6 |
|
#include "Thermo.hpp" |
7 |
|
#include "ReadWrite.hpp" |
8 |
|
#include "Integrator.hpp" |
9 |
< |
#include "NVT.hpp" |
10 |
< |
|
9 |
> |
#include "simError.h" |
10 |
> |
|
11 |
> |
|
12 |
|
// Basic thermostating via Hoover, Phys.Rev.A, 1985, Vol. 31 (5) 1695-1697 |
13 |
|
|
14 |
< |
NVT::NVT() { |
15 |
< |
zeta = 0.0; |
14 |
> |
template<typename T> NVT<T>::NVT ( SimInfo *theInfo, ForceFields* the_ff): |
15 |
> |
T( theInfo, the_ff ) |
16 |
> |
{ |
17 |
> |
chi = 0.0; |
18 |
|
have_tau_thermostat = 0; |
19 |
|
have_target_temp = 0; |
20 |
< |
have_qmass = 0; |
20 |
> |
have_chi_tolerance = 0; |
21 |
> |
integralOfChidt = 0.0; |
22 |
> |
|
23 |
> |
oldVel = new double[3*nAtoms]; |
24 |
> |
oldJi = new double[3*nAtoms]; |
25 |
|
} |
26 |
|
|
27 |
< |
void NVT::moveA() { |
27 |
> |
template<typename T> NVT<T>::~NVT() { |
28 |
> |
delete[] oldVel; |
29 |
> |
delete[] oldJi; |
30 |
> |
} |
31 |
> |
|
32 |
> |
template<typename T> void NVT<T>::moveA() { |
33 |
|
|
34 |
< |
int i,j,k; |
23 |
< |
int atomIndex, aMatIndex; |
34 |
> |
int i, j; |
35 |
|
DirectionalAtom* dAtom; |
36 |
< |
double Tb[3]; |
37 |
< |
double ji[3]; |
36 |
> |
double Tb[3], ji[3]; |
37 |
> |
double A[3][3], I[3][3]; |
38 |
> |
double angle, mass; |
39 |
> |
double vel[3], pos[3], frc[3]; |
40 |
|
|
41 |
< |
ke = tStats->getKinetic() * eConvert; |
29 |
< |
zeta += dt2 * ( (2.0 * ke - NkBT) / qmass ); |
41 |
> |
double instTemp; |
42 |
|
|
43 |
+ |
// We need the temperature at time = t for the chi update below: |
44 |
+ |
|
45 |
+ |
instTemp = tStats->getTemperature(); |
46 |
+ |
|
47 |
|
for( i=0; i<nAtoms; i++ ){ |
32 |
– |
atomIndex = i * 3; |
33 |
– |
aMatIndex = i * 9; |
34 |
– |
|
35 |
– |
// velocity half step |
36 |
– |
for( j=atomIndex; j<(atomIndex+3); j++ ) |
37 |
– |
vel[j] += dt2 * ((frc[j]/atoms[i]->getMass())*eConvert - vel[j]*zeta); |
48 |
|
|
49 |
< |
// position whole step |
50 |
< |
for( j=atomIndex; j<(atomIndex+3); j++ ) |
49 |
> |
atoms[i]->getVel( vel ); |
50 |
> |
atoms[i]->getPos( pos ); |
51 |
> |
atoms[i]->getFrc( frc ); |
52 |
> |
|
53 |
> |
mass = atoms[i]->getMass(); |
54 |
> |
|
55 |
> |
for (j=0; j < 3; j++) { |
56 |
> |
// velocity half step (use chi from previous step here): |
57 |
> |
vel[j] += dt2 * ((frc[j] / mass ) * eConvert - vel[j]*chi); |
58 |
> |
// position whole step |
59 |
|
pos[j] += dt * vel[j]; |
60 |
+ |
} |
61 |
|
|
62 |
+ |
atoms[i]->setVel( vel ); |
63 |
+ |
atoms[i]->setPos( pos ); |
64 |
|
|
65 |
|
if( atoms[i]->isDirectional() ){ |
66 |
|
|
68 |
|
|
69 |
|
// get and convert the torque to body frame |
70 |
|
|
71 |
< |
Tb[0] = dAtom->getTx(); |
51 |
< |
Tb[1] = dAtom->getTy(); |
52 |
< |
Tb[2] = dAtom->getTz(); |
53 |
< |
|
71 |
> |
dAtom->getTrq( Tb ); |
72 |
|
dAtom->lab2Body( Tb ); |
73 |
|
|
74 |
|
// get the angular momentum, and propagate a half step |
75 |
|
|
76 |
< |
ji[0] = dAtom->getJx(); |
77 |
< |
ji[1] = dAtom->getJy(); |
78 |
< |
ji[2] = dAtom->getJz(); |
76 |
> |
dAtom->getJ( ji ); |
77 |
> |
|
78 |
> |
for (j=0; j < 3; j++) |
79 |
> |
ji[j] += dt2 * (Tb[j] * eConvert - ji[j]*chi); |
80 |
|
|
62 |
– |
ji[0] += dt2 * (Tb[0] * eConvert - ji[0]*zeta); |
63 |
– |
ji[1] += dt2 * (Tb[1] * eConvert - ji[1]*zeta); |
64 |
– |
ji[2] += dt2 * (Tb[2] * eConvert - ji[2]*zeta); |
65 |
– |
|
81 |
|
// use the angular velocities to propagate the rotation matrix a |
82 |
|
// full time step |
83 |
< |
|
83 |
> |
|
84 |
> |
dAtom->getA(A); |
85 |
> |
dAtom->getI(I); |
86 |
> |
|
87 |
|
// rotate about the x-axis |
88 |
< |
angle = dt2 * ji[0] / dAtom->getIxx(); |
89 |
< |
this->rotate( 1, 2, angle, ji, &aMat[aMatIndex] ); |
90 |
< |
|
88 |
> |
angle = dt2 * ji[0] / I[0][0]; |
89 |
> |
this->rotate( 1, 2, angle, ji, A ); |
90 |
> |
|
91 |
|
// rotate about the y-axis |
92 |
< |
angle = dt2 * ji[1] / dAtom->getIyy(); |
93 |
< |
this->rotate( 2, 0, angle, ji, &aMat[aMatIndex] ); |
92 |
> |
angle = dt2 * ji[1] / I[1][1]; |
93 |
> |
this->rotate( 2, 0, angle, ji, A ); |
94 |
|
|
95 |
|
// rotate about the z-axis |
96 |
< |
angle = dt * ji[2] / dAtom->getIzz(); |
97 |
< |
this->rotate( 0, 1, angle, ji, &aMat[aMatIndex] ); |
96 |
> |
angle = dt * ji[2] / I[2][2]; |
97 |
> |
this->rotate( 0, 1, angle, ji, A); |
98 |
|
|
99 |
|
// rotate about the y-axis |
100 |
< |
angle = dt2 * ji[1] / dAtom->getIyy(); |
101 |
< |
this->rotate( 2, 0, angle, ji, &aMat[aMatIndex] ); |
100 |
> |
angle = dt2 * ji[1] / I[1][1]; |
101 |
> |
this->rotate( 2, 0, angle, ji, A ); |
102 |
|
|
103 |
|
// rotate about the x-axis |
104 |
< |
angle = dt2 * ji[0] / dAtom->getIxx(); |
105 |
< |
this->rotate( 1, 2, angle, ji, &aMat[aMatIndex] ); |
104 |
> |
angle = dt2 * ji[0] / I[0][0]; |
105 |
> |
this->rotate( 1, 2, angle, ji, A ); |
106 |
|
|
107 |
< |
dAtom->setJx( ji[0] ); |
108 |
< |
dAtom->setJy( ji[1] ); |
109 |
< |
dAtom->setJz( ji[2] ); |
92 |
< |
} |
93 |
< |
|
107 |
> |
dAtom->setJ( ji ); |
108 |
> |
dAtom->setA( A ); |
109 |
> |
} |
110 |
|
} |
111 |
+ |
|
112 |
+ |
if (nConstrained){ |
113 |
+ |
constrainA(); |
114 |
+ |
} |
115 |
+ |
|
116 |
+ |
// Finally, evolve chi a half step (just like a velocity) using |
117 |
+ |
// temperature at time t, not time t+dt/2 |
118 |
+ |
|
119 |
+ |
chi += dt2 * ( instTemp / targetTemp - 1.0) / (tauThermostat*tauThermostat); |
120 |
+ |
integralOfChidt += chi*dt2; |
121 |
+ |
|
122 |
|
} |
123 |
|
|
124 |
< |
void Integrator::moveB( void ){ |
125 |
< |
int i,j,k; |
99 |
< |
int atomIndex; |
124 |
> |
template<typename T> void NVT<T>::moveB( void ){ |
125 |
> |
int i, j, k; |
126 |
|
DirectionalAtom* dAtom; |
127 |
< |
double Tb[3]; |
128 |
< |
double ji[3]; |
127 |
> |
double Tb[3], ji[3]; |
128 |
> |
double vel[3], frc[3]; |
129 |
> |
double mass; |
130 |
> |
double instTemp; |
131 |
> |
double oldChi, prevChi; |
132 |
|
|
133 |
< |
ke = tStats->getKinetic() * eConvert; |
134 |
< |
zeta += dt2 * ( (2.0 * ke - NkBT) / qmass ); |
135 |
< |
|
133 |
> |
// Set things up for the iteration: |
134 |
> |
|
135 |
> |
oldChi = chi; |
136 |
> |
|
137 |
|
for( i=0; i<nAtoms; i++ ){ |
138 |
< |
atomIndex = i * 3; |
139 |
< |
|
140 |
< |
// velocity half step |
141 |
< |
for( j=atomIndex; j<(atomIndex+3); j++ ) |
142 |
< |
vel[j] += dt2 * ((frc[j]/atoms[i]->getMass())*eConvert - vel[j]*zeta); |
143 |
< |
|
138 |
> |
|
139 |
> |
atoms[i]->getVel( vel ); |
140 |
> |
|
141 |
> |
for (j=0; j < 3; j++) |
142 |
> |
oldVel[3*i + j] = vel[j]; |
143 |
> |
|
144 |
|
if( atoms[i]->isDirectional() ){ |
145 |
< |
|
145 |
> |
|
146 |
|
dAtom = (DirectionalAtom *)atoms[i]; |
147 |
+ |
|
148 |
+ |
dAtom->getJ( ji ); |
149 |
+ |
|
150 |
+ |
for (j=0; j < 3; j++) |
151 |
+ |
oldJi[3*i + j] = ji[j]; |
152 |
+ |
|
153 |
+ |
} |
154 |
+ |
} |
155 |
+ |
|
156 |
+ |
// do the iteration: |
157 |
+ |
|
158 |
+ |
for (k=0; k < 4; k++) { |
159 |
+ |
|
160 |
+ |
instTemp = tStats->getTemperature(); |
161 |
+ |
|
162 |
+ |
// evolve chi another half step using the temperature at t + dt/2 |
163 |
+ |
|
164 |
+ |
prevChi = chi; |
165 |
+ |
chi = oldChi + dt2 * ( instTemp / targetTemp - 1.0) / |
166 |
+ |
(tauThermostat*tauThermostat); |
167 |
+ |
|
168 |
+ |
for( i=0; i<nAtoms; i++ ){ |
169 |
+ |
|
170 |
+ |
atoms[i]->getFrc( frc ); |
171 |
+ |
atoms[i]->getVel(vel); |
172 |
|
|
173 |
< |
// get and convert the torque to body frame |
173 |
> |
mass = atoms[i]->getMass(); |
174 |
|
|
175 |
< |
Tb[0] = dAtom->getTx(); |
176 |
< |
Tb[1] = dAtom->getTy(); |
177 |
< |
Tb[2] = dAtom->getTz(); |
175 |
> |
// velocity half step |
176 |
> |
for (j=0; j < 3; j++) |
177 |
> |
vel[j] = oldVel[3*i+j] + dt2 * ((frc[j] / mass ) * eConvert - oldVel[3*i + j]*chi); |
178 |
|
|
179 |
< |
dAtom->lab2Body( Tb ); |
179 |
> |
atoms[i]->setVel( vel ); |
180 |
|
|
181 |
< |
// get the angular momentum, and complete the angular momentum |
182 |
< |
// half step |
181 |
> |
if( atoms[i]->isDirectional() ){ |
182 |
> |
|
183 |
> |
dAtom = (DirectionalAtom *)atoms[i]; |
184 |
> |
|
185 |
> |
// get and convert the torque to body frame |
186 |
> |
|
187 |
> |
dAtom->getTrq( Tb ); |
188 |
> |
dAtom->lab2Body( Tb ); |
189 |
> |
|
190 |
> |
for (j=0; j < 3; j++) |
191 |
> |
ji[j] = oldJi[3*i + j] + dt2 * (Tb[j] * eConvert - oldJi[3*i+j]*chi); |
192 |
|
|
193 |
< |
ji[0] = dAtom->getJx(); |
194 |
< |
ji[1] = dAtom->getJy(); |
131 |
< |
ji[2] = dAtom->getJz(); |
132 |
< |
|
133 |
< |
ji[0] += dt2 * (Tb[0] * eConvert - ji[0]*zeta); |
134 |
< |
ji[1] += dt2 * (Tb[1] * eConvert - ji[1]*zeta); |
135 |
< |
ji[2] += dt2 * (Tb[2] * eConvert - ji[2]*zeta); |
136 |
< |
|
137 |
< |
jx2 = ji[0] * ji[0]; |
138 |
< |
jy2 = ji[1] * ji[1]; |
139 |
< |
jz2 = ji[2] * ji[2]; |
140 |
< |
|
141 |
< |
dAtom->setJx( ji[0] ); |
142 |
< |
dAtom->setJy( ji[1] ); |
143 |
< |
dAtom->setJz( ji[2] ); |
193 |
> |
dAtom->setJ( ji ); |
194 |
> |
} |
195 |
|
} |
196 |
+ |
|
197 |
+ |
if (nConstrained){ |
198 |
+ |
constrainB(); |
199 |
+ |
} |
200 |
+ |
|
201 |
+ |
if (fabs(prevChi - chi) <= chiTolerance) break; |
202 |
|
} |
203 |
+ |
|
204 |
+ |
integralOfChidt += dt2*chi; |
205 |
|
} |
206 |
|
|
207 |
< |
int NVT::readyCheck() { |
208 |
< |
double NkBT; |
207 |
> |
template<typename T> void NVT<T>::resetIntegrator( void ){ |
208 |
> |
|
209 |
> |
chi = 0.0; |
210 |
> |
integralOfChidt = 0.0; |
211 |
> |
} |
212 |
|
|
213 |
+ |
template<typename T> int NVT<T>::readyCheck() { |
214 |
+ |
|
215 |
+ |
//check parent's readyCheck() first |
216 |
+ |
if (T::readyCheck() == -1) |
217 |
+ |
return -1; |
218 |
+ |
|
219 |
|
// First check to see if we have a target temperature. |
220 |
|
// Not having one is fatal. |
221 |
|
|
227 |
|
simError(); |
228 |
|
return -1; |
229 |
|
} |
230 |
< |
|
231 |
< |
// Next check to see that we have a reasonable number of degrees of freedom |
232 |
< |
// and then set NkBT if we do have it. Unreasonable numbers of DOFs |
233 |
< |
// are also fatal. |
166 |
< |
|
167 |
< |
if (entry_plug->ndf > 0) { |
168 |
< |
NkBT = (double)entry_plug->ndf * kB * targetTemp; |
169 |
< |
} else { |
230 |
> |
|
231 |
> |
// We must set tauThermostat. |
232 |
> |
|
233 |
> |
if (!have_tau_thermostat) { |
234 |
|
sprintf( painCave.errMsg, |
235 |
< |
"NVT error: We got a silly number of degrees of freedom!\n" |
236 |
< |
); |
235 |
> |
"NVT error: If you use the constant temperature\n" |
236 |
> |
" integrator, you must set tauThermostat.\n"); |
237 |
|
painCave.isFatal = 1; |
238 |
|
simError(); |
239 |
|
return -1; |
240 |
< |
} |
177 |
< |
|
178 |
< |
// We have our choice on setting qmass or tauThermostat. One of them |
179 |
< |
// must be set. |
240 |
> |
} |
241 |
|
|
242 |
< |
if (!have_qmass) { |
243 |
< |
if (have_tau_thermostat) { |
244 |
< |
sprintf( painCave.errMsg, |
245 |
< |
"NVT info: Setting qMass = %d\n", tauThermostat * NkBT); |
246 |
< |
this->setQmass(tauThermostat * NkBT); |
247 |
< |
painCave.isFatal = 0; |
248 |
< |
simError(); |
249 |
< |
} else { |
250 |
< |
sprintf( painCave.errMsg, |
251 |
< |
"NVT error: If you use the constant temperature\n" |
252 |
< |
" integrator, you must set either tauThermostat or qMass.\n"); |
192 |
< |
painCave.isFatal = 1; |
193 |
< |
simError(); |
194 |
< |
return -1; |
195 |
< |
} |
196 |
< |
} |
197 |
< |
|
198 |
< |
return 1; |
242 |
> |
if (!have_chi_tolerance) { |
243 |
> |
sprintf( painCave.errMsg, |
244 |
> |
"NVT warning: setting chi tolerance to 1e-6\n"); |
245 |
> |
chiTolerance = 1e-6; |
246 |
> |
have_chi_tolerance = 1; |
247 |
> |
painCave.isFatal = 0; |
248 |
> |
simError(); |
249 |
> |
} |
250 |
> |
|
251 |
> |
return 1; |
252 |
> |
|
253 |
|
} |
254 |
|
|
255 |
< |
#endif |
255 |
> |
template<typename T> double NVT<T>::getConservedQuantity(void){ |
256 |
> |
|
257 |
> |
double conservedQuantity; |
258 |
> |
double E_NVT; |
259 |
> |
|
260 |
> |
//HNVE |
261 |
> |
conservedQuantity = tStats->getTotalE(); |
262 |
> |
//HNVE |
263 |
> |
|
264 |
> |
E_NVT = (info->getNDF() * kB * targetTemp * |
265 |
> |
(integralOfChidt + tauThermostat * tauThermostat * chi * chi / 2.0 )) / eConvert; |
266 |
> |
|
267 |
> |
conservedQuantity += E_NVT; |
268 |
> |
|
269 |
> |
//cerr << info->getTime() << "\t" << chi << "\t" << integralOfChidt << "\t" << E_NVT << endl; |
270 |
> |
|
271 |
> |
return conservedQuantity; |
272 |
> |
} |