fileName[200]; |
253 |
// char angleName[200]; |
254 |
// char inLine[1000]; |
255 |
// char inValue[200]; |
256 |
const char *delimit = " \t\n;,"; |
257 |
|
258 |
//open the idealCrystal.in file and zAngle.ang file |
259 |
strcpy(fileName, "idealCrystal.in"); |
260 |
strcpy(angleName, "zAngle.ang"); |
261 |
|
262 |
ifstream crystalIn(fileName); |
263 |
ifstream angleIn(angleName); |
264 |
|
265 |
if (!crystalIn) { |
266 |
sprintf(painCave.errMsg, |
267 |
"Restraints Error: Unable to open idealCrystal.in for reading.\n" |
268 |
"\tMake sure a reference crystal file is in the current directory.\n"); |
269 |
painCave.isFatal = 1; |
270 |
simError(); |
271 |
|
272 |
return; |
273 |
} |
274 |
|
275 |
if (!angleIn) { |
276 |
sprintf(painCave.errMsg, |
277 |
"Restraints Warning: The lack of a zAngle.ang file is mildly\n" |
278 |
"\tunsettling... This means you arestarting from the idealCrystal.in\n" |
279 |
"\treference configuration, so the omega values will all be set to\n" |
280 |
"\tzero. If this isn't the case, you should question your results.\n"); |
281 |
painCave.isFatal = 0; |
282 |
simError(); |
283 |
} |
284 |
|
285 |
// A rather specific reader for OOPSE .eor files... |
286 |
// Let's read in the perfect crystal file |
287 |
crystalIn.getline(inLine,999,'\n'); |
288 |
crystalIn.getline(inLine,999,'\n'); |
289 |
|
290 |
for (i=0; i<nMol; i++) { |
291 |
crystalIn.getline(inLine,999,'\n'); |
292 |
token = strtok(inLine,delimit); |
293 |
token = strtok(NULL,delimit); |
294 |
strcpy(inValue,token); |
295 |
cofmPosX.push_back(atof(inValue)); |
296 |
token = strtok(NULL,delimit); |
297 |
strcpy(inValue,token); |
298 |
cofmPosY.push_back(atof(inValue)); |
299 |
token = strtok(NULL,delimit); |
300 |
strcpy(inValue,token); |
301 |
cofmPosZ.push_back(atof(inValue)); |
302 |
token = strtok(NULL,delimit); |
303 |
token = strtok(NULL,delimit); |
304 |
token = strtok(NULL,delimit); |
305 |
token = strtok(NULL,delimit); |
306 |
strcpy(inValue,token); |
307 |
quat0 = atof(inValue); |
308 |
token = strtok(NULL,delimit); |
309 |
strcpy(inValue,token); |
310 |
quat1 = atof(inValue); |
311 |
token = strtok(NULL,delimit); |
312 |
strcpy(inValue,token); |
313 |
quat2 = atof(inValue); |
314 |
token = strtok(NULL,delimit); |
315 |
strcpy(inValue,token); |
316 |
quat3 = atof(inValue); |
317 |
|
318 |
// now build the rotation matrix and find the unit vectors |
319 |
RfromQ[0][0] = quat0*quat0 + quat1*quat1 - quat2*quat2 - quat3*quat3; |
320 |
RfromQ[0][1] = 2*(quat1*quat2 + quat0*quat3); |
321 |
RfromQ[0][2] = 2*(quat1*quat3 - quat0*quat2); |
322 |
RfromQ[1][0] = 2*(quat1*quat2 - quat0*quat3); |
323 |
RfromQ[1][1] = quat0*quat0 - quat1*quat1 + quat2*quat2 - quat3*quat3; |
324 |
RfromQ[1][2] = 2*(quat2*quat3 + quat0*quat1); |
325 |
RfromQ[2][0] = 2*(quat1*quat3 + quat0*quat2); |
326 |
RfromQ[2][1] = 2*(quat2*quat3 - quat0*quat1); |
327 |
RfromQ[2][2] = quat0*quat0 - quat1*quat1 - quat2*quat2 + quat3*quat3; |
328 |
|
329 |
normalize = sqrt(RfromQ[2][0]*RfromQ[2][0] + RfromQ[2][1]*RfromQ[2][1] |
330 |
+ RfromQ[2][2]*RfromQ[2][2]); |
331 |
uX0.push_back(RfromQ[2][0]/normalize); |
332 |
uY0.push_back(RfromQ[2][1]/normalize); |
333 |
uZ0.push_back(RfromQ[2][2]/normalize); |
334 |
|
335 |
normalize = sqrt(RfromQ[1][0]*RfromQ[1][0] + RfromQ[1][1]*RfromQ[1][1] |
336 |
+ RfromQ[1][2]*RfromQ[1][2]); |
337 |
vX0.push_back(RfromQ[1][0]/normalize); |
338 |
vY0.push_back(RfromQ[1][1]/normalize); |
339 |
vZ0.push_back(RfromQ[1][2]/normalize); |
340 |
} |
341 |
|
342 |
// now we can read in the zAngle.ang file |
343 |
if (angleIn){ |
344 |
angleIn.getline(inLine,999,'\n'); |
345 |
for (i=0; i<nMol; i++) { |
346 |
angleIn.getline(inLine,999,'\n'); |
347 |
token = strtok(inLine,delimit); |
348 |
strcpy(inValue,token); |
349 |
vecParticles[i]->setZangle(atof(inValue)); |
350 |
} |
351 |
} |
352 |
|
353 |
return; |
354 |
} |
355 |
|
356 |
void Restraints::Write_zAngle_File(vector<StuntDouble*> vecParticles){ |
357 |
|
358 |
char zOutName[200]; |
359 |
|
360 |
strcpy(zOutName,"zAngle.ang"); |
361 |
|
362 |
ofstream angleOut(zOutName); |
363 |
angleOut << "This file contains the omega values for the .eor file\n"; |
364 |
for (i=0; i<nMol; i++) { |
365 |
angleOut << vecParticles[i]->getZangle() << "\n"; |
366 |
} |
367 |
return; |
368 |
} |
369 |
|
370 |
double Restraints::getVharm(){ |
371 |
return harmPotent; |
372 |
} |
373 |
|