1 |
#include <math.h> |
2 |
#include "OOPSEMinimizer.hpp" |
3 |
#include "ShakeMin.hpp" |
4 |
|
5 |
OOPSEMinimizer::OOPSEMinimizer( SimInfo *theInfo, ForceFields* the_ff , |
6 |
MinimizerParameterSet * param) |
7 |
:RealIntegrator(theInfo, the_ff), bVerbose(false), bShake(true){ |
8 |
dumpOut = NULL; |
9 |
statOut = NULL; |
10 |
|
11 |
tStats = new Thermo(info); |
12 |
|
13 |
|
14 |
paramSet = param; |
15 |
|
16 |
calcDim(); |
17 |
|
18 |
curX = getCoor(); |
19 |
curG.resize(ndim); |
20 |
|
21 |
//preMove(); |
22 |
} |
23 |
|
24 |
OOPSEMinimizer::~OOPSEMinimizer(){ |
25 |
delete tStats; |
26 |
if(dumpOut) |
27 |
delete dumpOut; |
28 |
if(statOut) |
29 |
delete statOut; |
30 |
delete paramSet; |
31 |
} |
32 |
|
33 |
void OOPSEMinimizer::calcEnergyGradient(vector<double>& x, vector<double>& grad, |
34 |
double& energy, int& status){ |
35 |
|
36 |
DirectionalAtom* dAtom; |
37 |
int index; |
38 |
double force[3]; |
39 |
double dAtomGrad[6]; |
40 |
int shakeStatus; |
41 |
|
42 |
setCoor(x); |
43 |
|
44 |
//if (nConstrained && bShake){ |
45 |
// shakeStatus = shakeR(); |
46 |
//} |
47 |
|
48 |
shakeAlgo->doShakeR(); |
49 |
|
50 |
calcForce(1, 1); |
51 |
|
52 |
//if (nConstrained && bShake){ |
53 |
// shakeStatus |= shakeF(); |
54 |
//} |
55 |
|
56 |
shakeAlgo->doShakeF(); |
57 |
|
58 |
x = getCoor(); |
59 |
|
60 |
|
61 |
index = 0; |
62 |
|
63 |
for(int i = 0; i < integrableObjects.size(); i++){ |
64 |
|
65 |
if (integrableObjects[i]->isDirectional()) { |
66 |
|
67 |
integrableObjects[i]->getGrad(dAtomGrad); |
68 |
|
69 |
//gradient is equal to -f |
70 |
grad[index++] = -dAtomGrad[0]; |
71 |
grad[index++] = -dAtomGrad[1]; |
72 |
grad[index++] = -dAtomGrad[2]; |
73 |
grad[index++] = -dAtomGrad[3]; |
74 |
grad[index++] = -dAtomGrad[4]; |
75 |
grad[index++] = -dAtomGrad[5]; |
76 |
|
77 |
} |
78 |
else{ |
79 |
integrableObjects[i]->getFrc(force); |
80 |
|
81 |
grad[index++] = -force[0]; |
82 |
grad[index++] = -force[1]; |
83 |
grad[index++] = -force[2]; |
84 |
|
85 |
} |
86 |
|
87 |
} |
88 |
|
89 |
energy = tStats->getPotential(); |
90 |
|
91 |
status = shakeStatus; |
92 |
} |
93 |
|
94 |
/** |
95 |
* |
96 |
*/ |
97 |
|
98 |
void OOPSEMinimizer::setCoor(vector<double>& x){ |
99 |
|
100 |
DirectionalAtom* dAtom; |
101 |
int index; |
102 |
double position[3]; |
103 |
double eulerAngle[3]; |
104 |
|
105 |
|
106 |
index = 0; |
107 |
|
108 |
for(int i = 0; i < integrableObjects.size(); i++){ |
109 |
|
110 |
position[0] = x[index++]; |
111 |
position[1] = x[index++]; |
112 |
position[2] = x[index++]; |
113 |
|
114 |
integrableObjects[i]->setPos(position); |
115 |
|
116 |
if (integrableObjects[i]->isDirectional()){ |
117 |
|
118 |
eulerAngle[0] = x[index++]; |
119 |
eulerAngle[1] = x[index++]; |
120 |
eulerAngle[2] = x[index++]; |
121 |
|
122 |
integrableObjects[i]->setEuler(eulerAngle[0], |
123 |
eulerAngle[1], |
124 |
eulerAngle[2]); |
125 |
|
126 |
} |
127 |
|
128 |
} |
129 |
|
130 |
} |
131 |
|
132 |
/** |
133 |
* |
134 |
*/ |
135 |
vector<double> OOPSEMinimizer::getCoor(){ |
136 |
|
137 |
DirectionalAtom* dAtom; |
138 |
int index; |
139 |
double position[3]; |
140 |
double eulerAngle[3]; |
141 |
vector<double> x; |
142 |
|
143 |
x.resize(getDim()); |
144 |
|
145 |
index = 0; |
146 |
|
147 |
for(int i = 0; i < integrableObjects.size(); i++){ |
148 |
integrableObjects[i]->getPos(position); |
149 |
|
150 |
x[index++] = position[0]; |
151 |
x[index++] = position[1]; |
152 |
x[index++] = position[2]; |
153 |
|
154 |
if (integrableObjects[i]->isDirectional()){ |
155 |
|
156 |
integrableObjects[i]->getEulerAngles(eulerAngle); |
157 |
|
158 |
x[index++] = eulerAngle[0]; |
159 |
x[index++] = eulerAngle[1]; |
160 |
x[index++] = eulerAngle[2]; |
161 |
|
162 |
} |
163 |
|
164 |
} |
165 |
|
166 |
return x; |
167 |
|
168 |
} |
169 |
|
170 |
/* |
171 |
int OOPSEMinimizer::shakeR(){ |
172 |
int i, j; |
173 |
int done; |
174 |
double posA[3], posB[3]; |
175 |
double velA[3], velB[3]; |
176 |
double pab[3]; |
177 |
double rab[3]; |
178 |
int a, b, ax, ay, az, bx, by, bz; |
179 |
double rma, rmb; |
180 |
double dx, dy, dz; |
181 |
double rpab; |
182 |
double rabsq, pabsq, rpabsq; |
183 |
double diffsq; |
184 |
double gab; |
185 |
int iteration; |
186 |
|
187 |
for (i = 0; i < nAtoms; i++){ |
188 |
moving[i] = 0; |
189 |
moved[i] = 1; |
190 |
} |
191 |
|
192 |
iteration = 0; |
193 |
done = 0; |
194 |
while (!done && (iteration < maxIteration)){ |
195 |
done = 1; |
196 |
for (i = 0; i < nConstrained; i++){ |
197 |
a = constrainedA[i]; |
198 |
b = constrainedB[i]; |
199 |
|
200 |
ax = (a * 3) + 0; |
201 |
ay = (a * 3) + 1; |
202 |
az = (a * 3) + 2; |
203 |
|
204 |
bx = (b * 3) + 0; |
205 |
by = (b * 3) + 1; |
206 |
bz = (b * 3) + 2; |
207 |
|
208 |
if (moved[a] || moved[b]){ |
209 |
atoms[a]->getPos(posA); |
210 |
atoms[b]->getPos(posB); |
211 |
|
212 |
for (j = 0; j < 3; j++) |
213 |
pab[j] = posA[j] - posB[j]; |
214 |
|
215 |
//periodic boundary condition |
216 |
|
217 |
info->wrapVector(pab); |
218 |
|
219 |
pabsq = pab[0] * pab[0] + pab[1] * pab[1] + pab[2] * pab[2]; |
220 |
|
221 |
rabsq = constrainedDsqr[i]; |
222 |
diffsq = rabsq - pabsq; |
223 |
|
224 |
// the original rattle code from alan tidesley |
225 |
if (fabs(diffsq) > (tol * rabsq * 2)){ |
226 |
rab[0] = oldPos[ax] - oldPos[bx]; |
227 |
rab[1] = oldPos[ay] - oldPos[by]; |
228 |
rab[2] = oldPos[az] - oldPos[bz]; |
229 |
|
230 |
info->wrapVector(rab); |
231 |
|
232 |
rpab = rab[0] * pab[0] + rab[1] * pab[1] + rab[2] * pab[2]; |
233 |
|
234 |
rpabsq = rpab * rpab; |
235 |
|
236 |
|
237 |
if (rpabsq < (rabsq * -diffsq)){ |
238 |
#ifdef IS_MPI |
239 |
a = atoms[a]->getGlobalIndex(); |
240 |
b = atoms[b]->getGlobalIndex(); |
241 |
#endif //is_mpi |
242 |
//cerr << "Waring: constraint failure" << endl; |
243 |
gab = sqrt(rabsq/pabsq); |
244 |
rab[0] = (posA[0] - posB[0])*gab; |
245 |
rab[1]= (posA[1] - posB[1])*gab; |
246 |
rab[2] = (posA[2] - posB[2])*gab; |
247 |
|
248 |
info->wrapVector(rab); |
249 |
|
250 |
rpab = rab[0] * pab[0] + rab[1] * pab[1] + rab[2] * pab[2]; |
251 |
|
252 |
} |
253 |
|
254 |
//rma = 1.0 / atoms[a]->getMass(); |
255 |
//rmb = 1.0 / atoms[b]->getMass(); |
256 |
rma = 1.0; |
257 |
rmb =1.0; |
258 |
|
259 |
gab = diffsq / (2.0 * (rma + rmb) * rpab); |
260 |
|
261 |
dx = rab[0] * gab; |
262 |
dy = rab[1] * gab; |
263 |
dz = rab[2] * gab; |
264 |
|
265 |
posA[0] += rma * dx; |
266 |
posA[1] += rma * dy; |
267 |
posA[2] += rma * dz; |
268 |
|
269 |
atoms[a]->setPos(posA); |
270 |
|
271 |
posB[0] -= rmb * dx; |
272 |
posB[1] -= rmb * dy; |
273 |
posB[2] -= rmb * dz; |
274 |
|
275 |
atoms[b]->setPos(posB); |
276 |
|
277 |
moving[a] = 1; |
278 |
moving[b] = 1; |
279 |
done = 0; |
280 |
} |
281 |
} |
282 |
} |
283 |
|
284 |
for (i = 0; i < nAtoms; i++){ |
285 |
moved[i] = moving[i]; |
286 |
moving[i] = 0; |
287 |
} |
288 |
|
289 |
iteration++; |
290 |
} |
291 |
|
292 |
if (!done){ |
293 |
cerr << "Waring: can not constraint within maxIteration" << endl; |
294 |
return -1; |
295 |
} |
296 |
else |
297 |
return 1; |
298 |
} |
299 |
|
300 |
|
301 |
//remove constraint force along the bond direction |
302 |
int OOPSEMinimizer::shakeF(){ |
303 |
int i, j; |
304 |
int done; |
305 |
double posA[3], posB[3]; |
306 |
double frcA[3], frcB[3]; |
307 |
double rab[3], fpab[3]; |
308 |
int a, b, ax, ay, az, bx, by, bz; |
309 |
double rma, rmb; |
310 |
double rvab; |
311 |
double gab; |
312 |
double rabsq; |
313 |
double rfab; |
314 |
int iteration; |
315 |
|
316 |
for (i = 0; i < nAtoms; i++){ |
317 |
moving[i] = 0; |
318 |
moved[i] = 1; |
319 |
} |
320 |
|
321 |
done = 0; |
322 |
iteration = 0; |
323 |
while (!done && (iteration < maxIteration)){ |
324 |
done = 1; |
325 |
|
326 |
for (i = 0; i < nConstrained; i++){ |
327 |
a = constrainedA[i]; |
328 |
b = constrainedB[i]; |
329 |
|
330 |
ax = (a * 3) + 0; |
331 |
ay = (a * 3) + 1; |
332 |
az = (a * 3) + 2; |
333 |
|
334 |
bx = (b * 3) + 0; |
335 |
by = (b * 3) + 1; |
336 |
bz = (b * 3) + 2; |
337 |
|
338 |
if (moved[a] || moved[b]){ |
339 |
|
340 |
atoms[a]->getPos(posA); |
341 |
atoms[b]->getPos(posB); |
342 |
|
343 |
for (j = 0; j < 3; j++) |
344 |
rab[j] = posA[j] - posB[j]; |
345 |
|
346 |
info->wrapVector(rab); |
347 |
|
348 |
atoms[a]->getFrc(frcA); |
349 |
atoms[b]->getFrc(frcB); |
350 |
|
351 |
//rma = 1.0 / atoms[a]->getMass(); |
352 |
//rmb = 1.0 / atoms[b]->getMass(); |
353 |
rma = 1.0; |
354 |
rmb = 1.0; |
355 |
|
356 |
|
357 |
fpab[0] = frcA[0] * rma - frcB[0] * rmb; |
358 |
fpab[1] = frcA[1] * rma - frcB[1] * rmb; |
359 |
fpab[2] = frcA[2] * rma - frcB[2] * rmb; |
360 |
|
361 |
|
362 |
gab=fpab[0] * fpab[0] + fpab[1] * fpab[1] + fpab[2] * fpab[2]; |
363 |
|
364 |
if (gab < 1.0) |
365 |
gab = 1.0; |
366 |
|
367 |
rabsq = rab[0] * rab[0] + rab[1] * rab[1] + rab[2] * rab[2]; |
368 |
rfab = rab[0] * fpab[0] + rab[1] * fpab[1] + rab[2] * fpab[2]; |
369 |
|
370 |
if (fabs(rfab) > sqrt(rabsq*gab) * 0.00001){ |
371 |
|
372 |
gab = -rfab /(rabsq*(rma + rmb)); |
373 |
|
374 |
frcA[0] = rab[0] * gab; |
375 |
frcA[1] = rab[1] * gab; |
376 |
frcA[2] = rab[2] * gab; |
377 |
|
378 |
atoms[a]->addFrc(frcA); |
379 |
|
380 |
|
381 |
frcB[0] = -rab[0] * gab; |
382 |
frcB[1] = -rab[1] * gab; |
383 |
frcB[2] = -rab[2] * gab; |
384 |
|
385 |
atoms[b]->addFrc(frcB); |
386 |
|
387 |
moving[a] = 1; |
388 |
moving[b] = 1; |
389 |
done = 0; |
390 |
} |
391 |
} |
392 |
} |
393 |
|
394 |
for (i = 0; i < nAtoms; i++){ |
395 |
moved[i] = moving[i]; |
396 |
moving[i] = 0; |
397 |
} |
398 |
|
399 |
iteration++; |
400 |
} |
401 |
|
402 |
if (!done){ |
403 |
cerr << "Waring: can not constraint within maxIteration" << endl; |
404 |
return -1; |
405 |
} |
406 |
else |
407 |
return 1; |
408 |
} |
409 |
|
410 |
*/ |
411 |
|
412 |
//calculate the value of object function |
413 |
void OOPSEMinimizer::calcF(){ |
414 |
calcEnergyGradient(curX, curG, curF, egEvalStatus); |
415 |
} |
416 |
|
417 |
void OOPSEMinimizer::calcF(vector<double>& x, double&f, int& status){ |
418 |
vector<double> tempG; |
419 |
tempG.resize(x.size()); |
420 |
|
421 |
calcEnergyGradient(x, tempG, f, status); |
422 |
} |
423 |
|
424 |
//calculate the gradient |
425 |
void OOPSEMinimizer::calcG(){ |
426 |
calcEnergyGradient(curX, curG, curF, egEvalStatus); |
427 |
} |
428 |
|
429 |
void OOPSEMinimizer::calcG(vector<double>& x, vector<double>& g, double& f, int& status){ |
430 |
calcEnergyGradient(x, g, f, status); |
431 |
} |
432 |
|
433 |
void OOPSEMinimizer::calcDim(){ |
434 |
DirectionalAtom* dAtom; |
435 |
|
436 |
ndim = 0; |
437 |
|
438 |
for(int i = 0; i < integrableObjects.size(); i++){ |
439 |
ndim += 3; |
440 |
if (integrableObjects[i]->isDirectional()) |
441 |
ndim += 3; |
442 |
} |
443 |
} |
444 |
|
445 |
void OOPSEMinimizer::setX(vector < double > & x){ |
446 |
|
447 |
if (x.size() != ndim && bVerbose){ |
448 |
//sprintf(painCave.errMsg, |
449 |
// "OOPSEMinimizer Error: dimesion of x and curX does not match\n"); |
450 |
// painCave.isFatal = 1; |
451 |
// simError(); |
452 |
} |
453 |
|
454 |
curX = x; |
455 |
} |
456 |
|
457 |
void OOPSEMinimizer::setG(vector < double > & g){ |
458 |
|
459 |
if (g.size() != ndim && bVerbose){ |
460 |
//sprintf(painCave.errMsg, |
461 |
// "OOPSEMinimizer Error: dimesion of g and curG does not match\n"); |
462 |
// painCave.isFatal = 1; |
463 |
//simError(); |
464 |
} |
465 |
|
466 |
curG = g; |
467 |
} |
468 |
|
469 |
void OOPSEMinimizer::writeOut(vector<double>& x, double iter){ |
470 |
|
471 |
setX(x); |
472 |
|
473 |
calcG(); |
474 |
|
475 |
dumpOut->writeDump(iter); |
476 |
statOut->writeStat(iter); |
477 |
} |
478 |
|
479 |
|
480 |
void OOPSEMinimizer::printMinimizerInfo(){ |
481 |
cout << "--------------------------------------------------------------------" << endl; |
482 |
cout << minimizerName << endl; |
483 |
cout << "minimization parameter set" << endl; |
484 |
cout << "function tolerance = " << paramSet->getFTol() << endl; |
485 |
cout << "gradient tolerance = " << paramSet->getGTol() << endl; |
486 |
cout << "step tolerance = "<< paramSet->getFTol() << endl; |
487 |
cout << "absolute gradient tolerance = " << endl; |
488 |
cout << "max iteration = " << paramSet->getMaxIteration() << endl; |
489 |
cout << "max line search iteration = " << paramSet->getLineSearchMaxIteration() <<endl; |
490 |
cout << "shake algorithm = " << bShake << endl; |
491 |
cout << "--------------------------------------------------------------------" << endl; |
492 |
|
493 |
} |
494 |
|
495 |
/** |
496 |
* In thoery, we need to find the minimum along the search direction |
497 |
* However, function evaluation is too expensive. |
498 |
* At the very begining of the problem, we check the search direction and make sure |
499 |
* it is a descent direction |
500 |
* we will compare the energy of two end points, |
501 |
* if the right end point has lower energy, we just take it |
502 |
* |
503 |
* |
504 |
* |
505 |
*/ |
506 |
|
507 |
int OOPSEMinimizer::doLineSearch(vector<double>& direction, double stepSize){ |
508 |
vector<double> xa; |
509 |
vector<double> xb; |
510 |
vector<double> xc; |
511 |
vector<double> ga; |
512 |
vector<double> gb; |
513 |
vector<double> gc; |
514 |
double fa; |
515 |
double fb; |
516 |
double fc; |
517 |
double a; |
518 |
double b; |
519 |
double c; |
520 |
int status; |
521 |
double initSlope; |
522 |
double slopeA; |
523 |
double slopeB; |
524 |
double slopeC; |
525 |
bool foundLower; |
526 |
int iter; |
527 |
int maxLSIter; |
528 |
double mu; |
529 |
double eta; |
530 |
double ftol; |
531 |
double lsTol; |
532 |
|
533 |
xa.resize(ndim); |
534 |
xb.resize(ndim); |
535 |
xc.resize(ndim); |
536 |
|
537 |
ga.resize(ndim); |
538 |
gb.resize(ndim); |
539 |
gc.resize(ndim); |
540 |
|
541 |
a = 0.0; |
542 |
fa = curF; |
543 |
xa = curX; |
544 |
ga = curG; |
545 |
c = a + stepSize; |
546 |
ftol = paramSet->getFTol(); |
547 |
lsTol = paramSet->getLineSearchTol(); |
548 |
|
549 |
//calculate the derivative at a = 0 |
550 |
for (size_t i = 0; i < ndim; i++) |
551 |
slopeA += curG[i]*direction[i]; |
552 |
|
553 |
initSlope = slopeA; |
554 |
|
555 |
// if going uphill, use negative gradient as searching direction |
556 |
if (slopeA > 0) { |
557 |
|
558 |
if (bVerbose){ |
559 |
cout << "LineSearch Warning: initial searching direction is not a descent searching direction, " |
560 |
<< " use negative gradient instead. Therefore, finding a smaller vaule of function " |
561 |
<< " is guaranteed" |
562 |
<< endl; |
563 |
} |
564 |
|
565 |
for (size_t i = 0; i < ndim; i++) |
566 |
direction[i] = -curG[i]; |
567 |
|
568 |
for (size_t i = 0; i < ndim; i++) |
569 |
slopeA += curG[i]*direction[i]; |
570 |
|
571 |
initSlope = slopeA; |
572 |
} |
573 |
|
574 |
// Take a trial step |
575 |
for(size_t i = 0; i < ndim; i++) |
576 |
xc[i] = curX[i] + direction[i] * c; |
577 |
|
578 |
calcG(xc, gc, fc, status); |
579 |
|
580 |
if (status < 0){ |
581 |
if (bVerbose) |
582 |
cerr << "Function Evaluation Error" << endl; |
583 |
} |
584 |
|
585 |
//calculate the derivative at c |
586 |
slopeC = 0; |
587 |
for (size_t i = 0; i < ndim; i++) |
588 |
slopeC += gc[i]*direction[i]; |
589 |
|
590 |
// found a lower point |
591 |
if (fc < fa) { |
592 |
curX = xc; |
593 |
curG = gc; |
594 |
curF = fc; |
595 |
return LS_SUCCEED; |
596 |
} |
597 |
else { |
598 |
|
599 |
if (slopeC > 0) |
600 |
stepSize *= 0.618034; |
601 |
} |
602 |
|
603 |
maxLSIter = paramSet->getLineSearchMaxIteration(); |
604 |
|
605 |
iter = 0; |
606 |
|
607 |
do { |
608 |
// Select a new trial point. |
609 |
// If the derivatives at points a & c have different sign we use cubic interpolate |
610 |
//if (slopeC > 0){ |
611 |
eta = 3 *(fa -fc) /(c - a) + slopeA + slopeC; |
612 |
mu = sqrt(eta * eta - slopeA * slopeC); |
613 |
b = a + (c - a) * (1 - (slopeC + mu - eta) /(slopeC - slopeA + 2 * mu)); |
614 |
|
615 |
if (b < lsTol){ |
616 |
if (bVerbose) |
617 |
cout << "stepSize is less than line search tolerance" << endl; |
618 |
break; |
619 |
} |
620 |
//} |
621 |
|
622 |
// Take a trial step to this new point - new coords in xb |
623 |
for(size_t i = 0; i < ndim; i++) |
624 |
xb[i] = curX[i] + direction[i] * b; |
625 |
|
626 |
//function evaluation |
627 |
calcG(xb, gb, fb, status); |
628 |
|
629 |
if (status < 0){ |
630 |
if (bVerbose) |
631 |
cerr << "Function Evaluation Error" << endl; |
632 |
} |
633 |
|
634 |
//calculate the derivative at c |
635 |
slopeB = 0; |
636 |
for (size_t i = 0; i < ndim; i++) |
637 |
slopeB += gb[i]*direction[i]; |
638 |
|
639 |
//Amijo Rule to stop the line search |
640 |
if (fb <= curF + initSlope * ftol * b) { |
641 |
curF = fb; |
642 |
curX = xb; |
643 |
curG = gb; |
644 |
return LS_SUCCEED; |
645 |
} |
646 |
|
647 |
if (slopeB <0 && fb < fa) { |
648 |
//replace a by b |
649 |
fa = fb; |
650 |
a = b; |
651 |
slopeA = slopeB; |
652 |
|
653 |
// swap coord a/b |
654 |
std::swap(xa, xb); |
655 |
std::swap(ga, gb); |
656 |
} |
657 |
else { |
658 |
//replace c by b |
659 |
fc = fb; |
660 |
c = b; |
661 |
slopeC = slopeB; |
662 |
|
663 |
// swap coord b/c |
664 |
std::swap(gb, gc); |
665 |
std::swap(xb, xc); |
666 |
} |
667 |
|
668 |
|
669 |
iter++; |
670 |
} while((fb > fa || fb > fc) && (iter < maxLSIter)); |
671 |
|
672 |
if(fb < curF || iter >= maxLSIter) { |
673 |
//could not find a lower value, we might just go uphill. |
674 |
return LS_ERROR; |
675 |
} |
676 |
|
677 |
//select the end point |
678 |
|
679 |
if (fa <= fc) { |
680 |
curX = xa; |
681 |
curG = ga; |
682 |
curF = fa; |
683 |
} |
684 |
else { |
685 |
curX = xc; |
686 |
curG = gc; |
687 |
curF = fc; |
688 |
} |
689 |
|
690 |
return LS_SUCCEED; |
691 |
|
692 |
} |
693 |
|
694 |
void OOPSEMinimizer::minimize(){ |
695 |
|
696 |
int convgStatus; |
697 |
int stepStatus; |
698 |
int maxIter; |
699 |
//int resetFrq; |
700 |
//int nextResetIter; |
701 |
int writeFrq; |
702 |
int nextWriteIter; |
703 |
|
704 |
if (bVerbose) |
705 |
printMinimizerInfo(); |
706 |
|
707 |
dumpOut = new DumpWriter(info); |
708 |
statOut = new StatWriter(info); |
709 |
|
710 |
init(); |
711 |
|
712 |
//resetFrq = paramSet->getResetFrq(); |
713 |
//nextResetIter = resetFrq; |
714 |
|
715 |
writeFrq = paramSet->getWriteFrq(); |
716 |
nextWriteIter = writeFrq; |
717 |
|
718 |
maxIter = paramSet->getMaxIteration(); |
719 |
|
720 |
for (curIter = 1; curIter <= maxIter; curIter++){ |
721 |
|
722 |
stepStatus = step(); |
723 |
|
724 |
if (stepStatus < 0){ |
725 |
saveResult(); |
726 |
minStatus = MIN_LSERROR; |
727 |
cerr << "OOPSEMinimizer Error: line search error, please try a small stepsize" << endl; |
728 |
return; |
729 |
} |
730 |
|
731 |
if (curIter == nextWriteIter){ |
732 |
nextWriteIter += writeFrq; |
733 |
writeOut(curX, curIter); |
734 |
} |
735 |
|
736 |
//if (curIter == nextResetIter){ |
737 |
// reset(); |
738 |
// nextResetIter += resetFrq; |
739 |
//} |
740 |
|
741 |
convgStatus = checkConvg(); |
742 |
|
743 |
if (convgStatus > 0){ |
744 |
saveResult(); |
745 |
minStatus = MIN_CONVERGE; |
746 |
return; |
747 |
} |
748 |
|
749 |
prepareStep(); |
750 |
|
751 |
} |
752 |
|
753 |
|
754 |
if (bVerbose) { |
755 |
cout << "OOPSEMinimizer Warning: " |
756 |
<< minimizerName << " algorithm did not converge within " |
757 |
<< maxIter << " iteration" << endl; |
758 |
} |
759 |
minStatus = MIN_MAXITER; |
760 |
saveResult(); |
761 |
|
762 |
} |