| 50 |
|
} |
| 51 |
|
} |
| 52 |
|
|
| 53 |
– |
|
| 54 |
– |
std::cerr << "building oldVel with \t" << integrableObjects.size() << "\n"; |
| 53 |
|
oldVel = new double[3*integrableObjects.size()]; |
| 54 |
|
oldJi = new double[3*integrableObjects.size()]; |
| 55 |
|
} |
| 118 |
|
// Finally, evolve chi a half step (just like a velocity) using |
| 119 |
|
// temperature at time t, not time t+dt/2 |
| 120 |
|
|
| 121 |
+ |
std::cerr << "targetTemp = " << targetTemp << " instTemp = " << instTemp << " tauThermostat = " << tauThermostat << " integral of Chi = " << integralOfChidt << "\n"; |
| 122 |
+ |
|
| 123 |
|
chi += dt2 * ( instTemp / targetTemp - 1.0) / (tauThermostat*tauThermostat); |
| 124 |
|
integralOfChidt += chi*dt2; |
| 125 |
|
|
| 261 |
|
|
| 262 |
|
fkBT = (double)(info->getNDF() ) * kB * targetTemp; |
| 263 |
|
|
| 264 |
+ |
std::cerr << "ndf = " << info->getNDF() << " fkbt = " << fkBT << "\n"; |
| 265 |
+ |
|
| 266 |
|
Energy = tStats->getTotalE(); |
| 267 |
|
|
| 268 |
|
thermostat_kinetic = fkBT* tauThermostat * tauThermostat * chi * chi / |