| 1 |
#include "Atom.hpp" |
| 2 |
#include "SRI.hpp" |
| 3 |
#include "AbstractClasses.hpp" |
| 4 |
#include "SimInfo.hpp" |
| 5 |
#include "ForceFields.hpp" |
| 6 |
#include "Thermo.hpp" |
| 7 |
#include "ReadWrite.hpp" |
| 8 |
#include "Integrator.hpp" |
| 9 |
#include "simError.h" |
| 10 |
|
| 11 |
|
| 12 |
// Basic thermostating via Hoover, Phys.Rev.A, 1985, Vol. 31 (5) 1695-1697 |
| 13 |
|
| 14 |
template<typename T> NVT<T>::NVT ( SimInfo *theInfo, ForceFields* the_ff): |
| 15 |
T( theInfo, the_ff ) |
| 16 |
{ |
| 17 |
chi = 0.0; |
| 18 |
have_tau_thermostat = 0; |
| 19 |
have_target_temp = 0; |
| 20 |
} |
| 21 |
|
| 22 |
template<typename T> void NVT<T>::moveA() { |
| 23 |
|
| 24 |
int i, j; |
| 25 |
DirectionalAtom* dAtom; |
| 26 |
double Tb[3], ji[3]; |
| 27 |
double A[3][3], I[3][3]; |
| 28 |
double angle, mass; |
| 29 |
double vel[3], pos[3], frc[3]; |
| 30 |
|
| 31 |
double instTemp; |
| 32 |
|
| 33 |
instTemp = tStats->getTemperature(); |
| 34 |
|
| 35 |
// first evolve chi a half step |
| 36 |
|
| 37 |
chi += dt2 * ( instTemp / targetTemp - 1.0) / (tauThermostat*tauThermostat); |
| 38 |
|
| 39 |
for( i=0; i<nAtoms; i++ ){ |
| 40 |
|
| 41 |
atoms[i]->getVel( vel ); |
| 42 |
atoms[i]->getPos( pos ); |
| 43 |
atoms[i]->getFrc( frc ); |
| 44 |
|
| 45 |
mass = atoms[i]->getMass(); |
| 46 |
|
| 47 |
for (j=0; j < 3; j++) { |
| 48 |
// velocity half step |
| 49 |
vel[j] += dt2 * ((frc[j] / mass ) * eConvert - vel[j]*chi); |
| 50 |
// position whole step |
| 51 |
pos[j] += dt * vel[j]; |
| 52 |
} |
| 53 |
|
| 54 |
atoms[i]->setVel( vel ); |
| 55 |
atoms[i]->setPos( pos ); |
| 56 |
|
| 57 |
if( atoms[i]->isDirectional() ){ |
| 58 |
|
| 59 |
dAtom = (DirectionalAtom *)atoms[i]; |
| 60 |
|
| 61 |
// get and convert the torque to body frame |
| 62 |
|
| 63 |
dAtom->getTrq( Tb ); |
| 64 |
dAtom->lab2Body( Tb ); |
| 65 |
|
| 66 |
// get the angular momentum, and propagate a half step |
| 67 |
|
| 68 |
dAtom->getJ( ji ); |
| 69 |
|
| 70 |
for (j=0; j < 3; j++) |
| 71 |
ji[j] += dt2 * (Tb[j] * eConvert - ji[j]*chi); |
| 72 |
|
| 73 |
// use the angular velocities to propagate the rotation matrix a |
| 74 |
// full time step |
| 75 |
|
| 76 |
dAtom->getA(A); |
| 77 |
dAtom->getI(I); |
| 78 |
|
| 79 |
// rotate about the x-axis |
| 80 |
angle = dt2 * ji[0] / I[0][0]; |
| 81 |
this->rotate( 1, 2, angle, ji, A ); |
| 82 |
|
| 83 |
// rotate about the y-axis |
| 84 |
angle = dt2 * ji[1] / I[1][1]; |
| 85 |
this->rotate( 2, 0, angle, ji, A ); |
| 86 |
|
| 87 |
// rotate about the z-axis |
| 88 |
angle = dt * ji[2] / I[2][2]; |
| 89 |
this->rotate( 0, 1, angle, ji, A); |
| 90 |
|
| 91 |
// rotate about the y-axis |
| 92 |
angle = dt2 * ji[1] / I[1][1]; |
| 93 |
this->rotate( 2, 0, angle, ji, A ); |
| 94 |
|
| 95 |
// rotate about the x-axis |
| 96 |
angle = dt2 * ji[0] / I[0][0]; |
| 97 |
this->rotate( 1, 2, angle, ji, A ); |
| 98 |
|
| 99 |
dAtom->setJ( ji ); |
| 100 |
dAtom->setA( A ); |
| 101 |
} |
| 102 |
} |
| 103 |
} |
| 104 |
|
| 105 |
template<typename T> void NVT<T>::moveB( void ){ |
| 106 |
int i, j; |
| 107 |
DirectionalAtom* dAtom; |
| 108 |
double Tb[3], ji[3]; |
| 109 |
double vel[3], frc[3]; |
| 110 |
double mass; |
| 111 |
|
| 112 |
double instTemp; |
| 113 |
|
| 114 |
instTemp = tStats->getTemperature(); |
| 115 |
chi += dt2 * ( instTemp / targetTemp - 1.0) / (tauThermostat*tauThermostat); |
| 116 |
|
| 117 |
for( i=0; i<nAtoms; i++ ){ |
| 118 |
|
| 119 |
atoms[i]->getVel( vel ); |
| 120 |
atoms[i]->getFrc( frc ); |
| 121 |
|
| 122 |
mass = atoms[i]->getMass(); |
| 123 |
|
| 124 |
// velocity half step |
| 125 |
for (j=0; j < 3; j++) |
| 126 |
vel[j] += dt2 * ((frc[j] / mass ) * eConvert - vel[j]*chi); |
| 127 |
|
| 128 |
atoms[i]->setVel( vel ); |
| 129 |
|
| 130 |
if( atoms[i]->isDirectional() ){ |
| 131 |
|
| 132 |
dAtom = (DirectionalAtom *)atoms[i]; |
| 133 |
|
| 134 |
// get and convert the torque to body frame |
| 135 |
|
| 136 |
dAtom->getTrq( Tb ); |
| 137 |
dAtom->lab2Body( Tb ); |
| 138 |
|
| 139 |
// get the angular momentum, and propagate a half step |
| 140 |
|
| 141 |
dAtom->getJ( ji ); |
| 142 |
|
| 143 |
for (j=0; j < 3; j++) |
| 144 |
ji[j] += dt2 * (Tb[j] * eConvert - ji[j]*chi); |
| 145 |
|
| 146 |
|
| 147 |
dAtom->setJ( ji ); |
| 148 |
} |
| 149 |
} |
| 150 |
} |
| 151 |
|
| 152 |
template<typename T> int NVT<T>::readyCheck() { |
| 153 |
|
| 154 |
// First check to see if we have a target temperature. |
| 155 |
// Not having one is fatal. |
| 156 |
|
| 157 |
if (!have_target_temp) { |
| 158 |
sprintf( painCave.errMsg, |
| 159 |
"NVT error: You can't use the NVT integrator without a targetTemp!\n" |
| 160 |
); |
| 161 |
painCave.isFatal = 1; |
| 162 |
simError(); |
| 163 |
return -1; |
| 164 |
} |
| 165 |
|
| 166 |
// We must set tauThermostat. |
| 167 |
|
| 168 |
if (!have_tau_thermostat) { |
| 169 |
sprintf( painCave.errMsg, |
| 170 |
"NVT error: If you use the constant temperature\n" |
| 171 |
" integrator, you must set tauThermostat.\n"); |
| 172 |
painCave.isFatal = 1; |
| 173 |
simError(); |
| 174 |
return -1; |
| 175 |
} |
| 176 |
return 1; |
| 177 |
} |