| 1 | #include "Atom.hpp" | 
| 2 | #include "SRI.hpp" | 
| 3 | #include "AbstractClasses.hpp" | 
| 4 | #include "SimInfo.hpp" | 
| 5 | #include "ForceFields.hpp" | 
| 6 | #include "Thermo.hpp" | 
| 7 | #include "ReadWrite.hpp" | 
| 8 | #include "Integrator.hpp" | 
| 9 | #include "simError.h" | 
| 10 |  | 
| 11 |  | 
| 12 | // Basic thermostating via Hoover, Phys.Rev.A, 1985, Vol. 31 (5) 1695-1697 | 
| 13 |  | 
| 14 | template<typename T> NVT<T>::NVT ( SimInfo *theInfo, ForceFields* the_ff): | 
| 15 | T( theInfo, the_ff ) | 
| 16 | { | 
| 17 | chi = 0.0; | 
| 18 | have_tau_thermostat = 0; | 
| 19 | have_target_temp = 0; | 
| 20 | } | 
| 21 |  | 
| 22 | template<typename T> void NVT<T>::moveA() { | 
| 23 |  | 
| 24 | int i, j; | 
| 25 | DirectionalAtom* dAtom; | 
| 26 | double Tb[3], ji[3]; | 
| 27 | double A[3][3], I[3][3]; | 
| 28 | double angle, mass; | 
| 29 | double vel[3], pos[3], frc[3]; | 
| 30 |  | 
| 31 | double instTemp; | 
| 32 |  | 
| 33 | instTemp = tStats->getTemperature(); | 
| 34 |  | 
| 35 | // first evolve chi a half step | 
| 36 |  | 
| 37 | chi += dt2 * ( instTemp / targetTemp - 1.0) / (tauThermostat*tauThermostat); | 
| 38 |  | 
| 39 | for( i=0; i<nAtoms; i++ ){ | 
| 40 |  | 
| 41 | atoms[i]->getVel( vel ); | 
| 42 | atoms[i]->getPos( pos ); | 
| 43 | atoms[i]->getFrc( frc ); | 
| 44 |  | 
| 45 | mass = atoms[i]->getMass(); | 
| 46 |  | 
| 47 | for (j=0; j < 3; j++) { | 
| 48 | // velocity half step | 
| 49 | vel[j] += dt2 * ((frc[j] / mass ) * eConvert - vel[j]*chi); | 
| 50 | // position whole step | 
| 51 | pos[j] += dt * vel[j]; | 
| 52 | } | 
| 53 |  | 
| 54 | atoms[i]->setVel( vel ); | 
| 55 | atoms[i]->setPos( pos ); | 
| 56 |  | 
| 57 | if( atoms[i]->isDirectional() ){ | 
| 58 |  | 
| 59 | dAtom = (DirectionalAtom *)atoms[i]; | 
| 60 |  | 
| 61 | // get and convert the torque to body frame | 
| 62 |  | 
| 63 | dAtom->getTrq( Tb ); | 
| 64 | dAtom->lab2Body( Tb ); | 
| 65 |  | 
| 66 | // get the angular momentum, and propagate a half step | 
| 67 |  | 
| 68 | dAtom->getJ( ji ); | 
| 69 |  | 
| 70 | for (j=0; j < 3; j++) | 
| 71 | ji[j] += dt2 * (Tb[j] * eConvert - ji[j]*chi); | 
| 72 |  | 
| 73 | // use the angular velocities to propagate the rotation matrix a | 
| 74 | // full time step | 
| 75 |  | 
| 76 | dAtom->getA(A); | 
| 77 | dAtom->getI(I); | 
| 78 |  | 
| 79 | // rotate about the x-axis | 
| 80 | angle = dt2 * ji[0] / I[0][0]; | 
| 81 | this->rotate( 1, 2, angle, ji, A ); | 
| 82 |  | 
| 83 | // rotate about the y-axis | 
| 84 | angle = dt2 * ji[1] / I[1][1]; | 
| 85 | this->rotate( 2, 0, angle, ji, A ); | 
| 86 |  | 
| 87 | // rotate about the z-axis | 
| 88 | angle = dt * ji[2] / I[2][2]; | 
| 89 | this->rotate( 0, 1, angle, ji, A); | 
| 90 |  | 
| 91 | // rotate about the y-axis | 
| 92 | angle = dt2 * ji[1] / I[1][1]; | 
| 93 | this->rotate( 2, 0, angle, ji, A ); | 
| 94 |  | 
| 95 | // rotate about the x-axis | 
| 96 | angle = dt2 * ji[0] / I[0][0]; | 
| 97 | this->rotate( 1, 2, angle, ji, A ); | 
| 98 |  | 
| 99 | dAtom->setJ( ji ); | 
| 100 | dAtom->setA( A  ); | 
| 101 | } | 
| 102 | } | 
| 103 | } | 
| 104 |  | 
| 105 | template<typename T> void NVT<T>::moveB( void ){ | 
| 106 | int i, j; | 
| 107 | DirectionalAtom* dAtom; | 
| 108 | double Tb[3], ji[3]; | 
| 109 | double vel[3], frc[3]; | 
| 110 | double mass; | 
| 111 |  | 
| 112 | double instTemp; | 
| 113 |  | 
| 114 | instTemp = tStats->getTemperature(); | 
| 115 | chi += dt2 * ( instTemp / targetTemp - 1.0) / (tauThermostat*tauThermostat); | 
| 116 |  | 
| 117 | for( i=0; i<nAtoms; i++ ){ | 
| 118 |  | 
| 119 | atoms[i]->getVel( vel ); | 
| 120 | atoms[i]->getFrc( frc ); | 
| 121 |  | 
| 122 | mass = atoms[i]->getMass(); | 
| 123 |  | 
| 124 | // velocity half step | 
| 125 | for (j=0; j < 3; j++) | 
| 126 | vel[j] += dt2 * ((frc[j] / mass ) * eConvert - vel[j]*chi); | 
| 127 |  | 
| 128 | atoms[i]->setVel( vel ); | 
| 129 |  | 
| 130 | if( atoms[i]->isDirectional() ){ | 
| 131 |  | 
| 132 | dAtom = (DirectionalAtom *)atoms[i]; | 
| 133 |  | 
| 134 | // get and convert the torque to body frame | 
| 135 |  | 
| 136 | dAtom->getTrq( Tb ); | 
| 137 | dAtom->lab2Body( Tb ); | 
| 138 |  | 
| 139 | // get the angular momentum, and propagate a half step | 
| 140 |  | 
| 141 | dAtom->getJ( ji ); | 
| 142 |  | 
| 143 | for (j=0; j < 3; j++) | 
| 144 | ji[j] += dt2 * (Tb[j] * eConvert - ji[j]*chi); | 
| 145 |  | 
| 146 |  | 
| 147 | dAtom->setJ( ji ); | 
| 148 | } | 
| 149 | } | 
| 150 | } | 
| 151 |  | 
| 152 | template<typename T> int NVT<T>::readyCheck() { | 
| 153 |  | 
| 154 | //check parent's readyCheck() first | 
| 155 | if (T::readyCheck() == -1) | 
| 156 | return -1; | 
| 157 |  | 
| 158 | // First check to see if we have a target temperature. | 
| 159 | // Not having one is fatal. | 
| 160 |  | 
| 161 | if (!have_target_temp) { | 
| 162 | sprintf( painCave.errMsg, | 
| 163 | "NVT error: You can't use the NVT integrator without a targetTemp!\n" | 
| 164 | ); | 
| 165 | painCave.isFatal = 1; | 
| 166 | simError(); | 
| 167 | return -1; | 
| 168 | } | 
| 169 |  | 
| 170 | // We must set tauThermostat. | 
| 171 |  | 
| 172 | if (!have_tau_thermostat) { | 
| 173 | sprintf( painCave.errMsg, | 
| 174 | "NVT error: If you use the constant temperature\n" | 
| 175 | "   integrator, you must set tauThermostat.\n"); | 
| 176 | painCave.isFatal = 1; | 
| 177 | simError(); | 
| 178 | return -1; | 
| 179 | } | 
| 180 | return 1; | 
| 181 | } |