1 |
+ |
#include <math.h> |
2 |
+ |
|
3 |
|
#include "Atom.hpp" |
4 |
|
#include "SRI.hpp" |
5 |
|
#include "AbstractClasses.hpp" |
8 |
|
#include "Thermo.hpp" |
9 |
|
#include "ReadWrite.hpp" |
10 |
|
#include "Integrator.hpp" |
11 |
< |
#include "simError.h" |
11 |
> |
#include "simError.h" |
12 |
|
|
13 |
|
|
14 |
|
// Basic thermostating via Hoover, Phys.Rev.A, 1985, Vol. 31 (5) 1695-1697 |
15 |
|
|
16 |
< |
NVT::NVT ( SimInfo *theInfo, ForceFields* the_ff): |
17 |
< |
Integrator( theInfo, the_ff ) |
16 |
> |
template<typename T> NVT<T>::NVT ( SimInfo *theInfo, ForceFields* the_ff): |
17 |
> |
T( theInfo, the_ff ) |
18 |
|
{ |
19 |
+ |
GenericData* data; |
20 |
+ |
DoubleData * chiValue; |
21 |
+ |
DoubleData * integralOfChidtValue; |
22 |
+ |
|
23 |
+ |
chiValue = NULL; |
24 |
+ |
integralOfChidtValue = NULL; |
25 |
+ |
|
26 |
|
chi = 0.0; |
27 |
|
have_tau_thermostat = 0; |
28 |
|
have_target_temp = 0; |
29 |
+ |
have_chi_tolerance = 0; |
30 |
+ |
integralOfChidt = 0.0; |
31 |
+ |
|
32 |
+ |
|
33 |
+ |
if( theInfo->useInitXSstate ){ |
34 |
+ |
|
35 |
+ |
// retrieve chi and integralOfChidt from simInfo |
36 |
+ |
data = info->getProperty(CHIVALUE_ID); |
37 |
+ |
if(data){ |
38 |
+ |
chiValue = dynamic_cast<DoubleData*>(data); |
39 |
+ |
} |
40 |
+ |
|
41 |
+ |
data = info->getProperty(INTEGRALOFCHIDT_ID); |
42 |
+ |
if(data){ |
43 |
+ |
integralOfChidtValue = dynamic_cast<DoubleData*>(data); |
44 |
+ |
} |
45 |
+ |
|
46 |
+ |
// chi and integralOfChidt should appear by pair |
47 |
+ |
if(chiValue && integralOfChidtValue){ |
48 |
+ |
chi = chiValue->getData(); |
49 |
+ |
integralOfChidt = integralOfChidtValue->getData(); |
50 |
+ |
} |
51 |
+ |
} |
52 |
+ |
|
53 |
+ |
|
54 |
+ |
std::cerr << "building oldVel with \t" << integrableObjects.size() << "\n"; |
55 |
+ |
oldVel = new double[3*integrableObjects.size()]; |
56 |
+ |
oldJi = new double[3*integrableObjects.size()]; |
57 |
|
} |
58 |
|
|
59 |
< |
void NVT::moveA() { |
60 |
< |
|
61 |
< |
int i,j,k; |
62 |
< |
int atomIndex, aMatIndex; |
59 |
> |
template<typename T> NVT<T>::~NVT() { |
60 |
> |
delete[] oldVel; |
61 |
> |
delete[] oldJi; |
62 |
> |
} |
63 |
> |
|
64 |
> |
template<typename T> void NVT<T>::moveA() { |
65 |
> |
|
66 |
> |
int i, j; |
67 |
|
DirectionalAtom* dAtom; |
68 |
< |
double Tb[3]; |
69 |
< |
double ji[3]; |
68 |
> |
double Tb[3], ji[3]; |
69 |
> |
double mass; |
70 |
> |
double vel[3], pos[3], frc[3]; |
71 |
> |
|
72 |
|
double instTemp; |
30 |
– |
double angle; |
73 |
|
|
74 |
+ |
// We need the temperature at time = t for the chi update below: |
75 |
+ |
|
76 |
|
instTemp = tStats->getTemperature(); |
77 |
|
|
78 |
< |
// first evolve chi a half step |
35 |
< |
|
36 |
< |
chi += dt2 * ( instTemp / targetTemp - 1.0) / (tauThermostat*tauThermostat); |
78 |
> |
for( i=0; i < integrableObjects.size(); i++ ){ |
79 |
|
|
80 |
< |
for( i=0; i<nAtoms; i++ ){ |
81 |
< |
atomIndex = i * 3; |
82 |
< |
aMatIndex = i * 9; |
41 |
< |
|
42 |
< |
// velocity half step |
43 |
< |
for( j=atomIndex; j<(atomIndex+3); j++ ) |
44 |
< |
vel[j] += dt2 * ((frc[j]/atoms[i]->getMass())*eConvert - vel[j]*chi); |
80 |
> |
integrableObjects[i]->getVel( vel ); |
81 |
> |
integrableObjects[i]->getPos( pos ); |
82 |
> |
integrableObjects[i]->getFrc( frc ); |
83 |
|
|
84 |
< |
// position whole step |
85 |
< |
for( j=atomIndex; j<(atomIndex+3); j++ ) |
84 |
> |
mass = integrableObjects[i]->getMass(); |
85 |
> |
|
86 |
> |
for (j=0; j < 3; j++) { |
87 |
> |
// velocity half step (use chi from previous step here): |
88 |
> |
vel[j] += dt2 * ((frc[j] / mass ) * eConvert - vel[j]*chi); |
89 |
> |
// position whole step |
90 |
|
pos[j] += dt * vel[j]; |
91 |
+ |
} |
92 |
|
|
93 |
< |
|
94 |
< |
if( atoms[i]->isDirectional() ){ |
93 |
> |
integrableObjects[i]->setVel( vel ); |
94 |
> |
integrableObjects[i]->setPos( pos ); |
95 |
|
|
96 |
< |
dAtom = (DirectionalAtom *)atoms[i]; |
97 |
< |
|
96 |
> |
if( integrableObjects[i]->isDirectional() ){ |
97 |
> |
|
98 |
|
// get and convert the torque to body frame |
99 |
< |
|
100 |
< |
Tb[0] = dAtom->getTx(); |
101 |
< |
Tb[1] = dAtom->getTy(); |
102 |
< |
Tb[2] = dAtom->getTz(); |
60 |
< |
|
61 |
< |
dAtom->lab2Body( Tb ); |
62 |
< |
|
99 |
> |
|
100 |
> |
integrableObjects[i]->getTrq( Tb ); |
101 |
> |
integrableObjects[i]->lab2Body( Tb ); |
102 |
> |
|
103 |
|
// get the angular momentum, and propagate a half step |
104 |
|
|
105 |
< |
ji[0] = dAtom->getJx(); |
106 |
< |
ji[1] = dAtom->getJy(); |
107 |
< |
ji[2] = dAtom->getJz(); |
108 |
< |
|
109 |
< |
ji[0] += dt2 * (Tb[0] * eConvert - ji[0]*chi); |
110 |
< |
ji[1] += dt2 * (Tb[1] * eConvert - ji[1]*chi); |
111 |
< |
ji[2] += dt2 * (Tb[2] * eConvert - ji[2]*chi); |
112 |
< |
|
73 |
< |
// use the angular velocities to propagate the rotation matrix a |
74 |
< |
// full time step |
75 |
< |
|
76 |
< |
// rotate about the x-axis |
77 |
< |
angle = dt2 * ji[0] / dAtom->getIxx(); |
78 |
< |
this->rotate( 1, 2, angle, ji, &Amat[aMatIndex] ); |
79 |
< |
|
80 |
< |
// rotate about the y-axis |
81 |
< |
angle = dt2 * ji[1] / dAtom->getIyy(); |
82 |
< |
this->rotate( 2, 0, angle, ji, &Amat[aMatIndex] ); |
83 |
< |
|
84 |
< |
// rotate about the z-axis |
85 |
< |
angle = dt * ji[2] / dAtom->getIzz(); |
86 |
< |
this->rotate( 0, 1, angle, ji, &Amat[aMatIndex] ); |
87 |
< |
|
88 |
< |
// rotate about the y-axis |
89 |
< |
angle = dt2 * ji[1] / dAtom->getIyy(); |
90 |
< |
this->rotate( 2, 0, angle, ji, &Amat[aMatIndex] ); |
91 |
< |
|
92 |
< |
// rotate about the x-axis |
93 |
< |
angle = dt2 * ji[0] / dAtom->getIxx(); |
94 |
< |
this->rotate( 1, 2, angle, ji, &Amat[aMatIndex] ); |
95 |
< |
|
96 |
< |
dAtom->setJx( ji[0] ); |
97 |
< |
dAtom->setJy( ji[1] ); |
98 |
< |
dAtom->setJz( ji[2] ); |
105 |
> |
integrableObjects[i]->getJ( ji ); |
106 |
> |
|
107 |
> |
for (j=0; j < 3; j++) |
108 |
> |
ji[j] += dt2 * (Tb[j] * eConvert - ji[j]*chi); |
109 |
> |
|
110 |
> |
this->rotationPropagation( integrableObjects[i], ji ); |
111 |
> |
|
112 |
> |
integrableObjects[i]->setJ( ji ); |
113 |
|
} |
100 |
– |
|
114 |
|
} |
102 |
– |
} |
115 |
|
|
116 |
< |
void NVT::moveB( void ){ |
117 |
< |
int i,j,k; |
118 |
< |
int atomIndex; |
119 |
< |
DirectionalAtom* dAtom; |
120 |
< |
double Tb[3]; |
121 |
< |
double ji[3]; |
122 |
< |
double instTemp; |
116 |
> |
if (nConstrained){ |
117 |
> |
constrainA(); |
118 |
> |
} |
119 |
> |
|
120 |
> |
// Finally, evolve chi a half step (just like a velocity) using |
121 |
> |
// temperature at time t, not time t+dt/2 |
122 |
> |
|
123 |
> |
std::cerr << "targetTemp = " << targetTemp << " instTemp = " << instTemp << " tauThermostat = " << tauThermostat << " integral of Chi = " << integralOfChidt << "\n"; |
124 |
|
|
112 |
– |
instTemp = tStats->getTemperature(); |
125 |
|
chi += dt2 * ( instTemp / targetTemp - 1.0) / (tauThermostat*tauThermostat); |
126 |
< |
|
127 |
< |
for( i=0; i<nAtoms; i++ ){ |
128 |
< |
atomIndex = i * 3; |
129 |
< |
|
130 |
< |
// velocity half step |
131 |
< |
for( j=atomIndex; j<(atomIndex+3); j++ ) |
132 |
< |
vel[j] += dt2 * ((frc[j]/atoms[i]->getMass())*eConvert - vel[j]*chi); |
133 |
< |
|
134 |
< |
if( atoms[i]->isDirectional() ){ |
135 |
< |
|
136 |
< |
dAtom = (DirectionalAtom *)atoms[i]; |
137 |
< |
|
138 |
< |
// get and convert the torque to body frame |
139 |
< |
|
140 |
< |
Tb[0] = dAtom->getTx(); |
141 |
< |
Tb[1] = dAtom->getTy(); |
142 |
< |
Tb[2] = dAtom->getTz(); |
143 |
< |
|
144 |
< |
dAtom->lab2Body( Tb ); |
145 |
< |
|
146 |
< |
// get the angular momentum, and complete the angular momentum |
147 |
< |
// half step |
148 |
< |
|
149 |
< |
ji[0] = dAtom->getJx(); |
150 |
< |
ji[1] = dAtom->getJy(); |
151 |
< |
ji[2] = dAtom->getJz(); |
152 |
< |
|
153 |
< |
ji[0] += dt2 * (Tb[0] * eConvert - ji[0]*chi); |
154 |
< |
ji[1] += dt2 * (Tb[1] * eConvert - ji[1]*chi); |
155 |
< |
ji[2] += dt2 * (Tb[2] * eConvert - ji[2]*chi); |
144 |
< |
|
145 |
< |
dAtom->setJx( ji[0] ); |
146 |
< |
dAtom->setJy( ji[1] ); |
147 |
< |
dAtom->setJz( ji[2] ); |
126 |
> |
integralOfChidt += chi*dt2; |
127 |
> |
|
128 |
> |
} |
129 |
> |
|
130 |
> |
template<typename T> void NVT<T>::moveB( void ){ |
131 |
> |
int i, j, k; |
132 |
> |
double Tb[3], ji[3]; |
133 |
> |
double vel[3], frc[3]; |
134 |
> |
double mass; |
135 |
> |
double instTemp; |
136 |
> |
double oldChi, prevChi; |
137 |
> |
|
138 |
> |
// Set things up for the iteration: |
139 |
> |
|
140 |
> |
oldChi = chi; |
141 |
> |
|
142 |
> |
for( i=0; i < integrableObjects.size(); i++ ){ |
143 |
> |
|
144 |
> |
integrableObjects[i]->getVel( vel ); |
145 |
> |
|
146 |
> |
for (j=0; j < 3; j++) |
147 |
> |
oldVel[3*i + j] = vel[j]; |
148 |
> |
|
149 |
> |
if( integrableObjects[i]->isDirectional() ){ |
150 |
> |
|
151 |
> |
integrableObjects[i]->getJ( ji ); |
152 |
> |
|
153 |
> |
for (j=0; j < 3; j++) |
154 |
> |
oldJi[3*i + j] = ji[j]; |
155 |
> |
|
156 |
|
} |
157 |
|
} |
158 |
+ |
|
159 |
+ |
// do the iteration: |
160 |
+ |
|
161 |
+ |
for (k=0; k < 4; k++) { |
162 |
+ |
|
163 |
+ |
instTemp = tStats->getTemperature(); |
164 |
+ |
|
165 |
+ |
// evolve chi another half step using the temperature at t + dt/2 |
166 |
+ |
|
167 |
+ |
prevChi = chi; |
168 |
+ |
chi = oldChi + dt2 * ( instTemp / targetTemp - 1.0) / |
169 |
+ |
(tauThermostat*tauThermostat); |
170 |
+ |
|
171 |
+ |
for( i=0; i < integrableObjects.size(); i++ ){ |
172 |
+ |
|
173 |
+ |
integrableObjects[i]->getFrc( frc ); |
174 |
+ |
integrableObjects[i]->getVel(vel); |
175 |
+ |
|
176 |
+ |
mass = integrableObjects[i]->getMass(); |
177 |
+ |
|
178 |
+ |
// velocity half step |
179 |
+ |
for (j=0; j < 3; j++) |
180 |
+ |
vel[j] = oldVel[3*i+j] + dt2 * ((frc[j] / mass ) * eConvert - oldVel[3*i + j]*chi); |
181 |
+ |
|
182 |
+ |
integrableObjects[i]->setVel( vel ); |
183 |
+ |
|
184 |
+ |
if( integrableObjects[i]->isDirectional() ){ |
185 |
+ |
|
186 |
+ |
// get and convert the torque to body frame |
187 |
+ |
|
188 |
+ |
integrableObjects[i]->getTrq( Tb ); |
189 |
+ |
integrableObjects[i]->lab2Body( Tb ); |
190 |
+ |
|
191 |
+ |
for (j=0; j < 3; j++) |
192 |
+ |
ji[j] = oldJi[3*i + j] + dt2 * (Tb[j] * eConvert - oldJi[3*i+j]*chi); |
193 |
+ |
|
194 |
+ |
integrableObjects[i]->setJ( ji ); |
195 |
+ |
} |
196 |
+ |
} |
197 |
+ |
|
198 |
+ |
if (nConstrained){ |
199 |
+ |
constrainB(); |
200 |
+ |
} |
201 |
+ |
|
202 |
+ |
if (fabs(prevChi - chi) <= chiTolerance) break; |
203 |
+ |
} |
204 |
+ |
|
205 |
+ |
integralOfChidt += dt2*chi; |
206 |
|
} |
207 |
|
|
208 |
< |
int NVT::readyCheck() { |
209 |
< |
|
210 |
< |
// First check to see if we have a target temperature. |
211 |
< |
// Not having one is fatal. |
212 |
< |
|
208 |
> |
template<typename T> void NVT<T>::resetIntegrator( void ){ |
209 |
> |
|
210 |
> |
chi = 0.0; |
211 |
> |
integralOfChidt = 0.0; |
212 |
> |
} |
213 |
> |
|
214 |
> |
template<typename T> int NVT<T>::readyCheck() { |
215 |
> |
|
216 |
> |
//check parent's readyCheck() first |
217 |
> |
if (T::readyCheck() == -1) |
218 |
> |
return -1; |
219 |
> |
|
220 |
> |
// First check to see if we have a target temperature. |
221 |
> |
// Not having one is fatal. |
222 |
> |
|
223 |
|
if (!have_target_temp) { |
224 |
|
sprintf( painCave.errMsg, |
225 |
|
"NVT error: You can't use the NVT integrator without a targetTemp!\n" |
228 |
|
simError(); |
229 |
|
return -1; |
230 |
|
} |
231 |
< |
|
231 |
> |
|
232 |
|
// We must set tauThermostat. |
233 |
< |
|
233 |
> |
|
234 |
|
if (!have_tau_thermostat) { |
235 |
|
sprintf( painCave.errMsg, |
236 |
|
"NVT error: If you use the constant temperature\n" |
238 |
|
painCave.isFatal = 1; |
239 |
|
simError(); |
240 |
|
return -1; |
241 |
< |
} |
241 |
> |
} |
242 |
> |
|
243 |
> |
if (!have_chi_tolerance) { |
244 |
> |
sprintf( painCave.errMsg, |
245 |
> |
"NVT warning: setting chi tolerance to 1e-6\n"); |
246 |
> |
chiTolerance = 1e-6; |
247 |
> |
have_chi_tolerance = 1; |
248 |
> |
painCave.isFatal = 0; |
249 |
> |
simError(); |
250 |
> |
} |
251 |
> |
|
252 |
|
return 1; |
253 |
+ |
|
254 |
|
} |
255 |
|
|
256 |
+ |
template<typename T> double NVT<T>::getConservedQuantity(void){ |
257 |
+ |
|
258 |
+ |
double conservedQuantity; |
259 |
+ |
double fkBT; |
260 |
+ |
double Energy; |
261 |
+ |
double thermostat_kinetic; |
262 |
+ |
double thermostat_potential; |
263 |
+ |
|
264 |
+ |
fkBT = (double)(info->getNDF() ) * kB * targetTemp; |
265 |
+ |
|
266 |
+ |
Energy = tStats->getTotalE(); |
267 |
+ |
|
268 |
+ |
thermostat_kinetic = fkBT* tauThermostat * tauThermostat * chi * chi / |
269 |
+ |
(2.0 * eConvert); |
270 |
+ |
|
271 |
+ |
thermostat_potential = fkBT * integralOfChidt / eConvert; |
272 |
+ |
|
273 |
+ |
conservedQuantity = Energy + thermostat_kinetic + thermostat_potential; |
274 |
+ |
|
275 |
+ |
return conservedQuantity; |
276 |
+ |
} |
277 |
+ |
|
278 |
+ |
template<typename T> string NVT<T>::getAdditionalParameters(void){ |
279 |
+ |
string parameters; |
280 |
+ |
const int BUFFERSIZE = 2000; // size of the read buffer |
281 |
+ |
char buffer[BUFFERSIZE]; |
282 |
+ |
|
283 |
+ |
sprintf(buffer,"\t%G\t%G;", chi, integralOfChidt); |
284 |
+ |
parameters += buffer; |
285 |
+ |
|
286 |
+ |
return parameters; |
287 |
+ |
} |