| 14 |
|
NVT::NVT ( SimInfo *theInfo, ForceFields* the_ff): |
| 15 |
|
Integrator( theInfo, the_ff ) |
| 16 |
|
{ |
| 17 |
< |
zeta = 0.0; |
| 17 |
> |
chi = 0.0; |
| 18 |
|
have_tau_thermostat = 0; |
| 19 |
|
have_target_temp = 0; |
| 20 |
– |
have_qmass = 0; |
| 20 |
|
} |
| 21 |
|
|
| 22 |
|
void NVT::moveA() { |
| 26 |
|
DirectionalAtom* dAtom; |
| 27 |
|
double Tb[3]; |
| 28 |
|
double ji[3]; |
| 29 |
< |
double ke; |
| 29 |
> |
double instTemp; |
| 30 |
|
double angle; |
| 31 |
|
|
| 32 |
+ |
instTemp = tStats->getTemperature(); |
| 33 |
|
|
| 34 |
< |
ke = tStats->getKinetic() * eConvert; |
| 35 |
< |
zeta += dt2 * ( (2.0 * ke - NkBT) / qmass ); |
| 34 |
> |
// first evolve chi a half step |
| 35 |
> |
|
| 36 |
> |
chi += dt2 * ( instTemp / targetTemp - 1.0) / (tauThermostat*tauThermostat); |
| 37 |
|
|
| 38 |
|
for( i=0; i<nAtoms; i++ ){ |
| 39 |
|
atomIndex = i * 3; |
| 41 |
|
|
| 42 |
|
// velocity half step |
| 43 |
|
for( j=atomIndex; j<(atomIndex+3); j++ ) |
| 44 |
< |
vel[j] += dt2 * ((frc[j]/atoms[i]->getMass())*eConvert - vel[j]*zeta); |
| 44 |
> |
vel[j] += dt2 * ((frc[j]/atoms[i]->getMass())*eConvert - vel[j]*chi); |
| 45 |
|
|
| 46 |
|
// position whole step |
| 47 |
|
for( j=atomIndex; j<(atomIndex+3); j++ ) |
| 66 |
|
ji[1] = dAtom->getJy(); |
| 67 |
|
ji[2] = dAtom->getJz(); |
| 68 |
|
|
| 69 |
< |
ji[0] += dt2 * (Tb[0] * eConvert - ji[0]*zeta); |
| 70 |
< |
ji[1] += dt2 * (Tb[1] * eConvert - ji[1]*zeta); |
| 71 |
< |
ji[2] += dt2 * (Tb[2] * eConvert - ji[2]*zeta); |
| 69 |
> |
ji[0] += dt2 * (Tb[0] * eConvert - ji[0]*chi); |
| 70 |
> |
ji[1] += dt2 * (Tb[1] * eConvert - ji[1]*chi); |
| 71 |
> |
ji[2] += dt2 * (Tb[2] * eConvert - ji[2]*chi); |
| 72 |
|
|
| 73 |
|
// use the angular velocities to propagate the rotation matrix a |
| 74 |
|
// full time step |
| 107 |
|
DirectionalAtom* dAtom; |
| 108 |
|
double Tb[3]; |
| 109 |
|
double ji[3]; |
| 110 |
< |
double ke; |
| 110 |
> |
double instTemp; |
| 111 |
|
|
| 112 |
< |
|
| 113 |
< |
ke = tStats->getKinetic() * eConvert; |
| 113 |
< |
zeta += dt2 * ( (2.0 * ke - NkBT) / qmass ); |
| 112 |
> |
instTemp = tStats->getTemperature(); |
| 113 |
> |
chi += dt2 * ( instTemp / targetTemp - 1.0) / (tauThermostat*tauThermostat); |
| 114 |
|
|
| 115 |
|
for( i=0; i<nAtoms; i++ ){ |
| 116 |
|
atomIndex = i * 3; |
| 117 |
|
|
| 118 |
|
// velocity half step |
| 119 |
|
for( j=atomIndex; j<(atomIndex+3); j++ ) |
| 120 |
< |
vel[j] += dt2 * ((frc[j]/atoms[i]->getMass())*eConvert - vel[j]*zeta); |
| 120 |
> |
vel[j] += dt2 * ((frc[j]/atoms[i]->getMass())*eConvert - vel[j]*chi); |
| 121 |
|
|
| 122 |
|
if( atoms[i]->isDirectional() ){ |
| 123 |
|
|
| 138 |
|
ji[1] = dAtom->getJy(); |
| 139 |
|
ji[2] = dAtom->getJz(); |
| 140 |
|
|
| 141 |
< |
ji[0] += dt2 * (Tb[0] * eConvert - ji[0]*zeta); |
| 142 |
< |
ji[1] += dt2 * (Tb[1] * eConvert - ji[1]*zeta); |
| 143 |
< |
ji[2] += dt2 * (Tb[2] * eConvert - ji[2]*zeta); |
| 141 |
> |
ji[0] += dt2 * (Tb[0] * eConvert - ji[0]*chi); |
| 142 |
> |
ji[1] += dt2 * (Tb[1] * eConvert - ji[1]*chi); |
| 143 |
> |
ji[2] += dt2 * (Tb[2] * eConvert - ji[2]*chi); |
| 144 |
|
|
| 145 |
|
dAtom->setJx( ji[0] ); |
| 146 |
|
dAtom->setJy( ji[1] ); |
| 162 |
|
simError(); |
| 163 |
|
return -1; |
| 164 |
|
} |
| 165 |
< |
|
| 166 |
< |
// Next check to see that we have a reasonable number of degrees of freedom |
| 167 |
< |
// and then set NkBT if we do have it. Unreasonable numbers of DOFs |
| 168 |
< |
// are also fatal. |
| 169 |
< |
|
| 170 |
< |
if (info->ndf > 0) { |
| 171 |
< |
NkBT = (double)info->ndf * kB * targetTemp; |
| 172 |
< |
} else { |
| 165 |
> |
|
| 166 |
> |
// We must set tauThermostat. |
| 167 |
> |
|
| 168 |
> |
if (!have_tau_thermostat) { |
| 169 |
|
sprintf( painCave.errMsg, |
| 170 |
< |
"NVT error: We got a silly number of degrees of freedom!\n" |
| 171 |
< |
); |
| 170 |
> |
"NVT error: If you use the constant temperature\n" |
| 171 |
> |
" integrator, you must set tauThermostat.\n"); |
| 172 |
|
painCave.isFatal = 1; |
| 173 |
|
simError(); |
| 174 |
|
return -1; |
| 175 |
< |
} |
| 180 |
< |
|
| 181 |
< |
// We have our choice on setting qmass or tauThermostat. One of them |
| 182 |
< |
// must be set. |
| 183 |
< |
|
| 184 |
< |
if (!have_qmass) { |
| 185 |
< |
if (have_tau_thermostat) { |
| 186 |
< |
sprintf( painCave.errMsg, |
| 187 |
< |
"NVT info: Setting qMass = %lf\n", tauThermostat * NkBT); |
| 188 |
< |
this->setQmass(tauThermostat * NkBT); |
| 189 |
< |
painCave.isFatal = 0; |
| 190 |
< |
simError(); |
| 191 |
< |
} else { |
| 192 |
< |
sprintf( painCave.errMsg, |
| 193 |
< |
"NVT error: If you use the constant temperature\n" |
| 194 |
< |
" integrator, you must set either tauThermostat or qMass.\n"); |
| 195 |
< |
painCave.isFatal = 1; |
| 196 |
< |
simError(); |
| 197 |
< |
return -1; |
| 198 |
< |
} |
| 199 |
< |
} |
| 200 |
< |
|
| 175 |
> |
} |
| 176 |
|
return 1; |
| 177 |
|
} |
| 178 |
|
|