| 1 |
#include <cmath> |
| 2 |
#include "Atom.hpp" |
| 3 |
#include "Molecule.hpp" |
| 4 |
#include "SRI.hpp" |
| 5 |
#include "AbstractClasses.hpp" |
| 6 |
#include "SimInfo.hpp" |
| 7 |
#include "ForceFields.hpp" |
| 8 |
#include "Thermo.hpp" |
| 9 |
#include "ReadWrite.hpp" |
| 10 |
#include "Integrator.hpp" |
| 11 |
#include "simError.h" |
| 12 |
|
| 13 |
|
| 14 |
// Basic isotropic thermostating and barostating via the Melchionna |
| 15 |
// modification of the Hoover algorithm: |
| 16 |
// |
| 17 |
// Melchionna, S., Ciccotti, G., and Holian, B. L., 1993, |
| 18 |
// Molec. Phys., 78, 533. |
| 19 |
// |
| 20 |
// and |
| 21 |
// |
| 22 |
// Hoover, W. G., 1986, Phys. Rev. A, 34, 2499. |
| 23 |
|
| 24 |
// The NPTzm variant scales the molecular center-of-mass coordinates |
| 25 |
// instead of the atomic coordinates |
| 26 |
|
| 27 |
template<typename T> NPTzm<T>::NPTzm ( SimInfo *theInfo, ForceFields* the_ff): |
| 28 |
T( theInfo, the_ff ) |
| 29 |
{ |
| 30 |
chi = 0.0; |
| 31 |
eta = 0.0; |
| 32 |
etaZ = 0.0; |
| 33 |
have_tau_thermostat = 0; |
| 34 |
have_tau_barostat = 0; |
| 35 |
have_target_temp = 0; |
| 36 |
have_target_pressure = 0; |
| 37 |
} |
| 38 |
|
| 39 |
template<typename T> void NPTzm<T>::moveA() { |
| 40 |
|
| 41 |
int i, j, k; |
| 42 |
DirectionalAtom* dAtom; |
| 43 |
double Tb[3], ji[3]; |
| 44 |
double A[3][3], I[3][3]; |
| 45 |
double angle, mass; |
| 46 |
double vel[3], pos[3], frc[3]; |
| 47 |
|
| 48 |
double rj[3]; |
| 49 |
double instaTemp, instaPress, instaPressZ, instaVol; |
| 50 |
double tt2, tb2, scaleFactor, scaleFactorZ, scaleFactorXY, bigFactor, etaXY; |
| 51 |
double hm[3][3], hmnew[3][3], scaleMat[3][3]; |
| 52 |
double scF3, scFxy2; |
| 53 |
|
| 54 |
|
| 55 |
int nInMol; |
| 56 |
double rc[3]; |
| 57 |
|
| 58 |
nMols = info->n_mol; |
| 59 |
myMolecules = info->molecules; |
| 60 |
|
| 61 |
tt2 = tauThermostat * tauThermostat; |
| 62 |
tb2 = tauBarostat * tauBarostat; |
| 63 |
|
| 64 |
instaTemp = tStats->getTemperature(); |
| 65 |
instaPress = tStats->getPressure(); |
| 66 |
instaPressZ = tStats->getPressureZ(); |
| 67 |
instaVol = tStats->getVolume(); |
| 68 |
|
| 69 |
// first evolve chi a half step |
| 70 |
|
| 71 |
chi += dt2 * ( instaTemp / targetTemp - 1.0) / tt2; |
| 72 |
eta += dt2 * ( instaVol * (instaPress - targetPressure) / |
| 73 |
(p_convert*NkBT*tb2)); |
| 74 |
etaZ += dt2 * ( instaVol * (instaPressZ - targetPressure) / |
| 75 |
(p_convert*NkBT*tb2)); |
| 76 |
|
| 77 |
scaleFactorZ = exp(dt*etaZ); |
| 78 |
scaleFactor = exp(dt*eta); |
| 79 |
|
| 80 |
scF3 = scaleFactor * scaleFactor * scaleFactor; |
| 81 |
scFxy2 = scF3 / scaleFactorZ; |
| 82 |
scaleFactorXY = sqrt( scFxy2 ); |
| 83 |
|
| 84 |
etaXY = log( scaleFactorXY ) / dt; |
| 85 |
|
| 86 |
for( i = 0; i < nMols; i++) { |
| 87 |
|
| 88 |
myMolecules[i].getCOM(rc); |
| 89 |
|
| 90 |
nInMol = myMolecules[i].getNAtoms(); |
| 91 |
myAtoms = myMolecules[i].getMyAtoms(); |
| 92 |
|
| 93 |
// find the minimum image coordinates of the molecular centers of mass: |
| 94 |
|
| 95 |
info->wrapVector(rc); |
| 96 |
|
| 97 |
for (j = 0; j < nInMol; j++) { |
| 98 |
|
| 99 |
if(myAtoms[j] != NULL) { |
| 100 |
|
| 101 |
myAtoms[j]->getVel( vel ); |
| 102 |
myAtoms[j]->getPos( pos ); |
| 103 |
myAtoms[j]->getFrc( frc ); |
| 104 |
|
| 105 |
mass = myAtoms[j]->getMass(); |
| 106 |
|
| 107 |
for (k=0; k < 2; k++) |
| 108 |
vel[k] += dt2 * ((frc[k] / mass ) * eConvert - vel[k]*(chi+etaXY)); |
| 109 |
vel[2] += dt2 * ((frc[2] / mass ) * eConvert - vel[2]*(chi+etaZ)); |
| 110 |
|
| 111 |
myAtoms[j]->setVel( vel ); |
| 112 |
|
| 113 |
for (k = 0; k < 2; k++) |
| 114 |
pos[k] += dt * (vel[k] + etaXY*rc[k]); |
| 115 |
pos[2] += dt * (vel[2] + etaZ*rc[2]); |
| 116 |
|
| 117 |
myAtoms[j]->setPos( pos ); |
| 118 |
|
| 119 |
if( myAtoms[j]->isDirectional() ){ |
| 120 |
|
| 121 |
dAtom = (DirectionalAtom *)myAtoms[j]; |
| 122 |
|
| 123 |
// get and convert the torque to body frame |
| 124 |
|
| 125 |
dAtom->getTrq( Tb ); |
| 126 |
dAtom->lab2Body( Tb ); |
| 127 |
|
| 128 |
// get the angular momentum, and propagate a half step |
| 129 |
|
| 130 |
dAtom->getJ( ji ); |
| 131 |
|
| 132 |
for (k=0; k < 3; k++) |
| 133 |
ji[k] += dt2 * (Tb[k] * eConvert - ji[k]*chi); |
| 134 |
|
| 135 |
// use the angular velocities to propagate the rotation matrix a |
| 136 |
// full time step |
| 137 |
|
| 138 |
dAtom->getA(A); |
| 139 |
dAtom->getI(I); |
| 140 |
|
| 141 |
// rotate about the x-axis |
| 142 |
angle = dt2 * ji[0] / I[0][0]; |
| 143 |
this->rotate( 1, 2, angle, ji, A ); |
| 144 |
|
| 145 |
// rotate about the y-axis |
| 146 |
angle = dt2 * ji[1] / I[1][1]; |
| 147 |
this->rotate( 2, 0, angle, ji, A ); |
| 148 |
|
| 149 |
// rotate about the z-axis |
| 150 |
angle = dt * ji[2] / I[2][2]; |
| 151 |
this->rotate( 0, 1, angle, ji, A); |
| 152 |
|
| 153 |
// rotate about the y-axis |
| 154 |
angle = dt2 * ji[1] / I[1][1]; |
| 155 |
this->rotate( 2, 0, angle, ji, A ); |
| 156 |
|
| 157 |
// rotate about the x-axis |
| 158 |
angle = dt2 * ji[0] / I[0][0]; |
| 159 |
this->rotate( 1, 2, angle, ji, A ); |
| 160 |
|
| 161 |
dAtom->setJ( ji ); |
| 162 |
dAtom->setA( A ); |
| 163 |
} |
| 164 |
} |
| 165 |
} |
| 166 |
} |
| 167 |
|
| 168 |
// Scale the box after all the positions have been moved: |
| 169 |
|
| 170 |
|
| 171 |
|
| 172 |
bigFactor = abs( 1.0 - scaleFactorZ ); |
| 173 |
if( abs(1.0 - scaleFactor) > bigFactor ) |
| 174 |
bigFactor = abs(1.0 - scaleFactor); |
| 175 |
|
| 176 |
if (bigFactor > 0.1) { |
| 177 |
sprintf( painCave.errMsg, |
| 178 |
"NPTzm error: Attempting a Box scaling of more than 10 percent" |
| 179 |
" check your tauBarostat, as it is probably too small!\n" |
| 180 |
" eta = %lf, scaleFactor = %lf\n" |
| 181 |
" etaZ = %lf, scaleFactorZ = %lf\n", |
| 182 |
eta, scaleFactor, |
| 183 |
etaZ, scaleFactorZ |
| 184 |
); |
| 185 |
painCave.isFatal = 1; |
| 186 |
simError(); |
| 187 |
} else { |
| 188 |
|
| 189 |
for(i=0;i<3;i++) |
| 190 |
for(j=0;j<3;j++) |
| 191 |
scaleBox[i][j] = 0.0; |
| 192 |
|
| 193 |
|
| 194 |
|
| 195 |
scaleBox[0][0] = scaleFactorXY; |
| 196 |
scaleBox[1][1] = scaleFactorXY; |
| 197 |
scaleBox[2][2] = scaleFactorZ; |
| 198 |
|
| 199 |
info->getBoxM( hm ); |
| 200 |
info->matMul3( hm, scaleBox, hmnew ); |
| 201 |
|
| 202 |
info->setBoxM( hmnew ); |
| 203 |
} |
| 204 |
} |
| 205 |
|
| 206 |
template<typename T> void NPTzm<T>::moveB( void ){ |
| 207 |
int i, j; |
| 208 |
DirectionalAtom* dAtom; |
| 209 |
double Tb[3], ji[3]; |
| 210 |
double vel[3], frc[3]; |
| 211 |
double mass; |
| 212 |
double scaleFactor, scaleFactorZ, scaleFactorXY, bigFactor, etaXY; |
| 213 |
double instaTemp, instaPress, instaPressZ, instaVol, etaXY; |
| 214 |
double scF3, scFxy2; |
| 215 |
|
| 216 |
double tt2, tb2; |
| 217 |
|
| 218 |
tt2 = tauThermostat * tauThermostat; |
| 219 |
tb2 = tauBarostat * tauBarostat; |
| 220 |
|
| 221 |
instaTemp = tStats->getTemperature(); |
| 222 |
instaPress = tStats->getPressure(); |
| 223 |
instaPressZ = tStats->getPressureZ(); |
| 224 |
instaVol = tStats->getVolume(); |
| 225 |
|
| 226 |
chi += dt2 * ( instaTemp / targetTemp - 1.0) / tt2; |
| 227 |
eta += dt2 * ( instaVol * (instaPress - targetPressure) / |
| 228 |
(p_convert*NkBT*tb2)); |
| 229 |
etaZ += dt2 * ( instaVol * (instaPressZ - targetPressure) / |
| 230 |
(p_convert*NkBT*tb2)); |
| 231 |
|
| 232 |
scaleFactorZ = exp(dt*etaZ); |
| 233 |
scaleFactor = exp(dt*eta); |
| 234 |
|
| 235 |
scF3 = scaleFactor * scaleFactor * scaleFactor; |
| 236 |
scFxy2 = scF3 / scaleFactorZ; |
| 237 |
scaleFactorXY = sqrt( scFxy2 ); |
| 238 |
|
| 239 |
etaXY = log( scaleFactorXY ) / dt; |
| 240 |
|
| 241 |
for( i=0; i<nAtoms; i++ ){ |
| 242 |
|
| 243 |
atoms[i]->getVel( vel ); |
| 244 |
atoms[i]->getFrc( frc ); |
| 245 |
|
| 246 |
mass = atoms[i]->getMass(); |
| 247 |
|
| 248 |
// velocity half step |
| 249 |
for (j=0; j < 2; j++) |
| 250 |
vel[j] += dt2 * ((frc[j] / mass ) * eConvert - vel[j]*(chi+etaXY)); |
| 251 |
vel[2] += dt2 * ((frc[2] / mass ) * eConvert - vel[2]*(chi+etaZ)); |
| 252 |
|
| 253 |
atoms[i]->setVel( vel ); |
| 254 |
|
| 255 |
if( atoms[i]->isDirectional() ){ |
| 256 |
|
| 257 |
dAtom = (DirectionalAtom *)atoms[i]; |
| 258 |
|
| 259 |
// get and convert the torque to body frame |
| 260 |
|
| 261 |
dAtom->getTrq( Tb ); |
| 262 |
dAtom->lab2Body( Tb ); |
| 263 |
|
| 264 |
// get the angular momentum, and propagate a half step |
| 265 |
|
| 266 |
dAtom->getJ( ji ); |
| 267 |
|
| 268 |
for (j=0; j < 3; j++) |
| 269 |
ji[j] += dt2 * (Tb[j] * eConvert - ji[j]*chi); |
| 270 |
|
| 271 |
dAtom->setJ( ji ); |
| 272 |
} |
| 273 |
} |
| 274 |
} |
| 275 |
|
| 276 |
template<typename T> void NPTzm<T>::resetIntegrator() { |
| 277 |
chi = 0.0; |
| 278 |
eta = 0.0; |
| 279 |
etaZ = 0.0; |
| 280 |
} |
| 281 |
|
| 282 |
template<typename T> int NPTzm<T>::readyCheck() { |
| 283 |
|
| 284 |
//check parent's readyCheck() first |
| 285 |
if (T::readyCheck() == -1) |
| 286 |
return -1; |
| 287 |
|
| 288 |
// First check to see if we have a target temperature. |
| 289 |
// Not having one is fatal. |
| 290 |
|
| 291 |
if (!have_target_temp) { |
| 292 |
sprintf( painCave.errMsg, |
| 293 |
"NPTzm error: You can't use the NPTzm integrator\n" |
| 294 |
" without a targetTemp!\n" |
| 295 |
); |
| 296 |
painCave.isFatal = 1; |
| 297 |
simError(); |
| 298 |
return -1; |
| 299 |
} |
| 300 |
|
| 301 |
if (!have_target_pressure) { |
| 302 |
sprintf( painCave.errMsg, |
| 303 |
"NPTzm error: You can't use the NPTzm integrator\n" |
| 304 |
" without a targetPressure!\n" |
| 305 |
); |
| 306 |
painCave.isFatal = 1; |
| 307 |
simError(); |
| 308 |
return -1; |
| 309 |
} |
| 310 |
|
| 311 |
// We must set tauThermostat. |
| 312 |
|
| 313 |
if (!have_tau_thermostat) { |
| 314 |
sprintf( painCave.errMsg, |
| 315 |
"NPTzm error: If you use the NPTzm\n" |
| 316 |
" integrator, you must set tauThermostat.\n"); |
| 317 |
painCave.isFatal = 1; |
| 318 |
simError(); |
| 319 |
return -1; |
| 320 |
} |
| 321 |
|
| 322 |
// We must set tauBarostat. |
| 323 |
|
| 324 |
if (!have_tau_barostat) { |
| 325 |
sprintf( painCave.errMsg, |
| 326 |
"NPTzm error: If you use the NPTzm\n" |
| 327 |
" integrator, you must set tauBarostat.\n"); |
| 328 |
painCave.isFatal = 1; |
| 329 |
simError(); |
| 330 |
return -1; |
| 331 |
} |
| 332 |
|
| 333 |
// We need NkBT a lot, so just set it here: |
| 334 |
|
| 335 |
NkBT = (double)info->ndf * kB * targetTemp; |
| 336 |
|
| 337 |
return 1; |
| 338 |
} |