| 1 | gezelter | 560 | #include "Atom.hpp" | 
| 2 |  |  | #include "SRI.hpp" | 
| 3 |  |  | #include "AbstractClasses.hpp" | 
| 4 |  |  | #include "SimInfo.hpp" | 
| 5 |  |  | #include "ForceFields.hpp" | 
| 6 |  |  | #include "Thermo.hpp" | 
| 7 |  |  | #include "ReadWrite.hpp" | 
| 8 |  |  | #include "Integrator.hpp" | 
| 9 |  |  | #include "NVT.hpp" | 
| 10 |  |  |  | 
| 11 |  |  | // Basic thermostating via Hoover, Phys.Rev.A, 1985, Vol. 31 (5) 1695-1697 | 
| 12 |  |  |  | 
| 13 |  |  | NVT::NVT() { | 
| 14 |  |  | zeta = 0.0; | 
| 15 |  |  | have_tau_thermostat = 0; | 
| 16 |  |  | have_target_temp = 0; | 
| 17 |  |  | have_qmass = 0; | 
| 18 |  |  | } | 
| 19 |  |  |  | 
| 20 |  |  | void NVT::moveA() { | 
| 21 |  |  |  | 
| 22 |  |  | int i,j,k; | 
| 23 |  |  | int atomIndex, aMatIndex; | 
| 24 |  |  | DirectionalAtom* dAtom; | 
| 25 |  |  | double Tb[3]; | 
| 26 |  |  | double ji[3]; | 
| 27 |  |  |  | 
| 28 |  |  | ke = tStats->getKinetic() * eConvert; | 
| 29 |  |  | zeta += dt2 * ( (2.0 * ke  -  NkBT) / qmass ); | 
| 30 |  |  |  | 
| 31 |  |  | for( i=0; i<nAtoms; i++ ){ | 
| 32 |  |  | atomIndex = i * 3; | 
| 33 |  |  | aMatIndex = i * 9; | 
| 34 |  |  |  | 
| 35 |  |  | // velocity half step | 
| 36 |  |  | for( j=atomIndex; j<(atomIndex+3); j++ ) | 
| 37 |  |  | vel[j] += dt2 * ((frc[j]/atoms[i]->getMass())*eConvert - vel[j]*zeta); | 
| 38 |  |  |  | 
| 39 |  |  | // position whole step | 
| 40 |  |  | for( j=atomIndex; j<(atomIndex+3); j++ ) | 
| 41 |  |  | pos[j] += dt * vel[j]; | 
| 42 |  |  |  | 
| 43 |  |  |  | 
| 44 |  |  | if( atoms[i]->isDirectional() ){ | 
| 45 |  |  |  | 
| 46 |  |  | dAtom = (DirectionalAtom *)atoms[i]; | 
| 47 |  |  |  | 
| 48 |  |  | // get and convert the torque to body frame | 
| 49 |  |  |  | 
| 50 |  |  | Tb[0] = dAtom->getTx(); | 
| 51 |  |  | Tb[1] = dAtom->getTy(); | 
| 52 |  |  | Tb[2] = dAtom->getTz(); | 
| 53 |  |  |  | 
| 54 |  |  | dAtom->lab2Body( Tb ); | 
| 55 |  |  |  | 
| 56 |  |  | // get the angular momentum, and propagate a half step | 
| 57 |  |  |  | 
| 58 |  |  | ji[0] = dAtom->getJx(); | 
| 59 |  |  | ji[1] = dAtom->getJy(); | 
| 60 |  |  | ji[2] = dAtom->getJz(); | 
| 61 |  |  |  | 
| 62 |  |  | ji[0] += dt2 * (Tb[0] * eConvert - ji[0]*zeta); | 
| 63 |  |  | ji[1] += dt2 * (Tb[1] * eConvert - ji[1]*zeta); | 
| 64 |  |  | ji[2] += dt2 * (Tb[2] * eConvert - ji[2]*zeta); | 
| 65 |  |  |  | 
| 66 |  |  | // use the angular velocities to propagate the rotation matrix a | 
| 67 |  |  | // full time step | 
| 68 |  |  |  | 
| 69 |  |  | // rotate about the x-axis | 
| 70 |  |  | angle = dt2 * ji[0] / dAtom->getIxx(); | 
| 71 |  |  | this->rotate( 1, 2, angle, ji, &aMat[aMatIndex] ); | 
| 72 |  |  |  | 
| 73 |  |  | // rotate about the y-axis | 
| 74 |  |  | angle = dt2 * ji[1] / dAtom->getIyy(); | 
| 75 |  |  | this->rotate( 2, 0, angle, ji, &aMat[aMatIndex] ); | 
| 76 |  |  |  | 
| 77 |  |  | // rotate about the z-axis | 
| 78 |  |  | angle = dt * ji[2] / dAtom->getIzz(); | 
| 79 |  |  | this->rotate( 0, 1, angle, ji, &aMat[aMatIndex] ); | 
| 80 |  |  |  | 
| 81 |  |  | // rotate about the y-axis | 
| 82 |  |  | angle = dt2 * ji[1] / dAtom->getIyy(); | 
| 83 |  |  | this->rotate( 2, 0, angle, ji, &aMat[aMatIndex] ); | 
| 84 |  |  |  | 
| 85 |  |  | // rotate about the x-axis | 
| 86 |  |  | angle = dt2 * ji[0] / dAtom->getIxx(); | 
| 87 |  |  | this->rotate( 1, 2, angle, ji, &aMat[aMatIndex] ); | 
| 88 |  |  |  | 
| 89 |  |  | dAtom->setJx( ji[0] ); | 
| 90 |  |  | dAtom->setJy( ji[1] ); | 
| 91 |  |  | dAtom->setJz( ji[2] ); | 
| 92 |  |  | } | 
| 93 |  |  |  | 
| 94 |  |  | } | 
| 95 |  |  | } | 
| 96 |  |  |  | 
| 97 |  |  | void Integrator::moveB( void ){ | 
| 98 |  |  | int i,j,k; | 
| 99 |  |  | int atomIndex; | 
| 100 |  |  | DirectionalAtom* dAtom; | 
| 101 |  |  | double Tb[3]; | 
| 102 |  |  | double ji[3]; | 
| 103 |  |  |  | 
| 104 |  |  | ke = tStats->getKinetic() * eConvert; | 
| 105 |  |  | zeta += dt2 * ( (2.0 * ke  -  NkBT) / qmass ); | 
| 106 |  |  |  | 
| 107 |  |  | for( i=0; i<nAtoms; i++ ){ | 
| 108 |  |  | atomIndex = i * 3; | 
| 109 |  |  |  | 
| 110 |  |  | // velocity half step | 
| 111 |  |  | for( j=atomIndex; j<(atomIndex+3); j++ ) | 
| 112 |  |  | vel[j] += dt2 * ((frc[j]/atoms[i]->getMass())*eConvert - vel[j]*zeta); | 
| 113 |  |  |  | 
| 114 |  |  | if( atoms[i]->isDirectional() ){ | 
| 115 |  |  |  | 
| 116 |  |  | dAtom = (DirectionalAtom *)atoms[i]; | 
| 117 |  |  |  | 
| 118 |  |  | // get and convert the torque to body frame | 
| 119 |  |  |  | 
| 120 |  |  | Tb[0] = dAtom->getTx(); | 
| 121 |  |  | Tb[1] = dAtom->getTy(); | 
| 122 |  |  | Tb[2] = dAtom->getTz(); | 
| 123 |  |  |  | 
| 124 |  |  | dAtom->lab2Body( Tb ); | 
| 125 |  |  |  | 
| 126 |  |  | // get the angular momentum, and complete the angular momentum | 
| 127 |  |  | // half step | 
| 128 |  |  |  | 
| 129 |  |  | ji[0] = dAtom->getJx(); | 
| 130 |  |  | ji[1] = dAtom->getJy(); | 
| 131 |  |  | ji[2] = dAtom->getJz(); | 
| 132 |  |  |  | 
| 133 |  |  | ji[0] += dt2 * (Tb[0] * eConvert - ji[0]*zeta); | 
| 134 |  |  | ji[1] += dt2 * (Tb[1] * eConvert - ji[1]*zeta); | 
| 135 |  |  | ji[2] += dt2 * (Tb[2] * eConvert - ji[2]*zeta); | 
| 136 |  |  |  | 
| 137 |  |  | jx2 = ji[0] * ji[0]; | 
| 138 |  |  | jy2 = ji[1] * ji[1]; | 
| 139 |  |  | jz2 = ji[2] * ji[2]; | 
| 140 |  |  |  | 
| 141 |  |  | dAtom->setJx( ji[0] ); | 
| 142 |  |  | dAtom->setJy( ji[1] ); | 
| 143 |  |  | dAtom->setJz( ji[2] ); | 
| 144 |  |  | } | 
| 145 |  |  | } | 
| 146 |  |  | } | 
| 147 |  |  |  | 
| 148 |  |  | int NVT::readyCheck() { | 
| 149 |  |  | double NkBT; | 
| 150 |  |  |  | 
| 151 |  |  | // First check to see if we have a target temperature. | 
| 152 |  |  | // Not having one is fatal. | 
| 153 |  |  |  | 
| 154 |  |  | if (!have_target_temp) { | 
| 155 |  |  | sprintf( painCave.errMsg, | 
| 156 |  |  | "NVT error: You can't use the NVT integrator without a targetTemp!\n" | 
| 157 |  |  | ); | 
| 158 |  |  | painCave.isFatal = 1; | 
| 159 |  |  | simError(); | 
| 160 |  |  | return -1; | 
| 161 |  |  | } | 
| 162 |  |  |  | 
| 163 |  |  | // Next check to see that we have a reasonable number of degrees of freedom | 
| 164 |  |  | // and then set NkBT if we do have it.   Unreasonable numbers of DOFs | 
| 165 |  |  | // are also fatal. | 
| 166 |  |  |  | 
| 167 |  |  | if (entry_plug->ndf > 0) { | 
| 168 |  |  | NkBT = (double)entry_plug->ndf * kB * targetTemp; | 
| 169 |  |  | } else { | 
| 170 |  |  | sprintf( painCave.errMsg, | 
| 171 |  |  | "NVT error: We got a silly number of degrees of freedom!\n" | 
| 172 |  |  | ); | 
| 173 |  |  | painCave.isFatal = 1; | 
| 174 |  |  | simError(); | 
| 175 |  |  | return -1; | 
| 176 |  |  | } | 
| 177 |  |  |  | 
| 178 |  |  | // We have our choice on setting qmass or tauThermostat.  One of them | 
| 179 |  |  | // must be set. | 
| 180 |  |  |  | 
| 181 |  |  | if (!have_qmass) { | 
| 182 |  |  | if (have_tau_thermostat) { | 
| 183 |  |  | sprintf( painCave.errMsg, | 
| 184 |  |  | "NVT info: Setting qMass = %d\n", tauThermostat * NkBT); | 
| 185 |  |  | this->setQmass(tauThermostat * NkBT); | 
| 186 |  |  | painCave.isFatal = 0; | 
| 187 |  |  | simError(); | 
| 188 |  |  | } else { | 
| 189 |  |  | sprintf( painCave.errMsg, | 
| 190 |  |  | "NVT error: If you use the constant temperature\n" | 
| 191 |  |  | "   integrator, you must set either tauThermostat or qMass.\n"); | 
| 192 |  |  | painCave.isFatal = 1; | 
| 193 |  |  | simError(); | 
| 194 |  |  | return -1; | 
| 195 |  |  | } | 
| 196 |  |  | } | 
| 197 |  |  |  | 
| 198 |  |  | return 1; | 
| 199 |  |  | } | 
| 200 |  |  |  | 
| 201 |  |  | #endif |