| 1 | #include <math.h> | 
| 2 |  | 
| 3 | #include "Atom.hpp" | 
| 4 | #include "SRI.hpp" | 
| 5 | #include "AbstractClasses.hpp" | 
| 6 | #include "SimInfo.hpp" | 
| 7 | #include "ForceFields.hpp" | 
| 8 | #include "Thermo.hpp" | 
| 9 | #include "ReadWrite.hpp" | 
| 10 | #include "Integrator.hpp" | 
| 11 | #include "simError.h" | 
| 12 |  | 
| 13 |  | 
| 14 | // Basic thermostating via Hoover, Phys.Rev.A, 1985, Vol. 31 (5) 1695-1697 | 
| 15 |  | 
| 16 | template<typename T> NVT<T>::NVT ( SimInfo *theInfo, ForceFields* the_ff): | 
| 17 | T( theInfo, the_ff ) | 
| 18 | { | 
| 19 | GenericData* data; | 
| 20 | DoubleData * chiValue; | 
| 21 | DoubleData * integralOfChidtValue; | 
| 22 |  | 
| 23 | chiValue = NULL; | 
| 24 | integralOfChidtValue = NULL; | 
| 25 |  | 
| 26 | chi = 0.0; | 
| 27 | have_tau_thermostat = 0; | 
| 28 | have_target_temp = 0; | 
| 29 | have_chi_tolerance = 0; | 
| 30 | integralOfChidt = 0.0; | 
| 31 |  | 
| 32 |  | 
| 33 | if( theInfo->useInitXSstate ){ | 
| 34 |  | 
| 35 | // retrieve chi and integralOfChidt from simInfo | 
| 36 | data = info->getProperty(CHIVALUE_ID); | 
| 37 | if(data){ | 
| 38 | chiValue = dynamic_cast<DoubleData*>(data); | 
| 39 | } | 
| 40 |  | 
| 41 | data = info->getProperty(INTEGRALOFCHIDT_ID); | 
| 42 | if(data){ | 
| 43 | integralOfChidtValue = dynamic_cast<DoubleData*>(data); | 
| 44 | } | 
| 45 |  | 
| 46 | // chi and integralOfChidt should appear by pair | 
| 47 | if(chiValue && integralOfChidtValue){ | 
| 48 | chi = chiValue->getData(); | 
| 49 | integralOfChidt = integralOfChidtValue->getData(); | 
| 50 | } | 
| 51 | } | 
| 52 |  | 
| 53 | oldVel = new double[3*integrableObjects.size()]; | 
| 54 | oldJi = new double[3*integrableObjects.size()]; | 
| 55 | } | 
| 56 |  | 
| 57 | template<typename T> NVT<T>::~NVT() { | 
| 58 | delete[] oldVel; | 
| 59 | delete[] oldJi; | 
| 60 | } | 
| 61 |  | 
| 62 | template<typename T> void NVT<T>::moveA() { | 
| 63 |  | 
| 64 | int i, j; | 
| 65 | DirectionalAtom* dAtom; | 
| 66 | double Tb[3], ji[3]; | 
| 67 | double mass; | 
| 68 | double vel[3], pos[3], frc[3]; | 
| 69 |  | 
| 70 | double instTemp; | 
| 71 |  | 
| 72 | // We need the temperature at time = t for the chi update below: | 
| 73 |  | 
| 74 | instTemp = tStats->getTemperature(); | 
| 75 |  | 
| 76 | for( i=0; i < integrableObjects.size(); i++ ){ | 
| 77 |  | 
| 78 | integrableObjects[i]->getVel( vel ); | 
| 79 | integrableObjects[i]->getPos( pos ); | 
| 80 | integrableObjects[i]->getFrc( frc ); | 
| 81 |  | 
| 82 | mass = integrableObjects[i]->getMass(); | 
| 83 |  | 
| 84 | for (j=0; j < 3; j++) { | 
| 85 | // velocity half step  (use chi from previous step here): | 
| 86 | vel[j] += dt2 * ((frc[j] / mass ) * eConvert - vel[j]*chi); | 
| 87 | // position whole step | 
| 88 | pos[j] += dt * vel[j]; | 
| 89 | } | 
| 90 |  | 
| 91 | integrableObjects[i]->setVel( vel ); | 
| 92 | integrableObjects[i]->setPos( pos ); | 
| 93 |  | 
| 94 | if( integrableObjects[i]->isDirectional() ){ | 
| 95 |  | 
| 96 | // get and convert the torque to body frame | 
| 97 |  | 
| 98 | integrableObjects[i]->getTrq( Tb ); | 
| 99 | integrableObjects[i]->lab2Body( Tb ); | 
| 100 |  | 
| 101 | // get the angular momentum, and propagate a half step | 
| 102 |  | 
| 103 | integrableObjects[i]->getJ( ji ); | 
| 104 |  | 
| 105 | for (j=0; j < 3; j++) | 
| 106 | ji[j] += dt2 * (Tb[j] * eConvert - ji[j]*chi); | 
| 107 |  | 
| 108 | this->rotationPropagation( integrableObjects[i], ji ); | 
| 109 |  | 
| 110 | integrableObjects[i]->setJ( ji ); | 
| 111 | } | 
| 112 | } | 
| 113 |  | 
| 114 | if (nConstrained){ | 
| 115 | constrainA(); | 
| 116 | } | 
| 117 |  | 
| 118 | // Finally, evolve chi a half step (just like a velocity) using | 
| 119 | // temperature at time t, not time t+dt/2 | 
| 120 |  | 
| 121 | std::cerr << "targetTemp = " << targetTemp << " instTemp = " << instTemp << " tauThermostat = " << tauThermostat << " integral of Chi = " << integralOfChidt << "\n"; | 
| 122 |  | 
| 123 | chi += dt2 * ( instTemp / targetTemp - 1.0) / (tauThermostat*tauThermostat); | 
| 124 | integralOfChidt += chi*dt2; | 
| 125 |  | 
| 126 | } | 
| 127 |  | 
| 128 | template<typename T> void NVT<T>::moveB( void ){ | 
| 129 | int i, j, k; | 
| 130 | double Tb[3], ji[3]; | 
| 131 | double vel[3], frc[3]; | 
| 132 | double mass; | 
| 133 | double instTemp; | 
| 134 | double oldChi, prevChi; | 
| 135 |  | 
| 136 | // Set things up for the iteration: | 
| 137 |  | 
| 138 | oldChi = chi; | 
| 139 |  | 
| 140 | for( i=0; i < integrableObjects.size(); i++ ){ | 
| 141 |  | 
| 142 | integrableObjects[i]->getVel( vel ); | 
| 143 |  | 
| 144 | for (j=0; j < 3; j++) | 
| 145 | oldVel[3*i + j]  = vel[j]; | 
| 146 |  | 
| 147 | if( integrableObjects[i]->isDirectional() ){ | 
| 148 |  | 
| 149 | integrableObjects[i]->getJ( ji ); | 
| 150 |  | 
| 151 | for (j=0; j < 3; j++) | 
| 152 | oldJi[3*i + j] = ji[j]; | 
| 153 |  | 
| 154 | } | 
| 155 | } | 
| 156 |  | 
| 157 | // do the iteration: | 
| 158 |  | 
| 159 | for (k=0; k < 4; k++) { | 
| 160 |  | 
| 161 | instTemp = tStats->getTemperature(); | 
| 162 |  | 
| 163 | // evolve chi another half step using the temperature at t + dt/2 | 
| 164 |  | 
| 165 | prevChi = chi; | 
| 166 | chi = oldChi + dt2 * ( instTemp / targetTemp - 1.0) / | 
| 167 | (tauThermostat*tauThermostat); | 
| 168 |  | 
| 169 | for( i=0; i < integrableObjects.size(); i++ ){ | 
| 170 |  | 
| 171 | integrableObjects[i]->getFrc( frc ); | 
| 172 | integrableObjects[i]->getVel(vel); | 
| 173 |  | 
| 174 | mass = integrableObjects[i]->getMass(); | 
| 175 |  | 
| 176 | // velocity half step | 
| 177 | for (j=0; j < 3; j++) | 
| 178 | vel[j] = oldVel[3*i+j] + dt2 * ((frc[j] / mass ) * eConvert - oldVel[3*i + j]*chi); | 
| 179 |  | 
| 180 | integrableObjects[i]->setVel( vel ); | 
| 181 |  | 
| 182 | if( integrableObjects[i]->isDirectional() ){ | 
| 183 |  | 
| 184 | // get and convert the torque to body frame | 
| 185 |  | 
| 186 | integrableObjects[i]->getTrq( Tb ); | 
| 187 | integrableObjects[i]->lab2Body( Tb ); | 
| 188 |  | 
| 189 | for (j=0; j < 3; j++) | 
| 190 | ji[j] = oldJi[3*i + j] + dt2 * (Tb[j] * eConvert - oldJi[3*i+j]*chi); | 
| 191 |  | 
| 192 | integrableObjects[i]->setJ( ji ); | 
| 193 | } | 
| 194 | } | 
| 195 |  | 
| 196 | if (nConstrained){ | 
| 197 | constrainB(); | 
| 198 | } | 
| 199 |  | 
| 200 | if (fabs(prevChi - chi) <= chiTolerance) break; | 
| 201 | } | 
| 202 |  | 
| 203 | integralOfChidt += dt2*chi; | 
| 204 | } | 
| 205 |  | 
| 206 | template<typename T> void NVT<T>::resetIntegrator( void ){ | 
| 207 |  | 
| 208 | chi = 0.0; | 
| 209 | integralOfChidt = 0.0; | 
| 210 | } | 
| 211 |  | 
| 212 | template<typename T> int NVT<T>::readyCheck() { | 
| 213 |  | 
| 214 | //check parent's readyCheck() first | 
| 215 | if (T::readyCheck() == -1) | 
| 216 | return -1; | 
| 217 |  | 
| 218 | // First check to see if we have a target temperature. | 
| 219 | // Not having one is fatal. | 
| 220 |  | 
| 221 | if (!have_target_temp) { | 
| 222 | sprintf( painCave.errMsg, | 
| 223 | "NVT error: You can't use the NVT integrator without a targetTemp!\n" | 
| 224 | ); | 
| 225 | painCave.isFatal = 1; | 
| 226 | simError(); | 
| 227 | return -1; | 
| 228 | } | 
| 229 |  | 
| 230 | // We must set tauThermostat. | 
| 231 |  | 
| 232 | if (!have_tau_thermostat) { | 
| 233 | sprintf( painCave.errMsg, | 
| 234 | "NVT error: If you use the constant temperature\n" | 
| 235 | "   integrator, you must set tauThermostat.\n"); | 
| 236 | painCave.isFatal = 1; | 
| 237 | simError(); | 
| 238 | return -1; | 
| 239 | } | 
| 240 |  | 
| 241 | if (!have_chi_tolerance) { | 
| 242 | sprintf( painCave.errMsg, | 
| 243 | "NVT warning: setting chi tolerance to 1e-6\n"); | 
| 244 | chiTolerance = 1e-6; | 
| 245 | have_chi_tolerance = 1; | 
| 246 | painCave.isFatal = 0; | 
| 247 | simError(); | 
| 248 | } | 
| 249 |  | 
| 250 | return 1; | 
| 251 |  | 
| 252 | } | 
| 253 |  | 
| 254 | template<typename T> double NVT<T>::getConservedQuantity(void){ | 
| 255 |  | 
| 256 | double conservedQuantity; | 
| 257 | double fkBT; | 
| 258 | double Energy; | 
| 259 | double thermostat_kinetic; | 
| 260 | double thermostat_potential; | 
| 261 |  | 
| 262 | fkBT = (double)(info->getNDF()    ) * kB * targetTemp; | 
| 263 |  | 
| 264 | std::cerr << "ndf = " << info->getNDF() << " fkbt = " << fkBT << "\n"; | 
| 265 |  | 
| 266 | Energy = tStats->getTotalE(); | 
| 267 |  | 
| 268 | thermostat_kinetic = fkBT* tauThermostat * tauThermostat * chi * chi / | 
| 269 | (2.0 * eConvert); | 
| 270 |  | 
| 271 | thermostat_potential = fkBT * integralOfChidt / eConvert; | 
| 272 |  | 
| 273 | conservedQuantity = Energy + thermostat_kinetic + thermostat_potential; | 
| 274 |  | 
| 275 | return conservedQuantity; | 
| 276 | } | 
| 277 |  | 
| 278 | template<typename T> string NVT<T>::getAdditionalParameters(void){ | 
| 279 | string parameters; | 
| 280 | const int BUFFERSIZE = 2000; // size of the read buffer | 
| 281 | char buffer[BUFFERSIZE]; | 
| 282 |  | 
| 283 | sprintf(buffer,"\t%G\t%G;", chi, integralOfChidt); | 
| 284 | parameters += buffer; | 
| 285 |  | 
| 286 | return parameters; | 
| 287 | } |